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Supplementary Material

This supplementary material consists of seven sections. Section S1 reviews the results of the

main paper and provides the regularity conditions needed in Theorems 1-3. Section S2 presents

a proof of Corollary 1. Section S3 presents preliminary work for our proofs of Theorems 1–3,

which are provided in Sections S4–S6, respectively. Section S7 contains additional simulation

results.

S1 Main results of the paper

S1.1 Model setup and identifiability

Suppose {(yi,xi, di), i = 1, . . . , n} are n independent and identically dis-

tributed copies of (Y,X, D), where the covariates xi are always observed,
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and yi is observed if and only if di = 1. Suppose there are n1 completely

observed data and n2 partially observed data. Without loss of generality,

we assume that di = 1, i = 1, . . . , n1 and di = 0, i = n1 + 1, . . . , n.

We assume that the missing probability satisfies the logistic regression

model,

pr(D = 0|x, y) =
exp(α∗ + x>β + yγ)

1 + exp(α∗ + x>β + yγ)
, (S1.1)

and pr(y|x, D = 1) = f(y|x, ξ). Let η = pr(D = 1) and α = α∗+log{η/(1−

η)}.

The parametric model for the conditional distribution of Y given (X =

x, D = 1) and (S1.1) together imply two DRMs:

pr(y|x, D = 0) = exp{γy − c(x, γ, ξ)}f(y|x, ξ), (S1.2)

pr(x|D = 0) = exp{α + x>β + c(x, γ, ξ)}pr(x|D = 1), (S1.3)

where

c(x, γ, ξ) = ln

{∫
exp(yγ)f(y|x, ξ)dy

}
. (S1.4)

Based on (S1.2)–(S1.3) and the fact that ξ is identifiable, we have the

following lemma regarding the identifiability of (α, β, γ).

Proposition 1 of the main paper. Let S be the common support of

pr(x|D = 0) and pr(x|D = 1), and

Ω = {h(x) : S 7→ R | ∃(α, β, γ) such that ∀ x ∈ S, h(x) = α+x>β+c(x, γ, ξ)}.
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If for any h(x) ∈ Ω, there exists a unique (α, β, γ) such that h(x) = α +

x>β + c(x, γ, ξ), then (α, β, γ) is identifiable.

Applying the above proposition, we find that (α, β, γ) is identifiable in

two specific cases.

Corollary 1 of the main paper. Suppose the logistic regression model

in (S1.1) holds and that the density function of Y given (X = x, D = 1) is

f(y|x, ξ).

(a) If there exists an instrument variable z in x, then (α, β, γ) is identifi-

able.

(b) Assume that the set S in Proposition 1 of the main paper contains an

open set, and c(x, γ, ξ) can be expressed as

c(x, γ, ξ) =
k∑
i=1

ai(γ)gi(x) + ak+1(γ) + x>ak+2(γ)

for some positive integer k, and continuous functions ai(γ) (i = 1, . . . , k+

2) and gi(x) (i = 1, . . . , k), where 1,x, g1(x), . . . , gk(x) are linearly in-

dependent, and aj(γ) (j = 1, . . . , k) are not equal to the zero function-

s. If
(
a1(γ1), . . . , ak(γ1)

)
6=
(
a1(γ2), . . . , ak(γ2)

)
for any γ1 6= γ2, then

(α, β, γ) is identifiable.
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S1.2 Empirical likelihood

Let θ = (α, β>, γ, ξ>)> and t(x, θ) = α+x>β+c(x, γ, ξ). In the main paper,

we showed that the profile log-likelihood of (η, θ) is

`(η, θ) = `1(η) + `2(θ), (S1.5)

where

`1(η) = n1 log(η) + n2 log(1− η) (S1.6)

and

`2(θ) =

n1∑
i=1

log{f(yi|xi, ξ)}+
n∑

i=n1+1

{t(xi, θ)} −
n∑
i=1

log{1 + λ[exp{t(xi, θ)} − 1]}

with λ being the solution to

n∑
i=1

exp{t(xi, θ)} − 1

1 + λ[exp{t(xi, θ)} − 1]
= 0. (S1.7)

The MLE of (η, θ) is defined as

(η̂, θ̂) = arg max
η,θ

`(η, θ). (S1.8)

Equivalently, η̂ maximizes `1(η), which gives η̂ = n1/n, and

θ̂ = arg max
θ
`2(θ).

The likelihood ratio function of θ is defined as

R(θ) = 2{max
η,θ

`(η, θ)−max
η
`(η, θ)} = 2{`2(θ̂)− `2(θ)}.
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Further, denote the truth of (η, θ) by (θ0, η0) with θ0 = (α0, β
>
0 , γ0, ξ

>
0 )>

and η0 ∈ (0, 1). We assume that the proposed models satisfy the following

regularity conditions on f(y|x, ξ), which mimic those for the consistency

and asymptotic normality of the MLE under a regular parametric model

on pp. 144–145 of Serfling (1980).

Regularity Conditions:

(A1) In a neighbourhood of ξ0, log{f(y|x, ξ)} is three-times differentiable

with respect to ξ for any (y,x).

(A2) For (γ, ξ) in a neighbourhood of (γ0, ξ0) and any x on S, the inequality∫
eyγf(y|x, ξ)dy <∞ holds.

(A3) The matrix V defined below in (S1.9) is well defined and nonsingular.

(A4) There exists a function M(x) not depending on (γ, ξ) such that

E{M(X)} <∞ and∥∥∥∥∫ eyγ∇ξf(y|x, ξ)dy
∥∥∥∥+

∥∥∥∥∫ eyγ∇ξ,ξf(y|x, ξ)dy
∥∥∥∥

+

∥∥∥∥∫ eyγ∇ξ,ξ,ξf(y|x, ξ)dy
∥∥∥∥ < M(x)

uniformly for (γ, ξ) in a neighbourhood of (γ0, ξ0) and a neighbourhood

of (0, ξ0). Here ∇ξf(y|x, ξ), ∇ξ,ξf(y|x, ξ), and ∇ξ,ξ,ξf(y|x, ξ) are the

first, second, and third derivatives of f(y|x, ξ) with respect to ξ.
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We now give the formal definition of the matrix V , which is closely

related to the asymptotic variance matrix of θ̂. Define

π(x; θ, η) =
(1− η) exp{t(x, θ)}

η + (1− η) exp{t(x, θ)}

and we write π(x) = π(x; θ0, η0) for abbreviation. Let dθ denote the dimen-

sion of θ and e1 be a dθ × 1 vector with the first component being 1 and

the remaining components 0. Finally define

V = E[{1− π(X)}π(X){∇θt(X, θ)}⊗2] + E[DIe{∇ξf(Y |X, ξ)}⊗2I>
e ], (S1.9)

where∇θ is the differentiation operator with respect to θ, I>
e = (0dξ×(2+dβ), Idξ×dξ),

and B⊗2 = BB> for any matrix or vector B.

Theorem 1 of the main paper. Suppose Conditions (A1)–(A4) hold.

Assume that the logistic regression model in (S1.1) holds with (α0, β0, γ0) in

place of (α, β, γ), and that the density function of Y given (X = x, D = 1)

is f(y|x, ξ0). Further, assume that θ is identifiable. Then as n→∞,

(1)
√
n(θ̂ − θ0)→ N

(
0, V −1 − {η0(1− η0)}−1e1e

>
1

)
in distribution with V

defined in (S1.9);

(2) R(θ0)→ χ2
dθ

in distribution.

