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SEMIPARAMETRIC CAUSAL MEDIATION ANALYSIS
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Abstract: Although exposure can be randomly assigned in studies of mediation ef-

fects, direct intervention on the mediator is often infeasible, making unmeasured

mediator-outcome confounding possible. We propose a semiparametric identifica-

tion of natural direct and indirect effects in the presence of unmeasured mediator-

outcome confounding by leveraging heteroskedasticity restrictions on the observed

data law. For inference, we develop semiparametric estimators that remain con-

sistent under partial misspecifications of the observed data model. We illustrate

the proposed estimators using simulations and an application that evaluates the

effect of self-efficacy on fatigue among health care workers during the COVID-19

outbreak.
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1. Introduction

Researchers in the health and social sciences often wish to investigate not

only the total effect of a point exposure A on an outcome Y , but also the direct

and indirect effects operating through a given post-exposure mediating variable

M . Since the seminal work of Baron and Kenny (1986) in the context of lin-

ear structural equation models, the notions of natural direct effects (NDEs) and

natural indirect effects (NIEs) have been formalized in the context of a binary ex-

posure under the potential outcomes framework (Robins and Greenland (1992);

Pearl (2001)). NDEs and NIEs are particularly useful for understanding the

causal mediation mechanism, because the sum of these two effects is the average

treatment effect of A on Y . Under the sequential ignorability assumption of no

unmeasured confounding for the A-M , A-Y , and M -Y relationships (See Section

2 for a more formal treatment), the NDE and NIE can be identified nonpara-

metrically from the observed data distribution based on the so-called mediation
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formula (Pearl (2001); VanderWeele and Vansteelandt (2009); Imai, Keele and

Yamamoto (2010); Tchetgen Tchetgen and Shpitser (2014); VanderWeele (2015)).

Sequential ignorability is often stated as a conditional version within the strata

of a set of measured baseline covariates X not affected by the exposure, in the

hope that no residual unmeasured confounding remains within the strata of the

measured covariates.

A fully parametric approach to evaluating the mediation formula typically

entails specifying models for both E(Y |M,A,X) and E(M |A,X) under appropri-

ate link functions (VanderWeele and Vansteelandt (2009); VanderWeele (2015)),

which may be sensitive to model misspecifications. On the other hand, nonpara-

metric inference yields multiply robust estimators that remain consistent and

asymptotically normal (CAN) within various strict subsets of the observed data

model, which includes the conditional densities f(M |A,X) or f(A|X) (Tchet-

gen Tchetgen and Shpitser (2014)). As a compromise between the fully paramet-

ric and nonparametric approaches, consider the following semiparametric par-

tially linear outcome and mediator models, indexed by θ = (θ1, θ2, θ3)T ∈ IR3:

E(Y |M,A,X; θ1, θ2, g) = θ1M + θ2A+ g(X);

E(M |A,X; θ3, h) = θ3A+ h(X),
(1.1)

where the confounding effects of the measured covariates on the outcome and

mediator are encoded by the functions g(·) and h(·) respectively, which remain

unspecified. If X is sufficiently rich so that sequential ignorability holds, then

θ2 and θ1θ3 capture the NDE and NIE, respectively, per unit change in the

exposure (Hines, Vansteelandt and Diaz-Ordaz (2021)). Let π(X) ≡ E(A|X)

denote the treatment propensity score and O = (Y,A,M,X) the observed data.

To estimate θ, Hines, Vansteelandt and Diaz-Ordaz (2021) considered the 3 × 1

vector estimating function ϕ(O; θ, π, g, h) with components

ϕ1(O; θ, π, g) = {A− π(X)}{Y − θ1M − θ2A− g(X)}
ϕ2(O; θ, h, g) = {M − θ3A− h(X)}{Y − θ1M − θ2A− g(X)}
ϕ3(O; θ, π, h) = {A− π(X)}{M − θ3A− h(X)}.

(1.2)

An augmented G-estimator (Robins (1994)) of θ may be constructed as the so-

lution to the empirical moment condition

n−1
n∑
i=1

ϕ(Oi; θ, π̂, ĝ, ĥ) = 0,
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where (π̂, ĝ, ĥ) is a first-stage estimator of the nuisance parameters under user-

specified parametric models. Provided that any pair of nuisance parameters

in {π(x), g(x), h(x)} is correctly modeled, Hines, Vansteelandt and Diaz-Ordaz

(2021) showed that the resulting augmented G-estimator is CAN for the true

value of θ defined under the partially linear model (1.1).

