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Abstract: The Bayesian bootstrap for Markov chains is the Bayesian analogue of the
bootstrap method for Markov chains. We construct a random-weighted empirical
distribution, based on i.i.d. exponential random variables, to simulate the posterior
distribution of the transition probability, the stationary probability, as well as the
first hitting time up to a specific state, of a finite state ergodic Markov chain. The
large sample theory is developed which shows that with a matrix beta prior on the
transition probability, the Bayesian bootstrap procedure is second-order consistent
for approximating the pivot of the posterior distributions of the transition proba-
bility. The small sample properties of the Bayesian bootstrap are also discussed by
a simulation study.
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1. Introduction

The Markov chain model has become an important and a powerful tool
for the statistician, engineer and economist. It provides the researcher with a
modeling framework and a computationally efficient way to compute parameter
estimates over a wide range of situations. Problems involved in the social sciences,
in queuing networks, in adaptive control, and in information science, all have
benefited from this tool. Statistical inference for Markov chains is summarized
in Billingsley (1961); the Bayesian approach for Markov chains is gvien in Martin
(1975), who offers an alternative method for modeling and estimation.

By using the idea of the bootstrap (cf. Efron (1979)), Kulperger and Rao
(1989) consider Markov chains with finite state space; the countable state space
case has been investigated by Athreya and Fuh (1992). The asymptotic validity
of these models has been established by the respective authors. The small sample
property for bootstrapping Markov chains is in Fuh (1993).

The Bayesian analogue of the frequentist bootstrap for i.i.d. random vari-
ables has been proposed by Rubin (1981). The idea is that, given i.i.d. random
variables, X = (Xi,...,X,) having an unknown distribution function F', and
a given specific functional §(F, X)) depending on both the unknown distribution
function F' and the given data X, we are interested in accessing the “posterior”



1006 CHENG-DER FUH AND TSAI-HUNG FAN

opinion of (F, X) given X = z. A Bayesian approach to this problem is to con-
struct a prior distribution on F' and then use the posterior distribution of §(F, X))
given X = z to summarize the “posterior” opinion of §(F, X) given X = z. The
Bayesian bootstrap to solve this problem is a procedure based on a random dis-
tribution D,,, by replacing the jump-sizes of the empirical distribution function
by the gaps of n — 1 i.i.d. U(0, 1) random variables and suggesting that the con-
ditional distribution of 8(D,,, X)|X = z can be used as the posterior distribution
of §(F, X)|X = z. Recently, Lo (1987) showed that the Bayesian bootstrap and
the frequentist bootstrap are first-order asymptotically equivalent. Weng (1989)
considered second-order efficiency properties. Hjort (1991) and Lo (1993a) also
developed the Bayesian bootstrap for censored data.

In this paper, we investigate a Bayesian analogue to the frequentist bootstrap
for finite state Markov chains. It turns out that the posterior distribution of
the transition probability matrix with respect to a “flat” conjugate prior is the
distribution of the Bayesian bootstrap. Large sample results are also considered
in terms of second-order asymptotic justification.

The model considered is an ergodic Markov chain, {X,}, with finite state
space {1,...,k} and transition probability matrix P. Let z = {zg,z1,..., 2}
be a realization from this process, where g = 1 is assumed known. Thus z is
obtained under the consecutive sampling rule. The likelihood function of the
transition probability matrix P is of the form

k
(Plz) < ] P}
ij=1

where p;; is the transition probability from state ¢ to state j with Z?:l pij = 1,
and n;; is the number of 45 transitions during the given sample z with E?:l Ni; =
n;, the number of visits to state ¢ in . Thus, the natural conjugate prior for P
is the matrix beta distribution with density

k
ij—1
m(P|M) o< I] i, (1)
ij=1
where M = [m;;] is a k x k matrix such that m;; > 0, for 4,5 = 1,...,k, and

Z?:lpij =1,fori=1,...,k.

By a simple calculation, it can be seen that the posterior distribution a P
given z is also a matrix beta distribution but with parameter M’ = [mij + nij].
The posterior distributions of IT (the stationary probability) and T} (the first
hitting time up to state k), both being smooth functions of P, are difficult to
clarify in this Bayesian framework, however. We therefore propose the Bayesian
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bootstrap procedure to approximate the posterior distribution of the parameters
of interest.