In the main paper, we define the MLE of µ as

µ̂ =
1

n

n∑
i=1

∫
y
y{η̂ + (1− η̂) exp(α̂ + x>

i β̂ + γ̂y)}f(y|xi, ξ̂)dy

η̂ + (1− η̂) exp{α̂ + x>
i β̂ + c(xi, γ̂, ξ̂)}

. (S1.10)
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The next theorem studies the asymptotic normality of µ̂ in (S1.10).

Theorem 2 of the main paper. Under the conditions of Theorem 1 of

the main paper, as n goes to infinity,
√
n(µ̂−µ)→ N(0, σ2) in distribution,

where σ2 = Var{K(X; θ0, η0)}+ A>V −1A with V given in (S1.9),

K(x; θ, η) =

∫
y{η + (1− η) exp(α + x>β + γy)}f(y|x, ξ)dy
η + (1− η) exp{α + x>β + c(x, γ, ξ)}

,

and A = E {∇θK(X; θ0, η0)}.

Theorem 3 of the main paper. Under the conditions of Theorem 1 of

the main paper, the MLEs (θ̂, η̂) in (S1.8) and µ̂ in (S1.10) are both semi-

parametric efficient, in sense that their asymptotic variances both attains

the semiparametric efficiency lower bounds.

S2 Proof of Corollary 1 in the main paper

We first consider Part (a). Since z is an instrument variable, (S1.3) becomes

pr(x|D = 0) = exp{α + u>β + c(x, γ, ξ)}pr(x|D = 1).

The identification of (α, β, γ) is equivalent to the identification of (α, β, γ)

in α + u>β + c(x, γ, ξ).
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Recall that f(y|x, ξ) = pr(y|x, D = 1). Then

f(y|x, ξ) = pr(y|x)pr(D = 1|x, y)
/∫

pr(y|x)pr(D = 1|x, y)dy

= pr(y|z, u)pr(D = 1|u, y)
/∫

pr(y|z, u)pr(D = 1|u, y)dy.

Since z is an instrument variable, it follows that f(y|x, ξ) must depend on

z, and so must c(x, γ, ξ). Suppose (α1, β1, γ1) and (α2, β2, γ2) satisfy

α1 + u>β1 + c(x, γ1, ξ) = α2 + u>β2 + c(x, γ2, ξ)

for all x, which implies

c(x, γ1, ξ0)− c(x, γ2, ξ0) = (α2 − α1) + u>(β2 − β1).

Since the left-hand side depends on z, while the right-hand side does not, we

must have γ1 = γ2, which further implies that α1 = α2 and β1 = β2. This

indicates that the parameters (α, β, γ) are identifiable, which completes the

proof of Part (a).

We next consider Part (b). Suppose (α1, β1, γ1) and (α2, β2, γ2) satisfy

α1 + β>
1 x + c(x, γ1, ξ0) = α2 + β>

2 x + c(x, γ2, ξ0)

for all x ∈ S. According to the expression for c(x, γ, ξ0), this implies that

k∑
i=1

ai(γ1)gi(x) + {α1 + ak+1(γ1)}+ x>{β1 + ak+2(γ1)}

=
k∑
i=1

ai(γ2)gi(x) + {α2 + ak+1(γ2)}+ x>{β2 + ak+2(γ2)}.
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Since 1,x, g1(x), . . . , gk(x) are linearly independent, it follows that

(
a1(γ1), . . . , ak(γ1)

)
=

(
a1(γ2), . . . , ak(γ2)

)
,

α1 + ak+1(γ1) = α2 + ak+1(γ2),

β1 + ak+2(γ1) = β2 + ak+2(γ2)

hold simultaneously. Because
(
a1(γ1), . . . , ak(γ1)

)
6=
(
a1(γ2), . . . , ak(γ2)

)
for any γ1 6= γ2, the first equation implies γ1 = γ2. Then the last two

equations lead to α1 = α2 and β1 = β2. This completes the proof of Part

(b) and that of Corollary 1 in the main paper.

S3 Preparation for proving Theorems 1–3 in the main

paper

S3.1 Re-expression

It can be verified that

`2(θ) = h(θ, λθ),

where

h(θ, λ) =

n1∑
i=1

log{f(yi|xi, ξ)}+
n∑

i=n1+1

t(xi, θ)

−
n∑
i=1

log{1 + λ[exp{t(xi, θ)} − 1]} (S3.1)
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and λθ is the solution to ∇λh = 0.

Let λ̂ be the solution to (S1.7) with θ̂ in place of θ. We first discuss

some properties of λ̂. It can be verified that (θ̂, λ̂) satisfy

∇αh(θ̂, λ̂) = 0, ∇λh(θ̂, λ̂) = 0.

Note that

∇λh(θ, λ) = −
n∑
i=1

exp{t(xi, θ)} − 1

1 + λ[exp{t(xi, θ)} − 1]
= 0 and

∇αh(θ, λ) = n2 − λ
n∑
i=1

exp{t(xi, θ)}
1 + λ[exp{t(xi, θ)} − 1]

= 0

together imply that

λ̂ = n2/n, (S3.2)

which converges in probability to λ0 = 1− η0.

For convenience of presentation, let ω = (θ>, λ)>. It can be verified

that ω̂ = (θ̂>, λ̂)> is the solution to ∂h(θ, λ)/∂ω = 0. To investigate the

asymptotic properties of (θ̂, λ̂), we need their approximations, which can be

obtained via the second-order Taylor expansion of h(θ, λ) around ω = ω0 ≡

(θ>
0 , λ0)

>. In the next subsection, we derive the forms of ∂h(θ0, λ0)/∂ω and

∂2h(θ0, λ0)/(∂ω∂ω
>) and study their properties.
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S3.2 First and second derivatives of h(θ, λ) at ω = ω0

For convenience of presentation, we write πi = π(xi). Denote

un = (un1, u
>
n2)

> , (S3.3)

where

un1 = ∇θh(θ0, λ0) =
n∑
i=1

[(1− di − πi)∇θt(xi, θ0) + diIe∇ξ log{f(yi|xi, ξ0)}] ,

un2 = ∇λh(θ0, λ0) =
1

λ0(1− λ0)

n∑
i=1

(λ0 − πi) .

After some calculation, it can be verified that the second derivatives of

h(θ, λ) at (θ0, λ0) are

∇θθ>h(θ0, λ0) = Vn =
n∑
i=1

diIe∇ξξ log{f(yi|xi, ξ0)}I>
e

+
n∑
i=1

(1− di − πi)∇θθt(xi, θ0)

−
n∑
i=1

πi(1− πi){∇θt(xi, θ0)}⊗2,

∇θλh(θ0, λ0) =
1

λ0(1− λ0)
Vne1,

∇λλh(θ0, λ0) =
1

λ20(1− λ0)2
n∑
i=1

(λ0 − πi)2.

S3.3 Some useful technical lemmas

When deriving the asymptotic distribution of θ̂, we need to use E{∇θθ>h(θ0, λ0)},

E{∇θλh(θ0, λ0)}, E{∇λλh(θ0, λ0)}, and the expectation and variance of un
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defined in (S3.3). We need the following lemma to simplify our calculation.

