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Abstract: Adaptive, size-α step-down tests are provided for the analysis of orthog-

onal saturated designs. The tests work effectively under effect sparsity, and include

as special cases the individual nonadaptive tests of Berk and Picard (1991) and

the simultaneous nonadaptive tests of Voss (1988). The approach is similar to

that used by Wang and Voss (2003) to construct adaptive confidence intervals, but

testing is simpler because one can use the same denominator for all statistics. Step-

down tests also have a clear power advantage over simultaneous confidence intervals

and analogous single-step tests, as is demonstrated theoretically and assessed via

simulation.
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1. Introduction

Consider the analysis of an orthogonal saturated factorial design involving

k factorial effects β1, . . . , βk associated with multiple factors each at two levels.

Assume a standard linear model for analysis of independent observations: Yi ∼

N(β0 +β1xi1 + · · ·+βkxik, σ
2), i = 1, . . . , n. The design is orthogonal if the least

squares estimators β̂i (1 ≤ i ≤ k) are uncorrelated, and the design is saturated

if there are just enough observations to estimate the model parameters βi (i.e.,

n = k + 1), leaving no error degrees of freedom to independently estimate the

error variance σ2. Of special interest is an orthogonal fraction of a 2m factorial

design that has just enough observations to estimate all main effects, since such

designs have important applications in industry.

The analysis of orthogonal saturated designs was considered initially by Birn-

baum (1959) and Daniel (1959), and subsequently by Zahn (1969, 1975a, 1975b).

Then Box and Meyer (1986) presented a Bayesian method for the analysis of such

data and Lenth (1989) proposed a “quick and easy (frequentist) analysis of un-

replicated factorials” which was adaptive to the presence of some non-negligible

effects. These later papers were apparently the catalyst for a flurry of research
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on the analysis of orthogonal saturated designs, as many methods have been pro-

posed since the late 1980’s. See Hamada and Balakrishnan (1998) for a review

and empirical comparison of such methods.

However, most of the proposed methods of analysis of saturated designs

are only justified empirically. Relatively few of the methods have been shown

to provide strong control of error rates — namely, control under all parameter

configurations − espoused by Hochberg and Tamhane (1987, Chap.1) to be a

fundamentally desirable property. For orthogonal saturated designs, nonadap-

tive methods of analysis known to provide strong control of error rates include

step-down tests of Voss (1988), individual tests of Berk and Picard (1991), indi-

vidual confidence intervals of Voss (1999), and simultaneous confidence intervals

of Voss and Wang (1999). For nonorthogonal saturated designs, Kinateder, Voss

and Wang (2000a) provided nonadaptive individual confidence intervals strongly

controlling error rates, building upon a variance estimation approach of Kunert

(1997). Kinateder, Voss and Wang (2000b) provided a review of methods of

analysis of saturated designs known to strongly control error rates.

A related open problem of considerable interest is to show that step-down

tests can be applied iteratively. For example Daniel (1959), in his consideration

of subjective analysis based on half-normal plots, advocated redrawing the plot

for the remaining estimators each time the largest estimator remaining under

consideration was judged to be significantly large. Likewise, Voss (1988) observed

that his step-down test would be more powerful if one used sharper critical values

based on such an iterative approach. Venter and Steel (1998) advocated the use

of this iterative approach, recognizing that it is justifiable if all effects are zero or

infinite. Al-Shiha and Yang (1999) also proposed use of an iterative step-down

test. Still, it remains open to show that iterative step-down tests strongly control

error rates.

Yet another open problem of great interest is to show that adaptive methods,

including Lenth’s (1989) method, strongly control error rates. Lenth’s method

is adaptive in the sense that relatively large effect estimates β̂i are set aside

in the estimation of σ, and the number set aside depends on the estimates.

More generally, a method is said to be adaptive if it uses one of several possible

denominators and the choice is data dependent. Such adaptive estimation of

variability is thought to be more efficient. Chen and Kunert (2004) proposed

a procedure that is adaptive in this sense. Still, to show that such adaptive

methods strongly control error rates remains open.