Based on a given realization z = (z, ..., x,) of the Markov chain {X,,}, the
m.l.e. of P is

P = [pn(i,5)] = [ni;/nil. (2)

Instead of resampling according to B, in the parametric bootstrap method, the
Bayesian bootstrap is based on a simulation from i.i.d. standard exponential vari-
ables Z;; and sufficient statistics n;;, which will be described precisely in Section
2. In Section 3, we give the asymptotic justification of the Bayesian bootstrap
procedure. Some empirical studies that illustrate the utility of the Bayesian
bootstrap procedure in small samples will be presented in the last section.

2. The Bayesian Bootstrap Algorithm

Following the notation defined in the previous section, we now assume a
“flat” matrix beta prior density for P, i.e. all the m;; = 0 in (1), then the
corresponding posterior distribution of P given z is

k k
AP = T e (o). @)

where Z?:lpij =1,forany i=1,...,k, and E?:l n;; = n;. Thus, in this case,
the posterior mean (which is the same as the Bayes estimate with respect to the
squared error loss) of the transition probability matrix P = [p;;] is identical to
the m.le. P, = [pn(i,7)] defined in (2). Note that p,(4,j) can be written as

- EtGBij 1

POE I
where B;; = {Z{zl nig—1) + 1,... ,Z{zl ni}t, with n;o = 0. (See Remark 2.1
below.) In the parametric bootstrap (cf. Athreya and Fuh (1992)), it uses P,

as a mechanism to generate bootstrap samples. Here the Bayesian bootstrap
is based on simulation rather than resampling. That is, for each fixed i, 7,

Pnlis J) (4)

we replace the “1’s” in (4) by the i.i.d. standard exponential random variables
“Z!,s”, and obtain
2 teB;; Lit
o ”
pn(za]) - ?;1 Zit :

The joint distribution of P* = [p%(i, )] can be calculated analytically: For
given data and fixed 4, let Q; = Z;/ > 1%y Zi, L = 1,2,...,n;. Partition Q; into
k collections, the jth having n;; elements. Then the above p;(4,7) is the sum
of the @; in the jth collection, j = 1,..., k. Therefore, the joint distribution of
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p; = (p;(i,1),...,p5(i,k)) is the same as that of the £ — 1 gaps of k ordered
independent U(0,1) random variables (cf. Reiss (1989)). Such joint distribution
is indeed the k — 1 variate Dirichlet (n;1,...,n;) (cf. Wilks (1962)), which is
also the posterior distribution of p; = (p;1,...,pit). Thus both the Bayesian
bootstrap and the posterior distribution of P turn out to be the matrix beta
distribution given by (3).

Now we summarize the Bayesian bootstrap algorithm for simulating the pos-
terior distribution of P as follows:

(1) Simulate i.i.d. standard exponential random variables, Z;;, t = 1,...,n,,
i=1,... k.

(2) Replace the “1’s” in (4) by “Z!,s” to obtain pj (i, 7).

(3) Repeat the previous two steps a large number of times, say B times, to
obtain P*,, ... ,IE’; 5, and use the empirical distribution based on P t=1,....B
to approximate the posterior distribution £{P|z} of P given z.

The corresponding Bayesian bootstrap method to approximate the posterior
distributions of II and T} given x can be developed as follows:

(1) By the balance equation IIP = II, we can apply P, ,IE’;B to get

*
nlsy: -

1,..., B to approximate the posterior distribution £{II|z} of II given z.
(2) The distribution function of T is Pr(t; P) = Pr(T; < t|Xo = 1,P) =
(A")1 , where A = A(P), the stochastic matrix which is the same as P except

the corresponding 11 ,II* 5, and use the empirical distribution of II};;, t =

nt’

that the kth row is replaced by (0,...,0,1). Therefore, we use the empirical
distribution of Pr(t; P},), t =1,..., B to approximate the posterior distribution
L{Pr(t; P)|z} of Pr(t; P) given z.

Remark 2.1. The B;; defined above are obtained by first partitioning {1,...,n}
into k groups of sizes ni,...,ng, say Bi,..., B, then dividing each B; into k
disjoint subgroups of sizes n;1,...,n;;. These subgroups are denoted by B;;.
For example, for a 3-state Markov chain with 30 observations such that ni; =
5,77,12 = 3,77,13 = 1,77,21 = 3,7122 = 4,7123 = 2,77,31 = 7,77,32 = 2, and n3gs — 3, we
have By; = {1,2,3,4,5}, Bio = {6,7,8}, and By3 = {9}, etc; hence, p(1,1) =
bt Zu/ S0 Zae, D5(1,2) = S8 Z1e/S0=1 Zu, and pi(1,3) = Zio/ S0y Zue,
etc. in this case. In fact, any well defined B;; such that the density of P is given
by m(P|M’) will work.