Lemma 1. The following equations hold:

E[di∇ξ log{f(yi|xi, ξ0)}] = 0, (S3.4)

E[di∇ξξ log{f(yi|xi, ξ0)}] = −E{di[∇ξ log{f(yi|xi, ξ0)}]⊗2}, (S3.5)

− 1

n
E{∇θθ>h(θ0, λ0)} = V, (S3.6)

− 1

n
E{∇θλh(θ0, λ0)} =

1

λ0(1− λ0)
V e1, (S3.7)

− 1

n
E{∇λλh(θ0, λ0)} =

e>
1V e1 − λ0(1− λ0)
λ20(1− λ0)2

. (S3.8)

Proof. By the fact f(y|x, ξ) = pr(Y = y|X = x, D = 1), it can be verified

that

E[∇ξ log{f(yi|xi, ξ0)}|xi, di = 1] = 0,

E[∇ξξ log{f(yi|xi, ξ0)}|xi, di = 1] = −E{[∇ξ log{f(yi|xi, ξ0)}]⊗2|xi, di = 1},

which imply respectively Equations(S3.4) and (S3.5) by conditioning on

(xi, di = 1).

Equations (S3.6) and (S3.7) follows immediately from (S3.5). To prove

(S3.8), by noticing

λ0 = 1− η0 = pr(D = 0) and π(x) = pr(D = 0|x),

we have E{π(X)} = λ0 and

1

n
E{∇λλh(θ0, λ0)} = E{λ0 − π(xi)}2 = E[{π(X)}2]− λ20. (S3.9)
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Since e>
1V e1 = E[π(X){1 − π(X)}] = −E[{π(X)}2] + λ0, Equation (S3.8)

follows by comparing this equation with (S3.9). This finishes the proof.

The final lemma presents the expectation and variance of un.

Lemma 2. With un defined in (S3.3), we have E(un) = 0 and

1

n
Var(un) = U =

 V 0

0
−e>

1 V e1+λ0(1−λ0)
λ20(1−λ0)2

 .

Proof. The result E(un2) = 0 follows from π(x) = pr(D = 0|X = x) and

Equation (S3.4).

For Var(un), we first calculate Var(un2). It can be seen that

1

n
Var(un2) =

1

λ20(1− λ0)2
E[{λ0 − π(xi)}2] =

1

λ20(1− λ0)2
[E{π(xi)}2 − λ20].

We have shown that e>
1V e1 = −E[{π(X)}2] + λ0 in the proof of Lemma 1.

Therefore

1

n
Var(un2) =

−e>
1V e1 + λ0(1− λ0)
λ20(1− λ0)2

.

It remains to calculate Var(un1). Re-write

un1 =
n∑
i=1

(un11,i + un12,i),

where

un11,i = (1− di − πi)∇θt(xi, θ0)

un12,i = diIe∇ξ log{f(yi|xi, ξ0)}.
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Since both un11,i and un12,i have mean zero, it follows from equality (S3.4)

that

1

n
Var(un1) = E{(un11,i + un12,i)

⊗2} = E(u⊗2
n11,i) + E(u⊗2

n12,i).

Because E(di = 0|xi) = pr(D = 0|X = xi) = π(xi), by conditioning on xi,

we have

E(u⊗2
n11,i) = E[{(1− di − πi)∇θt(xi, θ0)}⊗2]

= E[(π(xi){1− π(xi)}{∇θt(xi, θ0)}⊗2].

Clearly E(u2n12,i) = E[diIe∇ξ log{f(yi|xi, ξ0)}]2. This proves 1
n
Var(un1) = V

by comparing the expression of V with 1
n
Var(un1).

S4 Proof of Theorem 1 in the main paper

We start with Part (a). Using a similar argument to that used in the

proofs of Lemma 1 and Theorem 1 of Qin and Lawless (1994), we have

θ̂ = θ0 + Op(n
−1/2) and λ̂ − λ0 = Op(n

−1/2). Next we investigate the

asymptotic approximation of θ̂.

The maximum likelihood estimator θ̂ of θ and the associated Lagrange

multiplier λ̂ must satisfy  ∇θh(θ̂, λ̂)

∇λh(θ̂, λ̂)

 = 0.
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Applying a first-order expansion to the left-hand side of the above equation

gives

0 =

 ∇θh(θ0, λ0)

∇λh(θ0, λ0)

+

 ∇θθ>h(θ0, λ0) ∇θλh(θ0, λ0)

∇λθ>h(θ0, λ0) ∇λλh(θ0, λ0)


 θ̂ − θ0

λ̂− λ0

+op(n
1/2).

(S4.10)

By Lemma 1, ∇θθ>h(θ0, λ0) ∇θλh(θ0, λ0)

∇λθ>h(θ0, λ0) ∇λλh(θ0, λ0)

 = −nW + op(n), (S4.11)

where

W =

 V 1
λ0(1−λ0)V e1

1
λ0(1−λ0)e

>
1V

e>
1 V e1−λ0(1−λ0)
λ20(1−λ0)2

 .

Recall that un = (∇θh(θ0, λ0),∇λh(θ0, λ0)). Combining (S4.10) and (S4.11),

we get  θ̂ − θ0

λ̂− λ0

 =
1

n
W−1un + op(n

−1/2). (S4.12)

Note that |W | = −|V |·|λ0(1−λ0)| = −|V |·|η0(1−η0)| and we have assumed

that η0 ∈ (0, 1) and V is nonsingular, the matrix W is nonsingular and its

inverse W−1 is well defined. Since

W−1 =

 V −1 − 1
λ0(1−λ0)e1e

>
1 e1

e>
1 −λ0(1− λ0)

 , (S4.13)



16 YUKUN LIU, PENGFEI LI, AND JING QIN

we have

θ̂ − θ0 = n−1

(
V −1 − 1

λ0(1−λ0)e1e
>
1 e1

)
un + op(n

−1/2). (S4.14)

With Lemma 2, we can verify that

Var

{
n−1/2

(
V −1 − 1

λ0(1−λ0)e1e
>
1 e1

)
un

}
= V −1 − 1

λ0(1− λ0)
e1e

>
1 .

Note that un is the sum of independent and identically distributed random

vectors. Hence,

√
n(θ̂ − θ0)→ N

(
0, V −1 − 1

λ0(1− λ0)
e1e

>
1

)
in distribution. This completes the proof of Part (a).

Next, we consider Part (b). Recall that R(θ) = 2{`2(θ̂)− `2(θ)}. Then

R(θ0) = 2{h(θ̂, λ̂)− h(θ0, λθ0)}, where λθ0 is the solution to ∂h(θ0, λ)/∂λ =

0.

Applying a second-order Taylor expansion to h(θ̂, λ̂) and using (S4.12),

we have

h(θ̂, λ̂) =
n

2
u>
nW

−1un + op(1). (S4.15)

Following a similar argument to that for (S4.15), we get

h(θ0, λθ0) = −n
2
u2n2

λ20(1− λ0)2

λ0(1− λ0)− e>
1V e1

+ op(1). (S4.16)



S4. PROOF OF THEOREM 1 IN THE MAIN PAPER17

Combining (S4.15) and (S4.16) gives

R(θ0) = nu>
n

 V −1 − e1e>
1

λ0(1−λ0) e1

e>
1

λ0(1−λ0)e>
1 V e1

λ0(1−λ0)−e>
1 V e1

un + op(1).