Ye, Hamada and Wu (2001) proposed the iterative, step-down application of

Lenth’s method, incorporating both of the aforementioned open problems into

one methodology.
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In this paper, adaptive step-down tests are proposed and shown to be of

simultaneous size α. The tests are analogous to adaptive confidence intervals

introduced recently by Wang and Voss (2001, 2003). However, the tests have

two distinct advantages over the confidence intervals. First, while the confidence

interval for each effect requires a different statistic denominator, such is not the

case for the test statistics, simplifying test implementation. More importantly,

step-down tests have an obvious power advantage, as will be shown in Section

3. Like the confidence intervals, the tests introduced here use critical values

computed under the null parameter configuration (i.e., βi = 0,∀ i ≥ 1), and work

effectively under effect sparsity — namely, when few of the effects βi (i ≥ 1) are

non-negligible. The methodology and results are presented in Section 2, followed

by consideration of power in Section 3.

2. Adaptive Tests

In this section, methods and results are presented for adaptively testing the

hypotheses H0i : βi = 0 for i = 1, . . . , k either individually or simultaneously.

The tests generalize the individual nonadaptive tests of Berk and Picard (1991)

and the simultaneous nonadaptive tests of Voss (1988).

Assume the effect estimators β̂i for i ≥ 1 are independent with β̂i ∼ N(βi,

a2
i σ

2) for known constants ai, and assume each ai = 1 without loss of gener-

ality. These assumptions are standard for the analysis of orthogonal factorial

designs. Let K = {1, . . . , k} denote the set of indices corresponding to individual

hypotheses H0i : βi = 0. Let β = (β1, . . . , βk) and βnull = (0, . . . , 0).

Stochastic ordering plays a fundamental role in establishing test size. The

distribution of X ∼ Fθ(x) is said to be stochastically nondecreasing in θ if Pθ(X >

x) = 1 − Fθ(x) is nondecreasing in θ for all x. The following stochastic ordering

lemma of Alam and Rizvi (1966) and Mahamunulu (1967) is simple but quite

useful.

Lemma 1. Let X1, . . . , Xk be independent random variables, where Xi ∼ Fθi
(xi)

is stochastically nondecreasing in θi. If the statistic t = t(x1, . . . , xk) is a non-

increasing function of xi for each i when all xj (j 6= i) are held fixed, then the

distribution of T = t(X1, . . . , Xk) is stochastically nonincreasing in θi.

The closed testing procedure of Marcus, Peritz, and Gabriel (1976) is the

standard approach for establishing simultaneous step-down tests of size α. Their

procedure requires specification of a size-α test of the hypothesis H0I : βi =

0 ∀ i ∈ I for each nonempty I ⊂ K. To test H0I , consider the test statistic

TI = max
i∈I

Ti , for Ti =
β̂2

i

minj∈J{cjqmsej}
, (1)
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where the quasi mean squared error qmsej = (1/j)
∑j

h=1 β̂2
(h) is the average of

the j smallest of the k order statistics β̂2
(1) ≤ · · · ≤ β̂2

(k) of the squared estimators,

J ⊂ K is a predetermined nonempty subset of K, and the cj are specified positive

constants. For example, for testing 15 effects, consider using J = {8, 12} with the

constants cj (j = 8, 12) chosen so Eβnull
[cjQMSEj ] = σ2. Then the denominator

pools together either the eight or twelve smallest squared estimates, favoring the

use of eight, for example, if β̂2
(12) is large.

Let t|I|,α denote the upper-α quantile of the distribution of the test statistic

TI at βnull; i.e.,

Pβnull
(TI > t|I|,α) = α. (2)

Here |I| denotes the cardinality of the index set I. The distribution of TI is

nonstandard, but the critical value t|I|,α is easily approximated via simulation.

For a subset I ′ ⊂ I, it is obvious that TI′ ≤ TI . Therefore, t|I′|,α ≤ t|I|,α.

Lemma 2. For a nonempty subset I of K, a size-α test of H0I is to reject H0I

if TI > t|I|,α.