Remark 2.2. To approximate the posterior distribution of II, we need to solve
a system of equations, II*P* = II*, for II* as many as B times which can be
handled by many computer packages such as Mathematica, IMSL, etc..

Remark 2.3. When the Markov chain is operating in the steady-state and the
initial state Xy is unknown, the distribution X is II(P) = (71 (P),...,m(P)),
the steady-state probability associated with the transition matrix P. In this case,
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observation X provides information about P. When P is regarded as a random
matrix, the natural conjugate prior is the matrix beta-1 distribution (cf. Martin
(1975)). The Bayesian bootstrap for this situation can be carried out in a similar
way and will not be repeated here.

Remark 2.4. The Bayesian bootstrap incorporating prior information was sug-
gested by Lo (1988). In the present case, a similar method can be adapted to
incorporate prior information. Suppose the prior information is summarized by

a set of m prior Markov chain data {xg,x1,...,2;}. Combine these prior data
with the current data {z;, t =m+1,...,m + n} to obtain an updated sample
instead of {zy, t = m+1,...,m + n}. Here it is necessary to simulate m + n

i.i.d. standard exponential random variables Z;; in each execution of the Bayesian
bootstrap algorithm. In this case, we may choose Z;; to be from the gamma dis-
tribution to reflect the prior distribution. Further research in this case needs to
be done.

Remark 2.5. The Bayesian bootstrap described above depends on the prior
distribution of the elements of P in such a manner as to reflect accurately the
decision maker’s state of knowledge. It would be of considerable interest, there-
fore, to investigate the sensitivity of the Bayesian bootstrap to relatively small
changes in the prior distribution.

3. Asymptotic Justification of the Procedure

The asymptotic behavior of generalized Bayes estimators for a Markov chain
with transition probability P(#), which is a function of a one dimensional param-
eter 0, has been developed by Levit (1974). Here we consider a specific posterior
distribution of P but with multi-dimensional parameters. We show in this section
that under appropriate conditions, the Bayesian bootstrap procedure applied to
the innovations yields asymptotically consistent estimators for the posterior dis-
tributions of P,II and T} given x. The main results will be developed only for
P.

Theorem 1 gives the central limit theorem for the Bayesian bootstrap dis-
tribution. The proof of Theorem 1 provides insight into the construction of
the Bayesian bootstrap distribution, although it can be provided by Theorem 2
instead.

Theorem 1. Along almost all sample sequences, for each i,j, as n — 0o, we
have e .
V1i(P;, (i, 3) — Dij)
ij (1 = pij)

|z — N(0,1) in distribution,

where Pij = pp(i, j), the posterior mean with respect to the “flat” prior (as well
as the m.l.e.) of p;; defined in (2).
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Proof. For any fixed i, j, we define
’ i
Snij = Z (th - 1)7 and Snl,m—n” = Z(th - 1) - Z (th - 1)
teBij t=1 tEBij
Then for any given z,

\/n_z(ﬁ; (i,]) pz] Z Zzt/ Z Ly — nzg/nz

teBu
Sl
L [t [T o [ ]
- 7
_ p p nunz_nu]
- l] \/ \/ ij
,/le VI — Ny

= (I) (U) (say).

Since n;/> 1%, Zix — 1 almost surely, it is easy to check that for almost all

sample sequences, both A(I) — and - urn — converge in distribution to the
(1=pij)+/Dij Dij\/1—Dij

standard normal distribution. Therefore,
V(5 (6, §) — i)/ [pi; (1 — bij)] Y%z — N(0,1) in distribution
as n — oo.

Under mild conditions of the likelihood, Johnson (1970) gives the asymptotic
expansion for the posterior distribution of the parameter of interest with respect
to a positive and sufficiently smooth prior. Such an expansion is also discussed
in Ghosh (1994). This result shows that as the sample size n goes to infinity, the
normalized posterior distribution of p;;, with respect to any positive and smooth
prior, converges to the standard normal distribution, i.e.

V(i — Pig)/ [Di; (1 — Dij)]Y?|z — N(0,1) in distribution.
Applying Johnson’s expansion, we have the following lemma that can be used to

prove the result of the second order efficiency for the posterior of p;;.