Since W−1 are invertible, the matrix V −1 − {λ0(1 − λ0)}−1e1e
>
1 is also

invertible. Let

vn = un1 +
[
V −1 − {λ0(1− λ0)}−1e1e

>
1

]−1
e1un2.

After some algebra, R(θ0) can be written as

R(θ0) = nv>
n

[
V −1 − {λ0(1− λ0)}−1e1e

>
1

]
vn + op(1).

With Lemma 2, we can further verify that E(vn) = 0 and

Var
(
n−1/2vn

)
= V+

V e1e
>
1V

λ0(1− λ0)− e>
1V e1

=
[
V −1 − {λ0(1− λ0)}−1e1e

>
1

]−1
.

Hence, R(θ0)→ χ2
dθ

in distribution. This completes the proof of Theorem

1 in the main paper.
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S5 Proof of Theorem 2 in the main paper

Recall that η̂ = n1/n = 1− λ̂ with η0 = pr(D = 1). Then µ̂ in (S1.10) can

be rewritten as

µ̂ =
n∑
i=1

p̂i

[∫
y{η̂ + (1− η̂) exp(α̂ + x>

i β̂ + γ̂y)}f(y|xi, ξ̂)dy
]

=
1

n

n∑
i=1

∫
y{η̂ + (1− η̂) exp(α̂ + x>

i β̂ + γ̂y)}f(y|xi, ξ̂)dy
η̂ + (1− η̂) exp{α̂ + x>

i β̂ + c(xi, γ̂, ξ̂)}

= n−1

n∑
i=1

K(xi; θ̂, η̂),

where

K(x; θ, η) =

∫
y{η + (1− η) exp(α + x>β + γy)}f(y|x, ξ)dy
η + (1− η) exp{α + x>β + c(x, γ, ξ)}

.

Applying the first-order Taylor expansion and the law of large numbers,

we have

µ̂ =
1

n

n∑
i=1

K(xi; θ0, η0) + A>(θ̂ − θ0)−B{(1− η̂)− (1− η0)}+ op(n
−1/2),

where A = E {∇θK(X; θ0, η0)} and B = E {∇ηK(X; θ0, η0)}. Hence, with

Equation (S4.12) and η̂ = 1− λ̂, we have

µ̂− µ =
1

n

n∑
i=1

{K(xi; θ0, η0)− µ}+ n−1(A>,−B)W−1un + op(n
−1/2).

We first argue that E{K(X; θ0, η0)} = µ. By (S1.3), we have

pr(x) = {η0 + (1− η0) exp{α0 + x>β0 + c(x, γ0, ξ0)}pr(x|D = 1). (S5.17)
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It then follows that

E{K(X; θ0, η0)}

=

∫
x

∫
y
y{η0 + (1− η0) exp(α0 + x>β0 + γ0y)}f(y|x, ξ0)dy
η0 + (1− η0) exp{α0 + x>β0 + c(x, γ0, ξ0)}

pr(x)dx

=

∫
x

∫
y

y{η0 + (1− η0) exp(α0 + x>β0 + γ0y)}f(y|x, ξ0)pr(x|D = 1)dydx

=

∫
x

∫
y

y{η0 + (1− η0) exp(α0 + x>β0 + γ0y)}pr(y,x|D = 1)dydx

=

∫
x,y

ypr(y,x)dydx = µ.

After some calculus, we found that −B = A>e1/{(1 − η0)η0}. With

(S4.13), we have

(A>,−B)W−1un

= A>

(
I,

e1

λ0(1− λ0)

) V −1 − 1
λ0(1−λ0)e1e

>
1 e1

e>
1 −λ0(1− λ0)


 un1

un2


= A>V −1un1.

Since E(un1|x1, . . . ,xn) = 0, we arrive at

Cov

(
n∑
i=1

K(xi; θ0, η0), (A
>,−B)W−1un

)

= Cov

(
n∑
i=1

K(xi; θ0, η0), A
>V −1un1

)
= 0.

Finally, By Lemma 2 and the central limit theorem and Slutsky’s the-
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orem, we have

√
n(µ̂− µ)→ N

(
0, σ2

)
,

where σ2 = Var{K(X; θ0, η0)} + A>V −1A. This proves Theorem 2 of the

main paper.

S6 Proof of Theorem 3 in the main paper

S6.1 Preparations

The observed data are (di = 1,xi, yi) (i = 1, . . . , n1) and (di = 0,xi)

(i = n1 + 1, . . . , n). We make two parametric assumptions:

pr(D = 1|X = x, Y = y) =
1

1 + exp{α∗ + x>β + γy}
,

pr(Y = y|X = x, D = 1) = f(y|x, ξ).

Recall that η = pr(D = 1) and c(x, γ, ξ) = log
∫
eγyf(y|x, ξ)dy. Let ϑ =

(β, γ, ξ) and r(x, ϑ) = x>β + c(x, γ, ξ), so that θ = (α, ϑ>)> and t(x, θ) =

α + r(x, ϑ). We have shown

pr(y,x|D = 0) = exp{α + x>β + γy}pr(y,x|D = 1),

pr(X = x|D = 0) = exp{α + r(x, ϑ)}pr(X = x|D = 1),

where α = α∗ + log{η/(1− η)}.
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In addition,

E(1−D|X = x) = pr(D = 0|X = x) = π(x;α, ϑ, η),

where we have defined

π(x;α, ϑ, η) =
(1− η) exp{t(x, θ)}

η + (1− η) exp{t(x, θ)}
=

(1− η) exp{α + r(x, ϑ)}
η + (1− η) exp{α + r(x, ϑ)}

with π(x) abbreviation for π(x; θ0, η0).

The observed data are iid from (D,X, Ỹ ), where Ỹ is empty when

D = 0, and Ỹ = Y when D = 1. The joint distribution of (D,X, Ỹ ) is

{pr(Y = y|X = x, D = 1)pr(X = x|D = 1)pr(D = 1)}d

×{pr(X = x|D = 0)pr(D = 0)}1−d

= {pr(Y = y|X = x, D = 1)pr(D = 1)}d

×{exp(t(x, θ))pr(D = 0)}1−d × pr(x|D = 1)

= {f(y|x, ξ)η}d × {exp(α + r(x, ϑ))(1− η)}1−d × pr(x|D = 1).

Here all except pr(X = x|D = 1) are completely parametric, and we regard

pr(X = x|D = 1) as an infinite-dimensional parameter, or simply

pr(X = x|D = 1) ≥ 0,

∫
pr(X = x|D = 1)dx = 1.

Therefore our imposed model is clearly semi-parametric.

Throughout this section, we use g(x, ζ) to denote a parametric sub-

model for pr(X = x|D = 1) with g(x, ζ0) being the true model. The joint
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density function of (D,X, Ỹ ) is

h(d,x, y;α, ϑ, η, ζ) = {f(y|x, ξ)η}d × {exp(α + r(x, ϑ))(1− η)}1−d × g(x, ζ).