1.1. Motivation and related work

Although, in principle, one can rule out unmeasured confounding of the A-

M and A-Y relationships by design when the exposure assignment is randomized

(possibly within strata of a known set of measured baseline covariates), it is

often infeasible to directly manipulate the mediator. As a result, numerous re-

searchers have developed sensitivity analysis (Imai, Keele and Tingley (2010);

VanderWeele (2010); Tchetgen Tchetgen and Shpitser (2012); Ding and Van-

derweele (2016)) and partial identification approaches (Sjölander (2009); Robins

and Richardson (2010a)) to assess the impact of departures from the no unmea-

sured M -Y confounding assumption. Identifying causal mediation mechanisms

under unmeasured M -Y confounding can sometimes be achieved using the prin-

cipal stratification approach (Gallop et al. (2009); Mattei and Mealli (2011)) or

by leveraging ancillary variables that satisfy certain exclusion restrictions (Imai,

Tingley and Yamamoto (2013); Burgess et al. (2015); Frölich and Huber (2017)).

Another major strand of work in the health sciences uses baseline covariates inter-

acted with random exposure assignments as instrumental variables for the effect

of the mediator on the outcome (Ten Have et al. (2007); Dunn and Bentall (2007);

Albert (2008); Small (2012); Zheng and Zhou (2015)); see also the commentary

by Ogburn (2012).

Recently, there has been growing interest in econometrics and the health

sciences in using higher-order moment restrictions as a source of identification

in linear structural models without exclusion restrictions (Rigobon (2003); Klein

and Vella (2010); Lewbel (2012); Tchetgen Tchetgen, Sun and Walter (2021)).

To the best of our knowledge, the work of Fulcher, Shi and Tchetgen Tchetgen

(2019) was the first to extend this identification framework to causal mediation

analysis with unmeasured M -Y confounding. They considered identifying and

estimating the NIE under structural assumptions that imply the semiparametric

partially linear model

E(Y |M,A,X,U ; θ1, θ2, g) = θ1M + θ2A+ g(X,U);

E(M |A,X,U ; θ3, h) = θ3A+ h(X,U),
(1.3)
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where U is a set of unmeasured baseline covariates, not affected by the exposure,

that confounds the M -Y relationship. Under further assumptions, formalized in

Section 2, the parameters θ1θ3 and θ2 encode the NIE and NDE, respectively, per

unit increase in the exposure, which provides a useful summary of the mediation

effects. The unspecified functions g(·) and h(·) now encode the confounding ef-

fects of both the measured and the unmeasured covariates on the outcome and

the mediator, respectively. We extend the results of Fulcher, Shi and Tchet-

gen Tchetgen (2019) to identify θ = (θ1, θ2, θ3)T (and, hence, both the NDE and

the NIE) under the partially linear model (1.3). Furthermore, similarly to Hines,

Vansteelandt and Diaz-Ordaz (2021), we propose augmented G-estimators that

remain CAN for the true value of θ defined by (1.3) if any one of three strict sub-

sets of the nuisance parameters lie in user-specified parametric models, including

one in which the parametric models for the nuisance parameters considered by

Fulcher, Shi and Tchetgen Tchetgen (2019) are correctly specified. This marks

a significant improvement in robustness to model misspecification, which is es-

pecially useful in observational studies when X contains numerous continuous

components.

The rest of the paper is organized as follows. In Section 2, we introduce

the formal identification conditions for θ under the partially linear model (1.3),

and present multiply robust augmented G-estimation methods in Section 3. We

evaluate the finite-sample performance of the proposed methods using simulation

studies in Section 4, and illustrate the proposed approach by means of a real-

data example in Section 5. We explore several possible extensions in Section

6 including allowing for A-M interactions in the outcome model, before ending

with a brief discussion in Section 7.

2. Notation and Assumptions

We use the potential outcomes framework (Neyman (1923); Rubin (1974))

to define the mediation effects of interest. Let Ma denote the mediator value that

would be observed had the exposure A been set, possibly contrary to fact, to level

a. Similarly, let Ya,m denote the potential outcome that would be observed had A

been set to level a, and M to m. The population NDE and NIE of A on Y com-

paring two exposure levels a and a′ are given by NDE(a, a′) ≡ E(Ya,Ma′ −Ya′,Ma′ )

and NIE(a, a′) ≡ E(Ya,Ma
− Ya,Ma′ ), respectively (VanderWeele (2015)). The

NDE and NIE are particularly relevant for describing the underlying mechanism

by which the exposure operates, because their sum is equal to the population total

effect given by E(Ya,Ma
− Ya′,Ma′ ). Under the sequential ignorability assumption
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that for any (a, a′,m),