Lemma 1. Let 7(p;;) be any positive prior with continuous second derivatives
for all 0 < p;; < 1; then along almost all sample sequences, for each i,j, as
n — oo,

V1i(pij — Dij) _ P(1) ~1/2
P(Y——= <tlz) =2(t) —v(t,z)—= + op(n™/7),
< Dij (1 — Diz) ) k vn
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where ®(t) and ¢(t) are the c.d.f. and p.d.f. of the standard normal distribution,
and

Yt @) = (1= 2pi;) /[3v/Dig (1 = Dig)| (¢ + 2) + /Dis (1 — i) 7D (big) /7(Bis), (6)
with 7 () the kth derivative of ().
Proof. Note that the likelihood function of p;; is
Upislz) o pi” (1 = pig)™ ", (7)

which, along with 7(p;;), satisfy the conditions given in Johnson (1970). Let

2 3

1 0 1/2
b(piy) = | - n; O, logl(piyla)| ", and  ag(piy) = 6 007, log U(pij|z)-

Then following Theorem 5.1 of Johnson (1970), the posterior distribution func-
tion of W;; = \/ni(pij — Pij)b(Pi;) can be expanded as

P(Wij < t|z) = (1) — 7 (t,2)d(t)/v/mi + op(n; *),

where
it z) =7 (Big) {073 (bij)azin (ij )7 (Bis) (¢ + 2) + b (Bij)m ™ (Bij) }-

Simple algebra yields

o) = [ (i + )] = (54 7=5) ' = [ =)

ni\py; (1= pi)? bij 1=y
and
R 11 /nyj Ny — Nyj 11 1
a3,n; (Pij B 0-p)3) "3\t a2
3, ( zj) 37% <sz (1 —pij)3> 3 (p?j (1 —pij)2>

= (1= 2/ (1 — piy)

which establishes the result for n sufficiently large.

Lemma 1 gives the second order approximation to the posterior with respect
to smooth priors. For considering of the second order efficiency of the Bayesian
bootstrap, we only need find (¢, z) with respect to the “flat” prior, since the
resulting posterior distribution is the same as the distribution of the Bayesian
bootstrap, as pointed out in Section 2. The result is given in Theorem 2.

Theorem 2. Along almost all sample sequences, for each i,j, uniformly for x,
we have

_ 42
p \/n_z(pn( ) pzj) <t|g> 2}01] 1 t +0p( _1/2)

pz](l pij) 3 \/pl] pl] \/_
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Proof. Following Lemma 1, with m(p;;) = p;; Y(1 = pij)~, we have 7(V(p;;) =
—(1 = 2pi;)/[pi;(1 — Pij)]?. This reduces (6) to

Yt z) = —(1 = 2pi;) (1 — t7)/[3 \/pi; (1 — pij)]-

Then by Lemma 1, we get

(.. — P 1—2% 1—t2
P \/n—j(plj {)7'.7) §t|£> pl] \/_ _|_0p( 1/2)
Pij(1 — Dij) 3 \/Dij (1 — Pij)

Furthermore, since py, (¢, j)|z and the posterior of p;;|z with respect to the “flat”
beta prior have the same distribution, they have of course the same expansion.
The proof is therefore complete.

An alternative approach to deriving the second order efficiency of the
Bayesian bootstrap distribution can be carried out via an Edgeworth expansion
following Weng (1989) and Lo (1993a).

According to Lemma 1, when the posterior is centered and re-scaled, re-
spectively, at the m.l.e. and its estimated standard deviation, the second order
could involve the prior so it may not be the same as that obtained in Theorem
2. However, if the posterior is normalized by the posterior mean and posterior
standard deviation with respect to matrix beta conjugate priors, the second order
in the asymptotic expansion is indeed consistent with that given in the Bayesian
bootstrap. Such a result is given in Theorem 3.

Theorem 3. Let 7°(p;;) o pi] (1 — pij)i% =L for some 0 < a;j < 1 and
Z?:l a;j = . Then along almost all sample sequences, for each i,j, asn — oo,
we have

(pij — P;) 2p; 1— t2
PP <) i+ L2 Lo
< Ve ) 3 pzj 1 _plj \/_

where p” (nm + ozw)/(m +a;) and V¢ = (Oéij + nij)(ai — o5+ Ny — nU)/[(al +
n:)?(a;+n;+1)] are the posterior mean and posterior variance of pij, respectively,
with respect to mw°.