It is worth noting that α is not free but is a function of (ϑ, ζ) and determined

by

1 =

∫
exp{α + r(x, ϑ)}g(x, ζ)dx. (S6.18)

The following three functions will be useful in our proof:

B1(d,x, y) =
∂ log h(d,x, y;α0, ϑ0, η0, ζ0)

∂ϑ

= (1− d){∇ϑα(ϑ0) +∇ϑr(x, ϑ0)}+ dIe,−1∇ξ log f(y|x, ξ0),

B2(d,x, y) =
∂ log h(d,x, y;α0, ϑ0, η0, ζ0)

∂η
=

D − η0
η0(1− η0)

,

B3(d,x, y) =
∂ log h(d,x, y;α0, ϑ0, η0, ζ0)

∂ζ
= ∇ζ log g(x, ζ0),

where Ie,−1 is Ie without the first row.

S6.2 Semiparametric efficiency of (θ̂, η̂)

We have shown that

θ̂ − θ0 = n−1

(
V −1 − 1

λ0(1−λ0)e1e
>
1 e1

)
un + op(n

−1/2),

η̂ − η0 =
1

n

n∑
i=1

(di − η0),
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where un = (u>
n1, un2)

> with

un1 =
n∑
i=1

[(1− di − πi)∇θt(xi, θ0) + diIe∇ξ log{f(yi|xi, ξ0)}] ,

un2 =
1

λ0(1− λ0)

n∑
i=1

(λ0 − πi) .

Therefore

θ̂ − θ0 = n−1{V −1un1 −
1

λ0(1− λ0)
e1e

>
1 un1 + e1un2}+ op(n

−1/2)

= n−1{V −1un1 +
1

η0(1− η0)
e1

n∑
i=1

(di − η0)}+ op(n
−1/2)

= n−1

n∑
i=1

[
V −1(1− di − πi)∇θt(xi, θ0) + V −1diIe∇ξ log{f(yi|xi, ξ0)}

+
1

η0(1− η0)
e1(di − η0)}

]
+ op(n

−1/2).

Then the respective influence functions of θ̂ and η̂ are

ϕθ(D,X, Y ) = V −1(1−D − π(X))∇θt(X, θ0) + V −1DIe∇ξ log{f(Y |X, ξ0)}

+
(D − η0)
η0(1− η0)

e1

and ϕη(D,X, Y ) = D− η0. We prove only the semiparametric efficiency of

θ̂; the semiparametric efficiency of η̂ can be proved in the same way with

less algebra.

Referring to the established theory for the semiparametric efficiency

bound, for example Chapter 3 of Bickel et al (1992) and Newey (1990), we

need to show only the following two results to establish the semiparametric

efficiency of θ̂:
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(a) θ̂ is a regular estimator of θ0;

(b) there exists a parametric submodel with hψ(d,x, ỹ) the joint density of

(D,X, Ỹ ) such that the true model is h0(d,x, ỹ) and

ϕθ(d,x, y) =
∂ log hψ(d,x, ỹ)

∂ψ

∣∣∣∣
ψ=0

.

Proof of (a)

By Theorem 2 in Newey (1990), arguing θ̂ is a regular estimator of θ0

is equivalent to showing that

Z1 ≡ E{ϕθ(D,X, Y )B>
1 (D,X, Y )}

=
∂θ

∂ϑ>

∣∣∣
(θ0,η0,ζ0)

= (∇ϑα, Idϑ)>, (S6.19)

Z2 ≡ E{ϕθ(D,X, Y )B2(D,X, Y )} =
∂θ

∂η

∣∣∣
(θ0,η0,ζ0)

= 0, (S6.20)

Z3 ≡ E{ϕθ(D,X, Y )B>
3 (D,X, Y )} =

∂θ

∂ζ>

∣∣∣
(θ0,η0,ζ0)

= 0, (S6.21)

where throughout this section E takes expectation with respect to h(d,x, y; θ0, η0, ζ0).

(1) Proof of Equality (S6.19)

Since E{D∇ξ log f(Y |X, ξ0)|X} = 0, it follows that

Z1 = E{ϕθ(D,X, Y )B>
1 (D,X, Y )}

= E[(1−D − π(X))V −1∇θt(X, θ0)(1−D){∇ϑα(ϑ0) +∇ϑr(X, θ0)}>]

+E[(1−D)r(X, θ0)
(D − η0)
η0(1− η0)

e1{∇ϑα(ϑ0) +∇ϑ}>]

+E[DV −1Ie∇ξ{log f(Y |X, ξ0)}⊗2I>
e,−1]
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= E[π(X)(1− π(X))V −1∇θt(X, θ0){∇ϑα(ϑ0) +∇ϑr(X, θ0)}>]

−E[
(1−D)η0
η0(1− η0)

e1{∇ϑα(ϑ0) +∇ϑr(X, θ0)}>}]

+E[DIe∇ξ{log f(Y |X, ξ0)}⊗2I>
e,−1V

−1]

= e1{∇ϑα(ϑ0)}> + E[
π(X)

1− η0
e1{∇ϑα(ϑ0) +∇ϑr(X, θ0)}>}] + IeI

>
e,−1,

where we have used the definition

V = E[{1− π(X)}π(X){∇θt(X, θ)}⊗2] + E[DIe{∇ξf(Y |X, ξ)}⊗2I>
e ].

Taking derivative with respect to ϑ on both sides of (S6.18) gives

0 =

∫
{∇ϑα(ϑ0) +∇ϑr(x, ϑ0)} exp{α(ϑ0) + r(x, ϑ0)}g(x, ζ0)dx.

This together with g(x, ζ0)dx = dF (x|D = 1) leads to

1

1− η0
e>
1E[{∇ϑα(ϑ0) +∇ϑr(X, θ0)}π(X)}]

=
η0

1− η0
e>
1

∫
{∇ϑα(ϑ0) +∇ϑr(x, ϑ0)} exp{α(ϑ0) + r(x, ϑ0)}g(x, ζ0)dx

= 0.

Therefore, we have

Z1 = ∇ϑα(ϑ0)e
>
1 + IeI

>
e,−1 = (∇ϑα, I

>
dϑ

)>.

This proves (S6.19).

(2) Proof of Equality (S6.20)
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Since Eϕθ(D,X, Y ) = 0, we have

Z2 = E{B2(D,X, Y )ϕθ(D,X, Y )}

=
1

η0(1− η0)
E{Dϕθ(D,X, Y )}

=
1

η0(1− η0)
E{−DV −1π(X)∇θt(X, θ0) +D

1

η0(1− η0)
e1(1− η0)}

+DV −1Ie∇ξ log{f(Y |X, ξ0)}}

=
1

η0(1− η0)
E{−V −1(1− π(X))π(X)∇θt(X, θ0) + e1}

= 0,

where the last equality holds because

E{π(X)(1− π(X))∇θt(X, θ0)} = V e1.

This proves Equality (S6.20).