Proof. Let β0I = {(β1, . . . , βk) : βi = 0 for i ∈ I}. It suffices to show that

Pβ0I
(TI > t|I|,α) ≤ α over β0I . However, TI is a nonincreasing function of β̂2

h for

each h 6∈ I and β̂2
h is stochastically nondecreasing in β2

h, so TI is stochastically

nonincreasing in β2
h by Lemma 1.

Corollary 1. For an integer i between 1 and k, a size-α test of H0i : βi = 0 is

to reject H0i if Ti > t1,α.

A more important consequence of Lemma 2 is the following. The closed

test for simultaneously testing the hypotheses H0i : βi = 0 (i ∈ K) controls

the probability of making any false assertions to be at most α. This closed

test, which rejects H0i if H0I is rejected for every I ⊂ K containing i, controls

the simultaneous error rate (Marcus, Peritz, and Gabriel, (1976)) but is rather

cumbersome to conduct. However, for closed tests of this type, the following

step-down shortcut to the closed test also controls the error rate, (Hochberg and

Tamhane, (1987, p.55)).

Step-down Tests: Let [1], . . . , [k] be random indices such that T[1] < · · · < T[k].

Step 1: If T[k] > tk,α, then infer β[k] 6= 0 and continue; else stop.

Step 2: If T[k−1] > tk−1,α, then infer β[k−1] 6= 0 and continue; else stop.
...

Iterate in this step-down fashion, but stop the first time no nonzero effect is

claimed. Under effect sparsity, the procedure typically stops within a few steps.
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Theorem 1. For the above step-down test of H0i : βi = 0 (i = 1, . . . , k), the

probability of making any false inferences is at most α for any β. That is,

max
I⊂K

sup
β∈H0I

Pβ(reject H0i for some i ∈ I) ≤ α.

Remarks. If |J | = 1 in equation (1), then the tests of Lemma 2, Corollary 1

and Theorem 1 are nonadaptive. In this case, the individual tests of Corollary 1

reduce to the nonadaptive tests of Berk and Picard (1991), and the simultaneous

step-down test reduces to the nonadaptive, closed, step-down test of Voss (1988).

However, if |J | > 1 and cj > cj′ for j < j′ (j, j′ ∈ J), then these same tests

are fully adaptive in the following sense. There is positive probability that the

denominator minj∈J{cjqmsej} of each test statistic Ti in equation (1) will be

equal to cjqmsej for each j ∈ J .

In particular, the tests of Lemma 2, Corollary 1 and Theorem 1 are fully

adaptive if one chooses the constants cj in equation (1) to make Eβnull
[cj QMSEj]

= σ2 for each j ∈ J . This approach to choosing the constants cj was found to

be efficient in simulations conducted by Wang and Voss (2003) in their consid-

eration of adaptive confidence intervals. The denominators they considered were

analogous except, in getting a confidence interval for βi, the denominator is kept

free of β̂i.

The form of the adaptive statistic Ti in equation (1) is also motivated by

the following fact. The nonadaptive statistic Ti = β̂2
i /qmseν , corresponding to

J = {ν} with cν = 1, would be the likelihood ratio statistic for testing H0i : βi = 0

if one knew that exactly ν of the effects βj were zero without knowing specifically

which ones, (Al-Shiha and Yang (1999)).

3. Advantage of Stepping Down

In the step-down tests of Section 2, the test statistics T[k], T[k−1], . . . are

compared to the respective critical values in the decreasing sequence {ti,α}
1
i=k.

This is in contrast to a single-step simultaneous size-α test that compares each

test statistic Ti (i = 1, . . . , k) to the largest critical value, tk,α, and asserts βi 6= 0

if Ti > tk,α. Hence the simultaneous step-down tests, justified by the closure

method, have an obvious power advantage over the single-step test. The critical

values for the step-wise tests are sharper for testing each effect except the one

with the largest estimate, and the critical values are the same for testing that ef-

fect. Hence, any effects asserted nonzero by the single-step test are also asserted

nonzero by the corresponding step-down test, though the converse need not be

true. One would like to have step-wise confidence intervals or sets analogous to

the step-down tests. Hsu and Berger (1999) have obtained step-wise confidence
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intervals when it is desirable to give inferences in a specified order. Their justi-
fication is based on the so-called partitioning principle, involving a partitioning
of the parameter space. However, in the setting considered here and by Wang
and Voss (2003), there is no natural order in which to consider the parameters
βi, so the approach of Hsu and Berger (1999) does not apply. Rather, in this
setting, simultaneous confidence intervals are analogous to single-step tests, so
are similarly at a power disadvantage compared to step-down tests. This is the
reason step-down tests are useful for analysis of orthogonal saturated designs.