Proof. The posterior distribution of p;; with respect to 7¢ is

Mg+ — (1_ .)m ngj+o;—o;—1
)

T(pijlz) o< U pijle)m(pij) o< py;

where [(p;;|z) is defined by (7). Let mo(pij) = pi_jl(l — pij)" Y, and L(p;j) =
Z.iﬁa” (1 — pyj)mimatei=i Then m(p;;|z) can be written as
mo(pij) exp[L(piy)]  _ mo(pij) exp[L(pij) — L(pf)]

S mo(pij) exp[L(pig)ldpi; [ 7o(pij) exp[L(pij) — L(55;))dpi;”

(pzy |z) =
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where pf; is the posterior mean which maximizes L(p;;) here.
Note that the posterior density of hy = \/ni(pi; — p§;) is

mo(ny 2 hy + p5;) exp[L(n; hy + p5;) — L(5E)]
J mo(ny 2 hy 4 5%) explL(n; 2Ry +55;) — L(5S)]dh

m(hlx) = (8)

Taking a Taylor expansion at p;; for mo(-) and L(-), and letting F((]k), L% repre-
sent the corresponding kth derivatives, we get

(n; " ho 4+ p5y) = wo(p)[L 4+ 0 M) Ly ()(ﬁ’gj)h (n;")
0 1+ i) = 7o (D5 n; ) mo(p5;) *3 o (P5;) o
and

- o1 1
L(n; 1/2h1+p¢j)=L(p¢])+2”z 1h2 ()(p )+6 z3/2h3L(3)(pU)Jro( 1),

respectively. Thus, letting b = —nflL(2) (p5;), yields

mo(n, 2hy + 55) explL(n, by + 55) — L)
= mo () exp(—h3b/2){1 + ham (55 /I w0 (55)) + ML) (55) /(60 }

+o(n; 1/2)7 9)

and

[ ot +55) explLing 2h+55) — LG b = mol@55)y /27 /b+o(n ).
(10)

Putting (9) and (10) into (8), and letting h = v/bhy = v/n;b( pi; — P§;), gives the
posterior density of h given x as

(1)

L o_ipe ~1/2 17 (55;) 1—32 -3 2
n(hla) =1/ 5 e " (14 20 O(p”j) e, VL )b Yo 7).
Hence,

t

P(vuib(pij — ) < tlr) = / (hlz)dh

— 00

i) 2y L) (pe.
(1) + o(tyn; V[V ﬁo(;pw)) _ (2;” n(fn])} +o(n=1?),

Calculation yields

( ) (1 —2p5;)

1 (plj) [ﬁfj(l pz])]Z’

2(ni + i) (1 — 2p5;)
[ﬁfj(l _pij)]

n; + q;

L@ () = —— A
#) = pfj(l—pfj)

U

and LO)(p i) =

I
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SO

]- zpl] (]- - t2) -1/2
P( \% nlb(pl] pz]) <t|LU . + .y \/17 ( )+0p(ni )
i i D

(1_2;%) (1_t2) t)+o nfl/z

s Svm ot )
(1-2py) (1—1%)

=P(t) +

" Dij(1—pij) SV

(t) + op(n; 7?),

for p§; =1+ O(n; ).

Note also that the posterior variance V¢ = pf(1 — pg;) /(i + n; + 1), so
VbV Ve = Vaitni/ai+ni+1 =1+ o(n, -1/2 ). Then, as n — oo, the dis-
tributions of (p;; — pl])/\/w and /n;b(pi; — p5;) have the same expansion for
given x (see Remark 2.2 of Weng (1989)), which completes the proof.

Remark 3.1. A referee pointed out that in the matrix beta case, after proper
standardization, one essentially deals with sums of independent gamma random
variables, and thus by using a classical Edgeworth expansion one obtains the
second order results as in Weng (1989).

Remark 3.2. The posterior of p;; with respect to conjugate priors can be fac-
tored out by the “flat” prior due to conjugacy. Therefore, after proper centering,
the prior effect appearing to the second order is consistent with that given by
the “flat” prior as seen in Theorem 3. A referee pointed out that an Edgeworth
expansion based on proper centering (posterior mean and standard deviation)
for any smooth prior needs to be studied, to see if the prior density affects the
second order as much as in Johnson’s expansion.

Remark 3.3. In Section 2, we proposed Bayesian bootstrap algorithms to simu-
late the posterior distributions of IT and T'. It should be interesting to invesitgate
the asymptotic justification of this procedure. Therefore, for the second order
efficiency of the Bayesian bootstrap, we need to investigate for which functionals
of P, the Edgeworth expansion of the posterior distribution is independent of
the prior up to the second order, as well as the Edgeworth expansion for the
Bayesian bootstrap distribution.