(3) Proof of Equality (S6.21)

Since

E{ϕθ(D,X, Y )|x} =
1

η0(1− η0)
e1{1− η0 − π(X)},

we have

Z3 = E{ϕθ(D,X, Y )B>
3 (D,X, Y )}

= E[
1

η0(1− η0)
e1{1− η0 − π(X)}∇ζ> log g(X, ζ0)]

= − 1

η0(1− η0)
E[e1π(X)∇ζ> log g(X, ζ0)].
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Taking derivative with respect to ζ on both sides of Eq (S6.18) gives

0 =

∫
exp{α0 + r(x, ϑ0)}{∇ζ log g(x, ζ0)}g(x, ζ0)dx

=

∫
exp{α0 + r(x, ϑ0)}{∇ζ log g(x, ζ0)}

1− π(x)

η0
pr(x)dx

=

∫
{∇ζ log g(x, ζ0)}

π(x)

η0(1− η0)
pr(x)dx

= E[{∇ζ log g(X, ζ0)}
π(X)

η0(1− η0)
],

which means Z3 = 0. This proves Equality (S6.21) and also completes the

proof of (a).

Proof of (b)

Consider the following function

hψ(d,x, ỹ) = {1 + ψϕθ(d,x, y)} × {f(y|x, ξ0)η0}d

×{exp(α0 + r(x, ϑ0))(1− η0)}1−dg(x, ζ0).

Suppose the support of (X, Y ) is compact, then it can be verified that the

function

ϕθ(D,X, Y ) = V −1(1−D − π(X))∇θt(X, θ0) +
1

η0(1− η0)
e1(D − η0)

+V −1DIe∇ξ log{f(Y |X, ξ0)}

is bounded. Because E{ϕθ(D,X, Y )} = 0 where E takes expectation with

respect to h(d,x, y;α0, ϑ0, η0, ζ0), the function hψ(d,x, ỹ) is a density func-

tion when ψ is small enough. When ψ = 0, it reduces to the true joint
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density function h(d,x, y;α0, ϑ0, η0, ζ0). It is easy to check that hψ(d,x, ỹ)

with small enough ψ is a parametric submodel and

∇ψhψ(d,x, ỹ)
∣∣∣
ψ=0

= ϕθ(d,x, y).

This proves (b), and hence proves the semiparametric efficiency of θ̂.

S6.3 Semiparametric efficiency of µ̂

The population mean can be expressed as

µ =

∫
y

∫
x
ypr(y|x, D = 1)pr(x|D = 1)pr(D = 1)dxdy

+

∫
y

∫
x
ypr(y|x, D = 0)pr(x|D = 0)pr(D = 0)dxdy

=

∫
y

∫
x
ypr(y|x, D = 1)pr(x|D = 1)ηdxdy

+

∫
y

∫
x
y exp(α + x>β + γy)pr(y|x, D = 1)pr(x|D = 1)(1− η)dxdy

=

∫
x

[∫
y

y{η + (1− η) exp(α + x>β + γy)}f(y|x, ξ)dy
]
dF (x|D = 1).

The proposed mean estimator is

µ̂ =
1

n

n∑
i=1

∫
y
y{η̂ + (1− η̂) exp(α̂ + x>

i β̂ + γ̂y)}f(y|xi, ξ̂)dy

η̂ + (1− η̂) exp{α̂ + x>
i β̂ + c(xi, γ̂, ξ̂)}

= n−1

n∑
i=1

K(xi; θ̂, η̂),

where

K(x; θ, η) =

∫
y{η + (1− η) exp(α + x>β + γy)}f(y|x, ξ)dy
η + (1− η) exp{α + x>β + c(x, γ, ξ)}

.
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Recall thatA = E {∇θK(X; θ0, η0)}, πi = π(xi) and I>
e = (0dξ×(2+dβ), Idξ×dξ).

We have shown in the proof of Theorem 2 that

µ̂− µ =
1

n

n∑
i=1

{K(xi; θ0, η0)− µ}+ n−1A>V −1un1 + op(n
−1/2),

where un1 =
∑n

i=1 [(1− di − πi)∇θt(xi, θ0) + diIe∇ξ log{f(yi|xi, ξ0)}] . E-

quivalently

µ̂− µ =
1

n

n∑
i=1

{K(xi; θ0, η0)− µ0 + (1− di − πi)A>V −1∇θt(xi, θ0)

+diA
>V −1Ie∇ξ log f(yi|xi, ξ0)}+ op(n

−1/2),

which implies that the influence function of µ̂ is

ϕµ(D,X, Y ) = K(X; θ0, η0)− µ0 + {1−D − π(X)}A>V −1∇θt(X, θ0)

+DA>V −1Ie∇ξ log f(Y |X, ξ0).

Similar to the proof of the semiparametric efficiency of θ̂, we need to

show only the following two results to establish the semiparametric efficien-

cy of µ̂:

(a1) µ̂ is a regular estimator of µ0;

(b1) there exists a parametric submodel with h∗ψ(d,x, ỹ) the joint density

of (D,X, Ỹ ) such that the true model is h∗0(d,x, ỹ) and

ϕµ(d,x, y) =
∂ log h∗ψ(d,x, ỹ)

∂ψ

∣∣∣∣
ψ=0

.
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Proof of (a1)

Under the submodel g(x, ζ) for pr(X = x|D = 1), we can write µ as

µ = µ(θ, η, ζ) ≡
∫
x

[∫
y

y{η + (1− η) exp(α + x>β + γy)}f(y|x, ξ)dy
]
g(x, ζ)dx.

Define w(x, y) = (x>, y,∇ξ> log f(y|x, ξ0))>. The partial derivative of µ is

∇ϑµ(θ0, η0) =

∫
x

∫
y

y{η0 + (1− η0) exp(α0 + x>β0 + γ0y)}

×{∇ϑα(ϑ0) + w(x, y)}f(y|x, ξ0)dyg(x, ζ)dx.

By Theorem 2 in Newey (1990), arguing µ̂ is a regular estimator of µ0

is equivalent to showing that

C1 ≡ E{ϕµ(D,X, Y )B1(D,X, Y )} =
∂µ(θ0, η0, ζ0)

∂ϑ
, (S6.22)

C2 ≡ E{ϕµ(D,X, Y )B2(D,X, Y )} =
∂µ(θ0, η0, ζ0)

∂η
, (S6.23)

C3 ≡ E{ϕµ(D,X, Y )B3(D,X, Y )} =
∂µ(θ0, η0, ζ0)

∂ζ
, (S6.24)

where E takes expectation with respect to h(d,x, y; θ0, η0, ζ0). Keep in mind

that α is a function of ϑ and ζ.

(1) Proof of Equality (S6.22)

Since E{D∇ξ log f(Y |X, ξ0)|X} = 0, it follows that

C1 = E{ϕµ(D,X, Y )B1(D,X, Y )}

= E[(1−D)∇θ{∇ϑα(ϑ0) +∇ϑr(X, θ0)}{K(X; θ0, η0)− µ0}]

+E[(1−D){1−D − π(X)}{∇ϑα(ϑ0) +∇ϑr(X, θ0)}∇θ>t(X, θ0)V
−1A]
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+E[D∇ξIe,−1{log f(Y |X, ξ0)}⊗2I>
e V

−1A]

= E[π(X){∇ϑα(ϑ0) +∇ϑr(X, θ0)}{K(X; θ0, η0)− µ0}]

+E[π(X){1− π(X)}{∇ϑt(X, θ0)}⊗2V −1A]

+E[D∇ξIe,−1{log f(Y |X, ξ0)}⊗2I>
e V

−1A]

= E[π(X){∇ϑα(ϑ0) +∇ϑr(X, θ0)}{K(X; θ0, η0)− µ0}] + A−1,

where A−1 is A without its first component and we have used the definition

of V .