In this section, the nature and magnitude of this power advantage is inves-
tigated via simulation. Power was estimated via simulation for the case of 15
estimators, as one would have in the analysis of an orthogonal fractional fac-
torial design for estimating 15 effects in 16 runs. Included were six parameter
configurations, including from four to six nonzero effects of size varying from one
to five standard deviations of the data. Fewer nonzero effects yield less power
advantage, and there is no advantage for only one nonzero effect.

For each of six parameter configurations β, 10,000 parameter vector esti-
mates β̂ = (β̂1, . . . , β̂15) were generated assuming independent estimates β̂i ∼
N(βi, σ

2) for i = 1, . . . , 15, taking σ = 1. Each vector β̂ of estimates was
analyzed using the step-down test procedure of Section 2, and with the corre-
sponding single-step test. In both cases, the same denominator of Ti was used—
namely, minj∈J{cjqmsej}, with J = {8, 12}, and with coefficients cj chosen so
Eβnull

[cjQMSEj ] = σ2.
The simulation results are summarized in Table 1. The first configuration

considered has the five nonzero effects βi = i for i = 1, . . . , 5, with the remaining
effects zero, (i.e. βi = 0 for i = 6, . . . , 15). The effect size is in error standard
deviations σ, assuming each estimator β̂i has variance σ2/4. Test power is com-
puted separately for each effect size. One can see that both the step-down and
the single-step procedures asserted the effect of size five (i.e., here β5 = 5) to
be nonzero with power 0.978. This is not surprising since both procedures use
the same critical value in the first step, though the step-down procedure can
have slightly enhanced power even for the largest effect since the largest effect
need not always correspond to the largest estimator. Also not surprisingly, the
step-down procedure gains power in testing the smaller effects, with for example
a 14% gain in power for the effect of size two.

Perhaps the most striking results are obtained for the fourth configuration
listed, for which β1 = β2 = 3, β3 = β4 = 4 and β5 = β6 = 5. In this case, for the
two effects of size three, the gain in power from stepping down is a substantial
20% compared to using the single-step procedure.

As one can see from the table, power gains provided by the step-down pro-
cedure are better when effect sizes vary than when all nonzero effects are of the
same size, such as in the last case with six nonzero effects each of size five. It is
the power to detect the smaller effects which is most enhanced.
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Table 1. Power comparison for step-down and single-step methods.

Configuration Method Effect Size

β1 = 1, β2 = 2, β3 = 3, 1 2 3 4 5
β4 = 4, β5 = 5, Step-down 0.015 0.175 0.547 0.866 0.978

βi = 0 otherwise Single-step 0.012 0.153 0.519 0.856 0.978

Percent Gain 25% 14% 5% 1% 0%

β1 = 2, β2 = 3, 2 3 4 5

β3 = 4, β4 = 5, Step-down 0.248 0.662 0.923 0.991

βi = 0 otherwise Single-step 0.218 0.632 0.918 0.991
Percent Gain 14% 5% 0.5% 0%

β1 = β2 = 2, 2 4
β3 = β4 = 4, Step-down 0.240 0.923

βi = 0 otherwise Single-step 0.218 0.919

Percent Gain 10% 0.4%

β1 = β2 = 3, 3 4 5

β3 = β4 = 4, Step-down 0.375 0.711 0.915

β5 = β6 = 5, Single-step 0.313 0.672 0.909
βi = 0 otherwise Percent Gain 20% 6% 0.7%

β1 = · · · = β6 = 3, 3

βi = 0 otherwise Step-down 0.341

Single-step 0.313

Percent Gain 9%

β1 = · · · = β6 = 5, 5

βi = 0 otherwise Step-down 0.933
Single-step 0.908

Percent Gain 3%
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