It might be interesting to consider other independent random variables in-
stead of the standard exponential, which is in the realm of Bayesian bootstrap
clones. In the i.i.d. case, this has been developed by Lo (1991, 1993b). A corre-
sponding result for the Makov chain case based on simulating other independent
Zi: needs further study.
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4. Empirical Studies

A numerical illustration for the Bayesian bootstrap is given in this section.
For a 3 state ergodic Markov chain with initial state Xy = 1, we compare the
normal approximation and the Bayesian bootstrap to approximate confidence
intervals for different parameters, which includes transition probability pio, sta-
tionary probabilities 7, mo, w3, and hitting time T5.

The original sample is a computer simulation from an ergodic Markov chain
with the transition probability matrix

3 4 3
P=] 2 3 5],
4 4 2

and the stationary probability
IT = (.298, .364, .338).

For this small sample study, two different sample sizes n = 50, 100 are included.
The Bayesian bootstrap sample size is the same as the original sample size.
Here, we simulate 95% confidence intervals, their average lengths and empirical
coverage probabilities based on 1000 replications Monte-Carlo trials. The results
are presented in Tables 1 and 2. Figures 1 and 2 show the graphs of the real
posterior density of (pj2 — p12)|z and the approximated posterior based on the
Bayesian bootstrap procedure for the corresponding samples.

The Computations were performed using FORTRAN programs on a Sun
Sparc II workstation. The random numbers were generated using IMSL routines.
All the tests were compared on the basis of the same random numbers. Samples
with different sizes were nested.

The abbreviation notations will be used in the tables as follows:

NA — normal approximation BB — Bayesian bootstrap
C.I. — confidence interval A.L. — average length

C.P. — coverage probability

Table 1. The comparison of approximate confidence intervals with n = 50

NA BB
95% C1. AL CP.|95%CL AL C.P.
prz | (209, .561) .352 .950 | (.188, .566) .377 .962
m | (218, .414) 196 .957 | (.209, .415) .206 .984
7 | (:260, .450) .190 .963 | (.246, .459) .213 .976
75 | (251, .424) 174 970 | (.231, 441) 210 .996
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Density
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0.0 T
-0.4 -0.3 -0.2 -0.1 -0.0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 1. Comparison of the posterior density of (p12 — p12)|x (dotted line)
and the estimated posterior obtained by the BB procedure with n = 50.

Density
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6.0 4
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4.0 —

3.04
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1.0+

0.0 T £

Figure 2. Comparison of the posterior density of (p12 — p12)|x (dotted line)
and the estimated posterior obtained by the BB procedure with n = 100.
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Table 2. The comparison of approximate confidence intervals with n = 100

NA BB
95% C.I. AL. CP.|95% C.I AL. CP
p12 | (:241, .538) .296 .956 | (.234, .534) .301 .961
m | (.230, .388) .159 .962 | (.226, .386) .160 .979
ma | (.281, .434) .153 .962 | (.272, .438) .166 .972
w3 | (.272,.408) .137 .971 | (.257, .421) .164 .992

Let T3 be the first hitting time up to state 3 of the Markov chain with
Xo =1 and Pr(t; P) = Pr(Ts < t|Xo = 1, P) be the probability that T3 < ¢ for
t =1,2,... For any 3 x 3 stochastic matrix P, let A = A(p) be the stochastic
matrix which is the same as P except that the 3" row is replaced by (0,0,1), so
Pr(t; P) = (A"); 3. The Bayesian bootstrap to estimate the posterior distribution
of Pr(t; P) given z is Pr(t; P*).

The following abbreviation notation will be used in Figures 3 and 4 which
give the comparison of the real confidence band and those approximated by the
Bayesian bootstrap procedure.

— — true distribution

B — Bayesian bootstrap confidence band

T — true confidence band

A.L. — average length

Here, A.L. is computed for each t = 1,2,...,30, and then the average taken

confidence band

1.0

0.9 4

0.8 4

true distribution
BB confidence band
00000 true confidence band

time ¢

T
1 2 345 6 738

T T T T
9 10 1112

T

T T T T T T T T T T T T T T T T
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Figure 3. The BB approximate confidence band for T3, n = 50 and A.L. = .154
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confidence band

1.0

0.9 —

0.8 —
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Figure 4. The BB approximate confidence band for T3, n = 100 and A.L. = .121
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