Because

∇ϑK(x; θ0, λ0)

=

∫
y{∇ϑα(ϑ0) + w(x, y)}λ0 exp(α0 + x>β0 + γ0y)f(y|x, ξ0)dy

(1− λ0) + λ0 exp{t(x, θ0)}

−K(x; θ0, λ0)
λ0 exp{t(x, θ0)}

(1− λ0) + λ0 exp{t(x, θ0)}
{∇ϑα(ϑ0) +∇ϑr(x, θ0)}

=
1− η0
η0
{1− π(x)} ·

∫
y{∇ϑα(ϑ0) + w(x, y)} exp(α0 + x>β0 + γ0y)f(y|x, ξ0)dy

−K(x; θ0, λ0)π(x){∇ϑα(ϑ0) +∇ϑr(x, θ0)},

we have

A−1 = E{∇ϑK(x; θ0, λ0)}

= E[
1− η0
η0
{1− π(x)}

∫
y{∇ϑα(ϑ0) + w(x, y)} exp(α0 + x>β0 + γ0y)f(y|x, ξ0)dy]

−E[K(x; θ0, λ0)π(x){∇ϑα(ϑ0) +∇ϑr(x, θ0)}]
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=

∫
(1− η0)

∫
y{∇ϑα(ϑ0) + w(x, y)} exp(α0 + x>β0 + γ0y)f(y|x, ξ0)dy]dF (x|D = 1)

−
∫
K(x; θ0, λ0)(1− η0) exp{t(x, θ0)}{∇ϑα(ϑ0) +∇ϑr(x, θ0)}dF (x|D = 1),

where we have used t(x, θ) = α + r(x, ϑ) and

pr(x) =
η0

1− π(x)
pr(x|D = 1).

It follows that

C1 = E[π(X){∇ϑα(ϑ0) +∇ϑr(X, ϑ0)}{K(X; θ0, η0)− µ0}] + A−1

=

∫
(1− η0) exp{t(x, θ0)}{∇βα(ϑ0) +∇ϑr(x, ϑ0}{K(x; θ0, λ0)− µ0}dF (x|D = 1) +

+

∫
(1− η0)

∫
y{∇ϑα(ϑ0) + w(x, y)} exp(α0 + x>β0 + γ0y)f(y|x, ξ0)dy]dF (x|D = 1)

−
∫
K(x; θ0, λ0)(1− η0) exp{t(x, θ0)}{∇ϑα(ϑ0) +∇ϑr(x, θ0)}dF (x|D = 1)

= −µ0

∫
(1− η0) exp{t(x, θ0)}{∇βα(ϑ0) +∇ϑr(x, ϑ0}dF (x|D = 1) +

+

∫
(1− η0)

∫
y{∇ϑα(ϑ0) + w(x, y)} exp(α0 + x>β0 + γ0y)f(y|x, ξ0)dy]dF (x|D = 1).

Taking derivative with respect to ϑ on both sides of (S6.18) gives

0 =

∫
{∇ϑα(ϑ0) +∇ϑr(x, ϑ0)} exp{α(ϑ0) + r(x, ϑ0)}g(x, ζ0)dx.

Since g(x, ζ0)dx = pr(x|D = 1)dx = dF (x|D = 1), it follows that

C1 =

∫
(1− η0)

∫
y{∇ϑα(ϑ0) + w(x, y)} exp(α0 + x>β0 + γ0y)f(y|x, ξ0)dy]dF (x|D = 1),

which is exactly ∇ϑµ(θ0, η0, ζ0).

(2) Proof of Equality (S6.23)
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Since Eϕµ(D,X, Y ) = 0, we have

C2 = E{B2(D,X, Y )ϕµ(D,X, Y )}

=
1

η0(1− η0)
E{Dϕµ(D,X, Y )}

=
1

η0(1− η0)
E{DK(X; θ0, η0)− µ0D − π(X)DA>V −1∇θt(X, θ0)

+DA>V −1Ie∇ξ log f(Y |X, ξ0)}

=
1

η0(1− η0)
E{(1− π(X))K(X; θ0, η0)− µ0(1− π(X))

−π(X)(1− π(X))A>V −1∇θt(X, θ0)}

=
1

η0(1− η0)
[E{(1− π(X))K(X; θ0, η0)} − µ0η0 − A>e1],

where the last equality holds because V e1 = E{π(X)(1−π(X))∇θt(X, θ0)}.

Meanwhile because

A>e1 = E{∇αK(x; θ0, λ0)}

= E[
1− η0
η0
{1− π(X)}

∫
y exp(α0 + X>β0 + γ0y)f(y|X, ξ0)dy]− E{K(x; θ0, λ0)π(x)},

we further have

C2η0(1− η0) = E{(1− π(X))K(X; θ0, η0)} − µ0η0

−E[
1− η0
η0
{1− π(X)}

∫
y exp(α0 + X>β0 + γ0y)f(y|X, ξ0)dy]

+E[K(X; θ0, η0)π(X)]
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= E{K(X; θ0, η0)} − µ0η0

−E[
1− η0
η0
{1− π(X)}

∫
y exp(α0 + X>β0 + γ0y)f(y|X, ξ0)dy]

= µ0(1− η0)− (1− η0)
∫ ∫

y exp(α0 + X>β0 + γ0y)f(y|X, ξ0)dydF (x|D = 1).

Using the definition of µ0, we have

C2(1− η0)η0

= (1− η0)
∫
x

[∫
y

y{η + (1− η) exp(α + x>β + γy)}f(y|x, ξ)dy
]
dF (x|D = 1)

−(1− η0)
∫ ∫

y exp(α0 + X>β0 + γ0y)f(y|X, ξ0)dypr(x|D = 1)dx

= (1− η0)
∫
x

[∫
y

y{η0 − η0 exp(α0 + x>β0 + γ0y)}f(y|x, ξ)dy
]
dF (x|D = 1)

= (1− η0)η0
∫
x

[∫
y

y{1− exp(α0 + x>β0 + γ0y)}f(y|x, ξ)dy
]
dF (x|D = 1).

Since

∇ηµ =

∫
x

[∫
y

y{1− exp(α + x>β + γy)}f(y|x, ξ)dy
]
dF (x|D = 1),

we arrive at

C2(1− η0)η0 = (1− η0)η0∇ηµ(θ0, η0, ζ0)⇐⇒ C2 = ∇ηµ(θ0, η0, ζ0).

This proves Equality (S6.23).

(3) Proof of Equality (S6.24)
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Since E{ϕµ(D,X, Y )|D = 1} = K(X; θ0, η0)− µ0, we have

C3 = E{B3(D,X, Y )ϕµ(D,X, Y )}

= E[∇ζ log g(X, ζ0){K(X; θ0, η0)− µ0}]

= E[∇ζ log g(X, ζ0)K(X; θ0, η0)].

Note that

µ = E{K(X; θ0, η0)} =

∫
x
K(x, θ0, η0)[η0 + (1− η0) exp{t(x, θ0)}]dF (x|D = 1),

which implies

∇ζµ =

∫
x
K(x, θ0, λ0)[η0 + (1− η0) exp{t(x, θ0)}]{∇ζ log g(x, ζ0)}dF (x|D = 1)

=

∫
x
K(x, θ0, λ0){∇ζ log g(x, ζ0)}pr(x)dx

= E[∇ζ log g(X, ζ0)K(X; θ0, η0)]

= C3.