Ya,m ⊥ A|X, Ma ⊥ A|X, Ya,m ⊥M |(A,X), Ya,m ⊥Ma′ |X, (2.1)

where B ⊥ C|D indicates the conditional independence of B and C, given D

(Dawid (1979)), the mediation effects are nonparametrically identified from the

observed data distribution as the functionals

NDE(a, a′) =

∫∫
{E(Y |a,m, x)− E(Y |a′,m, x)}f(m|a′, x)f(x)dmdx;

NIE(a, a′) =

∫∫
E(Y |a,m, x){f(m|a, x)− f(m|a′, x)}f(x)dmdx,

(2.2)

for all a and a′ (Pearl (2001); Imai, Keele and Yamamoto (2010); VanderWeele

(2015)). Evaluating (2.2) together with the partially linear model (1.1) yields

NDE(a, a′) = θ2(a− a′) and NIE(a, a′) = θ1θ3(a− a′); hence, the NDE and NIE

are identified, as long as θ is identified.

2.1. Identification under unmeasured M-Y confounding

In practical settings, it is often infeasible to randomize or intervene on the

mediator. Because unmeasured M -Y confounding can seldom be ruled out, we

assume that (2.1) holds only conditional on (X,U), that is, for any (a, a′,m),

Ya,m ⊥ A|(X,U), Ma ⊥ A|(X,U), Ya,m ⊥M |(A,X,U), Ya,m ⊥Ma′ |(X,U).

(2.3)

In addition, we assume that the exposure is randomly assigned, either by design

or through some natural experiments, so that

A ⊥ U |X. (2.4)

Figure 1 depicts the causal diagram for such a scenario. Under the latent sequen-

tial ignorability assumption (2.3), it is straightward to verify that the mediation

effects are now given by the functionals

NDE(a, a′)=

∫∫
{E(Y |a,m, x, u)− E(Y |a′,m, x, u)}f(m|a′, x, u)f(x, u)dmdxdu;

NIE(a, a′)=

∫∫
E(Y |a,m, x, u){f(m|a, x, u)− f(m|a′, x, u)}f(x, u)dmdxdu.

(2.5)

Evaluating (2.5) together with the partially linear model (1.3) yields NDE(a, a′) =
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θ2(a − a′) and NIE(a, a′) = θ1θ3(a − a′), a result given in Fulcher, Shi and Tch-

etgen Tchetgen (2019). The partially linear model (1.3) with a randomized ex-

posure that satisfies (2.4) yields the conditional mean independence restrictions

E(Y − θ1M − θ2A|A,X) = E{g(X,U)|A,X} = g∗(X);

E(M − θ3A|A,X) = E{h(X,U)|A,X} = h∗(X).
(2.6)

The main challenge with identification and estimation based on (2.6) is that

there are two restrictions, but three unknown parameters in θ. If U is null, and

thus g(X,U) = g∗(X) almost surely, Hines, Vansteelandt and Diaz-Ordaz (2021)

derives augmented G-estimators of θ based on E(Y − θ1M − θ2A|A,M,X) =

g∗(X), which is a stronger version of the first restriction in (2.6). However, this

restriction fails to hold when U is non-null, because E{g(X,U)|A,M,X} remains

a function of (A,M,X), owing to collider bias at M within strata of X, as shown

in Figure 1. Therefore, we do not impose this restriction, and instead leverage

the conditional covariance mean independence restriction

E[{M − θ3A− h∗(X)}{Y − θ1M}|A,X] = E[cov{g(X,U), h(X,U)}|A,X]

= ρ(X),

which holds under (1.3) and (2.4). We summarize the observed data restrictions

below.

Lemma 1. Under the partially linear model (1.3) and a randomized exposure

that satisfies (2.4), the conditional mean independence restriction

E{ψ(O; θ, h∗)|A,X} = E{ψ(O; θ, h∗)|X} (2.7)

holds almost surely, where ψ(O; θ, h∗) is a 3× 1 vector function with components

ψ1(O; θ) = Y − θ1M − θ2A, ψ2(O; θ, h∗) = {M − θ3A − h∗(X)}(Y − θ1M), and

ψ3(O; θ) = M − θ3A.

For identification, we also require that (2.7) have a unique solution for θ.