This proves Equality (S6.24) and also completes the proof of (a1).

Proof of (b1)

Consider the following function

h∗ψ(d,x, ỹ) = {1 + ψϕµ(d,x, y)} × {f(y|x, ξ0)η0}d{exp(α0 + r(x, ϑ0))(1− η0)}1−d

×g(x, ζ0).

Suppose the support of (X, Y ) is compact, then it can be verified that the
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function

ϕµ(D,X, Y ) = K(X; θ0, η0)− µ0 + {1−D − π(X)}A>V −1∇θt(X, θ0)

+DA>V −1Ie∇ξ log f(Y |X, ξ0)

is bounded. Because E{ϕµ(D,X, Y )} = 0 where E takes expectation with

respect to h(d,x, y;α0, ϑ0, η0, ζ0), the function h∗ψ(d,x, ỹ) is a density func-

tion when ψ is small enough. When ψ = 0, it reduces to the true joint

density function h(d,x, y;α0, ϑ0, η0, ζ0). It is easy to check that h∗ψ(d,x, ỹ)

with small enough ψ is a parametric submodel and

∇ψh
∗
ψ(d,x, ỹ)

∣∣∣
ψ=0

= ϕµ(d,x, y).

This proves (b1), and hence the semiparametric efficiency of µ̂.

S7 Additional simulation results

In all four examples, the missing probability model involves three parame-

ters, the intercept (α∗), the coefficient for the covariate (β), and the tilting

parameter (γ). In this section, we present the simulation results for esti-

mating (α∗, β, γ). We compare the proposed estimator (α̂∗, β̂, γ̂) with two

others: (1) Morikawa and Kim (2016)’s adaptive estimator (α̃∗
t , β̃t, γ̃t) with

correctly specified parametric form for pr(y|x, D = 1); (2) Morikawa and

Kim (2016)’s adaptive estimator (α̃∗
np, β̃np, γ̃np) without specifying a para-
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metric form for pr(y|x, D = 1). We evaluate the performance of the three

estimators in terms of relative bias (RB) and mean square error (MSE).

The simulation results are summarized in Tables 1–4.

As we can see, the proposed estimator (α̂∗, β̂, γ̂) has small relative bias

in all examples. It further has the smallest MSEs in almost all examples.

The only exception is Example 1 with σ2 = 4 and n = 500. In this situation,

(α̃∗
np, γ̃np) has smaller MSE but much larger relative bias than (α̂∗, γ̂).

Table 1: Relative bias (RB; ×100) and mean square error (MSE; ×100) of three estimates

of (α∗, β, γ) in Example 1.

n σ2 α̂∗ β̂ γ̂ α̃∗
t β̃t γ̃t α̃∗

np β̃np γ̃np

RB 500 1 0.81 -0.79 0.97 1.12 -1.30 1.50 -0.63 2.71 0.06

MSE 500 1 7.84 6.59 0.71 8.15 6.73 0.75 7.94 6.68 0.76

RB 2000 1 0.47 -0.51 0.47 0.53 -0.60 0.58 -0.27 1.18 -0.14

MSE 2000 1 1.88 1.56 0.17 1.92 1.59 0.17 1.91 1.59 0.17

RB 500 4 2.92 -1.64 1.86 10.52 -9.75 7.12 -15.45 24.09 -10.27

MSE 500 4 20.46 6.62 1.08 101.49 18.28 3.46 18.68 7.79 1.01

RB 2000 4 0.92 -0.89 0.46 2.47 -1.95 1.82 -8.26 11.77 -5.70

MSE 2000 4 4.61 1.59 0.24 9.97 2.23 0.44 5.84 2.00 0.31
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Table 2: Relative bias (RB; ×100) and mean square error (MSE; ×100) of three estimates

of (α∗, β, γ) in Example 2.

n σ2 α̂∗ β̂ γ̂ α̃∗
t β̃t γ̃t α̃∗

np β̃np γ̃np

RB 500 1 0.60 2.46 0.71 0.85 2.56 1.10 -12.31 19.49 -10.06

MSE 500 1 9.07 1.94 0.72 9.48 2.03 0.77 11.85 2.54 0.89

RB 2000 1 0.46 -0.04 0.37 0.48 0.00 0.41 -8.45 11.68 -6.99

MSE 2000 1 2.37 0.49 0.19 2.43 0.50 0.20 4.13 0.71 0.30

RB 500 4 2.64 0.36 1.90 5.90 -0.73 4.35 -46.54 44.33 -33.08

MSE 500 4 18.58 2.20 0.78 45.84 4.11 1.57 69.82 5.07 3.13

RB 2000 4 0.89 -0.34 0.50 1.54 -0.55 0.98 -38.76 35.54 -26.94

MSE 2000 4 4.76 0.56 0.20 7.00 0.76 0.28 45.63 2.54 1.93

Table 3: Relative bias (RB; ×100) and mean square error (MSE; ×100) of three estimates

of (α∗, β, γ) in Example 3.

n σ2 α̂∗ β̂ γ̂ α̃∗
t β̃t γ̃t α̃∗

np β̃np γ̃np

RB 500 1 0.62 2.05 0.85 1.53 0.21 2.34 1.85 0.24 3.84

MSE 500 1 11.98 1.65 0.85 13.97 1.82 1.02 15.48 2.01 1.20

RB 2000 1 0.25 0.93 0.22 0.43 0.54 0.51 1.27 -2.14 2.32

MSE 2000 1 2.78 0.41 0.20 3.02 0.45 0.22 3.42 0.49 0.26

RB 500 e0.7 0.79 2.26 0.84 3.47 -1.34 4.52 1.40 -3.71 3.43

MSE 500 e0.7 15.61 1.75 0.86 25.30 2.12 1.44 20.84 2.19 1.27

RB 2000 e0.7 0.30 0.93 0.24 0.89 0.08 1.06 1.50 -5.56 2.83

MSE 2000 e0.7 3.47 0.41 0.19 4.50 0.46 0.26 4.69 0.57 0.29
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Table 4: Relative bias (RB; ×100) and mean square error (MSE; ×100) of three estimates

of (α∗, β, γ) in Example 4.

n σ2 α̂∗ β̂ γ̂ α̃∗
t β̃t γ̃t α̃∗

np β̃np γ̃np

RB 500 3 0.23 2.96 0.43 0.52 3.12 0.75 -13.91 21.20 -11.36

MSE 500 3 9.32 1.98 0.73 9.82 2.08 0.79 13.04 2.67 0.96

RB 2000 3 0.45 -0.06 0.54 0.74 0.02 0.83 -9.59 12.95 -7.72

MSE 2000 3 2.40 0.49 0.18 2.64 0.53 0.20 4.72 0.77 0.32

RB 500 6 -0.05 2.81 0.65 1.19 2.81 1.34 -17.11 23.58 -13.65

MSE 500 6 9.34 1.94 0.71 13.71 2.43 0.90 15.41 2.81 1.04

RB 2000 6 -0.18 -0.11 0.44 0.70 -0.05 0.70 -12.98 15.58 -10.22

MSE 2000 6 2.52 0.49 0.18 3.17 0.59 0.23 6.86 0.88 0.42
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