This may be partly justified by the linearity of the first and third components

of ψ(O; θ, h∗). The second component is nonlinear in θ and, therefore, requires

higher moment restrictions for identification. Following Fulcher, Shi and Tchet-

gen Tchetgen (2019), we assume that the observed data distribution satisfies the

heteroskedasticity condition that for any pair of exposure values (a, a′),

var(M |A = a,X) 6= var(M |A = a′, X) if a 6= a′, (2.8)



CAUSAL MEDIATION WITH UNMEASURED CONFOUNDING 2599

A M Y

U

Figure 1. Causal diagram with unmeasured mediator-outcome confounding within strata
of X.

almost surely. We recommend performing the Breusch–Pagan test for heteroskedas-

ticity (Breusch and Pagan (1979)) prior to the analysis using the proposed method.

Condition (2.8) may be motivated from the linear structural equation (Pearl

(2000))

M = λ(A,X,U, ε) = λ0(ε)A+ λ1(X,U, ε), (2.9)

where λ0(·) and λ1(·) are unspecified functions, and ε is a latent error that satisfies

ε ⊥ (A,X,U). Note that (2.9) implies the mediator partially linear model in (1.3).

Let λ̃0(ε) ≡ λ0(ε) − E{λ0(ε)} and λ̃1(X,U, ε) ≡ λ1(X,U, ε) − E{λ1(X,U, ε)|X}.
Then, the conditional variance var(M |A,X) = E[{λ̃0(ε)A + λ̃1(X,U, ε)}2|A,X]

depends on A, provided that λ0(ε) depends on the latent source of the effect

heterogeneity ε. Therefore, condition (2.8) does not hold under (2.9) and when the

exposure has no effect on the mediator for any individual. However, it does hold

when there is a heterogeneous exposure effect on the mediator in the population,

a plausible scenario in a variety of health and social sciences settings (Tchetgen

Tchetgen, Sun and Walter (2021)) that permits the average exposure effect on

the mediator to be zero, that is, E{λ0(ε)} = 0.

Theorem 1. Under the partially linear model (1.3) and assumptions (2.4) and

(2.8), the parameter θ is identified as the unique solution to

E{ψ(O; θ, h∗)|A,X} = E{ψ(O; θ, h∗)|X}.

3. Semiparametric Inference

The conditional mean independence restriction (2.7) implies the following

unconditional moment condition for θ;

0 = E[{A− π(X)}ψ(O; θ, h∗)], (3.1)
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which depends on the unknown nuisance parameters π(x) and h∗(x). In princi-

ple, it is possible to estimate π(x) and h∗(x) nonparametrically under sufficient

smoothness conditions (Ai and Chen (2003); Newey and Powell (2003)). However,

if X contains numerous continuous components, the resulting estimators of θ typ-

ically exhibit poor finite-sample behavior in moderately sized samples, because

the data are too sparse to be able to conduct a stratified estimation (Robins and

Ritov (1997)). This setting is of particular relevance when the analyst considers

a broad collection of covariates and their functional forms to render condition

(2.4) plausible in observational studies.

As a remedy, following the augmented G-estimation approach (Robins (1994)),

we propose estimators of θ that remain CAN if various strict subsets of the nui-

sance parameters η = {π(x), g∗(x), ρ(x), h∗(x)} are correctly modeled. To this

end, we derive the influence function of any regular and asymptotically linear

estimator of θ based on (3.1) when {π(x), h∗(x)} is estimated nonparametrically

(Newey (1994)).

Theorem 2. The influence function of any regular and asymptotically linear

estimator of θ when {π(x), h∗(x)} is estimated nonparametrically is given by

−∆−1ϕ̃(O; θ, η), where ∆ ≡ E[{A− π(X)}∂ψ(O; θ, h∗)/∂θ], and ϕ̃(O; θ, η) is a

3× 1 vector function with components

ϕ̃1(O; θ, π, g∗) = {A− π(X)}{Y − θ1M − θ2A− g∗(X)}
ϕ̃2(O; θ, η) = {A− π(X)}{M − θ3A− h∗(X)}{Y − θ1M − θ2A− g∗(X)}

−ρ(X)

ϕ̃3(O; θ, π, h∗) = {A− π(X)}{M − θ3A− h∗(X)}. (3.2)

The first and third components of ϕ̃(O; θ, η) are the same as those in (1.2); the

second component differs because of its reliance on a different conditional mean

independence restriction, as discussed in Section 2.1. The proof of Theorem 2

in the Supplementary Material shows that ϕ̃(O; θ, η) is also equal to the original

identifying moment condition (3.1), augmented with the nonparametric influence

functions for the estimation of {π(x), h∗(x)}. This yields the so-called orthogonal

moment condition, which is locally robust to the nuisance parameters on which

it depends (Chernozhukov et al. (2020)).

3.1. Multiply robust estimation

We propose a semiparametric estimation of θ based on the estimating func-

tion ϕ̃(O; θ, η) evaluated under the working parametric models
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{π(x; η1), g∗(x; η2), ρ(x; η3), h∗(x; η4) : η = (ηT

1 , η
T

2 , η
T

3 , η
T

4 )T ∈ IRq},

with q <∞. Under regularity conditions, the proposed semiparametric estimator

of θ is shown to be CAN if one, but not necessarily more than one, of the following

model assumptions hold:

M1: The models for {π(x), g∗(x)} are correct.

M2: The models for {π(x), h∗(x)} are correct.

M3: The models for {g∗(x), ρ(x), h∗(x)} are correct.

For estimation purposes, suppose that (O1, . . . , On) are independent and identi-

cally distributed (i.i.d.) observations. Let Ê(·) denote the empirical mean opera-

tor Ê{h(O)} = n−1
∑n

i=1 h(Oi). We propose a joint estimation of the parameters

(θ, η). Here, the estimator θ̂ = (θ̂1, θ̂2, θ̂3)T solves

0 = Ê{ϕ̃(O; θ, η̂(θ))}, (3.3)

with η̂(θ) solving 0 = Ê{γ(O; θ, η)} for a fixed value of θ, and γ(O; θ, η) is a q×1

vector function with components

γ1(O; η) =

{
∂π(X; η1)

∂η1

}
T

{A− π(X; η1)}

γ2(O; θ, η) =

{
∂g∗(X; η2)

∂η2

}
T

{Y − θ1M − θ2A− g∗(X; η2)}

γ3(O; θ, η) =

{
∂ρ(X; η3)

∂η3

}
T

[{M − θ3A− h∗(X; η4)}

×{Y − θ1M − θ2A− g∗(X; η2)} − ρ(X; η3)]

γ4(O; θ, η) =

{
∂h∗(X; η4)

∂η4

}
T

{M − θ3A− h∗(X; η4)}. (3.4)

Lemma 2. Let θ† denote the unique solution to (3.1). Then, under the regularity

conditions stated in the Appendix, n1/2(θ̂−θ†) d−→ N (0,Σ) as n→∞ in the union

model {∪3
j=1Mj} (multiple robustness), where

Σ = E

[E{ ∂

∂θ
Φ̃(O; θ, η̄(θ†))

∣∣∣
θ=θ†

}−1

Φ̃(O; θ†, η̄(θ†))

]⊗2
 ,

η̄(θ) denotes the probability limit of η̂(θ), and

Φ̃(O; θ, η) = ϕ̃(O; θ, η)− E
{
∂

∂η
ϕ̃(O; θ, η)

}
E

{
∂

∂η
γ(O; θ, η)

}−1

γ(O; θ, η).
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As pointed out by a reviewer, E
{
∂ϕ̃(O; θ†, η)/∂η |η=η̄(θ†)

}
= 0 at the inter-

section submodel {∩3
j=1Mj}, where all of the working models for the nuisance

parameters are correctly specified. As such, the estimation of η has no first-order

impact on the asymptotic variance of θ̂. This simplification does not hold in

general when one or more of the working models is misspecified (Vermeulen and

Vansteelandt (2015)). For inference, a consistent estimator Σ̂ of Σ may be con-

structed by replacing all expected values with the empirical means evaluated at θ̂

and η̂(θ̂). Then, a 95% Wald confidence interval for the NDE per unit change in

the exposure is found by calculating θ̂2±1.96σ̂2, where σ̂2 is the square root of the

second component of the diagonal of n−1Σ̂. We can perform a similar inference

for the NIE per unit change in the exposure using the multivariate delta method.

Alternatively, a nonparametric bootstrap may also be used to obtain estimates

of Σ.

Remark 1. Because the nuisance parameters inMk, for k = 1, 2, 3, are variation

independent, the proposed estimation framework provides the analyst with three

genuine opportunities, instead of one, to obtain valid inferences about θ and the

functionals thereof, even under partial model misspecifications (Robins and Rot-

nitzky (2001)). Chernozhukov et al. (2018, 2020) established general regularity

conditions for the n1/2-consistent estimation of finite-dimensional parameters of

interest based on orthogonal moment functions, such as ϕ̃(O; θ, η), even when

the complexity of the nuisance parameter space for η is no longer tractable us-

ing standard empirical process methods (e.g., Vapnik–Chervonenkis and Donsker

classes). We plan to pursue this in future work.

Remark 2. The NIE estimator of θ1θ3 proposed by Fulcher, Shi and Tchet-

gen Tchetgen (2019) may be viewed as solving the empirical versions of only

the second and third components in (3.1), with both π(x) and h∗(x) estimated

parametrically. It is clear that (3.1) does not have mean zero, and therefore

fails to identify (θ1, θ3) when either or both parametric models for π(x) and

h∗(x) are misspecified, that is, the NIE estimator proposed by Fulcher, Shi and

Tchetgen Tchetgen (2019) is CAN only in the semiparametric model M2. The

proposed estimator θ̂ extends the estimation approach of Fulcher, Shi and Tch-

etgen Tchetgen (2019) in two main ways, by delivering a
√
n-consistent inference

about θ (and, hence, both the NDE and NIE) in the larger semiparametric union

model {∪3
j=1Mj}.
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4. Simulation Study

We perform simulations to study the pointwise properties of θ̂ and the as-

sociated confidence intervals. We generate the baseline covariates X1 ∼ N (0, 1)

and X2 ∼ N (0, 1) independently, followed by

U |X ∼ N{µ = 1 +X1 − 0.3X2, σ
2 = exp(−1.2 + 0.8X1 − 0.2X2)};

A|X ∼ Bernoulli[p = {1 + exp(1− 1.5X1 + 0.3X2)}−1];

M = 1 + (1.5 + ε)A+ 0.5U, Y = 1 +A+ 2M + U.

Here, U is an unmeasured factor that induces mediator-outcome dependence.

In addition, we introduce latent effect heterogeneity generated independently as

ε ∼ N(0, 1) so that condition (2.8) holds. The true NDE and NIE for a unit

change of exposure value are one and three respectively. In addition to the pro-

posed multiply robust estimator MR, we implement the propensity score-based

estimator PS of Fulcher, Shi and Tchetgen Tchetgen (2019) and the product

of coefficients estimator BK of Baron and Kenny (1986), which does not ac-

count for unmeasured M -Y confounding. We evaluate the estimators under

the following five scenarios to investigate the impact of a model misspecifica-

tion on the nuisance parameters: (i) {π(x), g∗(x), ρ(x), h∗(x)} are all correctly

modeled; (ii) only {π(x), g∗(x)} are correctly modeled; (iii) only {π(x), h∗(x)}
are correctly modeled; (iv) only {g∗(x), ρ(x), h∗(x)} are correctly modeled; and

(v) none of the nuisance parameters are correctly modeled. Further details

on the model specifications are provided in the Supplementary Material. A

model is misspecified if the standardized versions of the transformed variables

[exp(0.5X1), 10 + X2/{1 + exp(X1)}] are used as regressors instead of (X1, X2).

Standard errors are obtained using the empirical sandwich estimator.

We simulate 1,000 replicates with sample sizes n = 400, 800 for each scenario,

and summarize the results in Table 1 for the estimation of NDE and NIE for a

change of exposure value from zero to one. The MR and PS estimators perform

similarly in terms of their absolute bias and coverage in scenarios (i) and (iii),

but MR yields noticeably smaller absolute biases and better coverage than PS in

scenarios (ii) and (iv), where the model for either π(x) or h∗(x) is misspecified.

When none of the nuisance parameters are correctly modeled, all estimators show

bias with a coverage proportion below the nominal value in the estimation of

either the NDE or the NIE. In general, PS is less efficient than MR, because the

latter incorporates additional regression models that capture the associations

between (Y,M) and (A,X). The estimator BK shows large bias and poor coverage
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across scenarios (i)–(v), supporting the theory.

We also perform simulations with correctly specified models for the nui-

sance parameters under two additional scenarios: (vi) weaker dependence of

var(M |A,X) on A; and (vii) no unmeasured M -Y confounding. For (vii), we

compare the proposed approach with two competing methods under the partially

linear model (1.1), namely, the product of coefficients estimator BK and the triply

robust G-estimator TG of Hines, Vansteelandt and Diaz-Ordaz (2021). The simu-

lation design and results for these two scenarios are included in the Supplementary

Material. Compared with the results in scenario (i), the bias and variance of MR

and PS increase in (vi), while their coverage remains close to the nominal level.

In scenario (vii), all estimators yield negligible bias and good coverage, but MR

and PS have larger variances than those of BK and TG.

5. Application

We apply the proposed methods to reanalyze an observational study that

investigated the mediating effect of posttraumatic stress disorder (PTSD) symp-

toms in the association between self-efficacy and fatigue among health care work-

ers during the COVID-19 outbreak (Hou et al. (2020)). The cross-sectional data

were collected between March 13 and 20, 2020, from n = 527 health care work-

ers in Anqing City, Anhui Province, China, which borders Hubei province, the

epicenter of the COVID-19 outbreak. We refer interested readers to Hou et al.

(2020) for further details on the study design.

For this illustration, the continuous exposure A is the standardized total

score on the General Self-Efficacy Scale. We also consider the binary exposure A,

which takes the value one if self-efficacy is above the sample median of total scores

on the General Self-Efficacy Scale, and zero otherwise. PTSD symptoms (M) and

fatigue (Y ) are standardized total scores on the PTSD Checklist-Civilian Version

and 14-item Fatigue Scale, respectively. The vector of observed baseline covari-

ates X consists of an intercept, age, gender, marital status, education level, work

experience (in years), and seniority, as well as the level of negative coping, di-

chotomized at the sample median. We specify the working models π(x; η1) = ηT

1x

for continuous exposure or π(x; η1) = {1 + exp(−ηT

1x)}−1 for a binary expo-

sure, g∗(x; η2) = ηT

2x, ρ(x; η3) = exp(ηT

3x), and h∗(x; η4) = ηT

4x. We choose

the main effects generalized linear models for the nuisance parameters, owing

to their simplicity of illustration. In principle, the goodness-of-fit may be eval-

uated based on a generalized version of Akaike’s information criterion (Konishi

and Kitagawa (1996)). Alternatively, one may leverage the multiple robustness
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Table 2. Estimates (± 1.96×standard error) of the NDE and NIE of self-efficacy on
fatigue mediated through PTSD symptoms.

MR PS BK

Continuous exposure

NDE −0.352± 0.119 −0.455± 0.171 −0.234± 0.083

NIE −0.042± 0.084 0.062± 0.130 −0.159± 0.053

Dichotomized exposure

NDE −0.765± 0.340 −0.748± 0.332 −0.426± 0.146

NIE 0.066± 0.308 0.049± 0.297 −0.273± 0.084

property in Lemma 2 to select a model for the nuisance parameters (Robins et al.

(2020); Cui and Tchetgen Tchetgen (2019); Sun, Cui and Tchetgen Tchetgen

(2022)). We acknowledge this limitation, and defer model selection to future

work. Owing to the limited sample size and because negative coping (Xnc) has

been hypothesized to be an important effect modifier of the exposure’s effects

on both the mediator and the outcome (Hou et al. (2020)), we further specify

θ1(x;β1) = βT

1 (1, xnc)
T and θ3(x;β3) = βT

3 (1, xnc)
T. The Breusch–Pagan test for

heteroskedasticity (Breusch and Pagan (1979)), based on identical working mod-

els for the conditional mediator mean and variance, yields p-values of 8.77×10−7

and 0.04 for the continuous and binary exposure, respectively, indicating that the

heteroskedasticity condition (2.8) is plausible.

Table 2 shows various estimates of the NDE and NIE of self-efficacy on fatigue

mediated through PTSD symptoms. With continuous exposure, the regression

approach BK of Baron and Kenny (1986) yields an NIE estimate with the 95%

confidence interval −0.159 ± 0.053. This result suggests a significant mediating

effect of PTSD symptoms in reducing fatigue, which is consistent with the original

findings by Hou et al. (2020). The proposed approach MR yields an NIE estimate

close to zero, and the concomitant 95% confidence interval −0.042±0.084 includes

zero. This suggests that we cannot rule out a null NIE after accounting for

possible unmeasured common causes of PTSD and fatigue. Dichotomizing the

exposure yields qualitatively similar results.

6. Extensions

6.1. Exposure-mediator interaction

In the presence of a potential A-M interaction in their effects on the out-

come, we may consider the following partially linear models indexed by θ =

(θ1, θ2, ζ, θ3)T ∈ IR4:
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E(Y |M,A,X,U ; θ1, θ2, ζ, g) = θ1M + θ2A+ ζAM + g(X,U);

E(M |A,X,U ; θ3, h) = θ3A+ h(X,U),
(6.1)

where ζ is a scalar parameter encoding the interaction. If there is no interaction,

so that ζ = 0, then (6.1) reduces to (1.3). Evaluating (2.2) in conjunction with

(6.1) yields NDE(a, a′) = (θ2 + ζ[θ3a
′ + E{h∗(X)}])(a − a′) and NIE(a, a′) =

θ3(θ1 + ζa)(a− a′) (VanderWeele (2015)). Because the moment condition

0 = E[ω(X){A− π(X)}ψ(O; θ, h∗)] (6.2)

holds for an arbitrary 4× 3 matrix-valued function ω(·), θ is identified from (6.2)

if

E

[
ω(X){A− π(X)}∂ψ(O; θ, h∗)

∂θ

]
is nonsingular. A multiply robust estimator of θ may then be constructed based

on the empirical version of the corresponding orthogonal moment condition. How-

ever, because of its dependence on h∗(x), the proposed estimator of NDE(a, a′)

can only be doubly robust in the union model {M2 ∪M3}.

6.2. Binary mediator

The proposed semiparametric framework also extends to a binary mediator

under the following log-linear model:

E(Y |M,A,X,U ; θ1, θ2, g) = θ1M + θ2A+ g(X,U);

log{p(M = 1|A,X,U ; θ3, h)} = θ3A+ h(X,U).
(6.3)

Evaluating (2.5) in conjunction with the log-linear model (6.3) yields NDE(a, a′) =

θ2(a− a′) and NIE(a, a′) = θ1{exp(θ3a)− exp(θ3a
′)}E{h̃(X)}, where

h̃(X) = E(Me−θ3A|X) = E[exp{h(X,U)}|X].

Under the log-linear model (6.3) and a randomized exposure that satisfies (2.4),

the conditional mean independence restriction

E{ψ̃(O; θ, h̃)|A,X} = E{ψ̃(O; θ, h̃)|X} (6.4)

holds almost surely, where ψ̃(O; θ, h̃) is a 3× 1 vector function with components

ψ̃1(O; θ) = Y − θ1M − θ2A, ψ̃2(O; θ, h̃) = (Y − θ1M){M exp(−θ3A)− h̃(X)} and

ψ̃3(O; θ) = M exp(−θ3A). We can now perform augmented G-estimation of θ

based on the identifying restriction (6.4), using methods analogous to those de-

scribed in Section 3. For a binary outcome, direct extensions of existing methods



2608 SUN AND YE

to identify the NDE and NIE on the risk ratio scale generally require the condi-

tional density f(M |A,X,U) to be normal, with constant variance (VanderWeele

and Vansteelandt (2010); Valeri and VanderWeele (2013); VanderWeele (2015)),

in which case the heteroskedasticity condition (2.8) fails to hold. A possible di-

rection for future work is to identify and estimate the NDE and NIE on the risk

difference scale under the proposed framework.

7. Conclusion

Unmeasured M -Y confounding is particularly pernicious for credible causal

mediation analysis in the health and social sciences, because the mediator can

seldom be manipulated directly. The main contribution of this study is to pro-

pose a robust inference framework for the NDE and NIE under unmeasured M -Y

confounding in partially linear models by leveraging the heteroskedasticity of M

with respect to A, a condition that is empirically testable. Note that the fourth

condition Ya,m ⊥ Ma∗ |(X,U) in (2.3) cannot be guaranteed using experimental

interventions, even if we are able to randomize both the exposure and the medi-

ator (Didelez, Dawid and Geneletti (2006); Imai, Tingley and Yamamoto (2013);

Robins and Richardson (2010b)). In the absence of exposure-induced confound-

ing, dropping the fourth condition from (2.3) imbues the functionals in (2.5) with

alternative causal interpretations as interventional analogues of the NDE and NIE

(VanderWeele, Vansteelandt and Robins (2014); VanderWeele (2015)). Because

our results all concern the identification and estimation of the functionals in (2.5),

they can be readily applied under this alternative interpretation. We conjecture

that (2.7) represents all observed data-conditional mean restrictions under the

partially linear structural model (1.3) and independence assumption (2.4). The

number of observed data restrictions may potentially increase under stronger

structural assumptions, for example, by imposing restrictions on the structural

distributions f(Y |M,A,X,U) and f(M |A,X,U). The proposed framework can

also be extended in several other important directions, including mediation anal-

yses with survival data and multiple mediators (Lin et al. (2017); Huang and

Yang (2017)) under unmeasured mediator-outcome confounding. These topics

are left to future research.

Supplementary Material

The online Supplementary Material includes proofs of our lemmas and the-

orems, as well as additional simulation results.
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