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Abstract: With the availability of massive data sets, accurate inferences with low

computational costs are the key to improving scalability. When the sample size

and dimensionality are both large, naively applying de-biasing to derive confidence

intervals can be computationally inefficient or infeasible, because the de-biasing

procedure increases the computational cost by an order of magnitude compared

with that of the initial penalized estimation. Therefore, we suggest a split and

conquer approach to improve the scalability of the de-biasing procedure, and show

that the length of the established confidence interval is asymptotically the same as

that using all of the data. Moreover, we demonstrate a significant improvement in

the largest split size by separating the initial estimation and the relaxed projection

steps, indicating that the sample sizes needed for these two steps with statistical

guarantees are different. We propose a refined inference procedure to address the

inflation issue in the finite sample performance when the split size becomes large.

Lastly, numerical studies demonstrate the computational advantage and theoretical

guarantee of our new methodology.

Key words and phrases: Big data, confidence intervals, de-biased estimator, divide

and conquer, large split sizes, scalability.

1. Introduction

The rapid development of technologies and devices has made it easier than

ever to generate large-scale data sets in areas such as meteorology, genomics,

and economics, which are referred to as big data problems (Fan, Han and Liu

(2014)). As a result, high-dimensional sparse modeling, applied when the number

of variables can be larger than the sample size, has become a popular area of

statistical research. When the sample size and dimensionality are both large,

naively applying existing high-dimensional inference methods to large amounts of

data can be computationally inefficient, or even infeasible. Thus, it is appealing to

develop scalable methodologies that take advantage of huge data sets for accurate

inferences with low computational costs.
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As a reliable tool for producing meaningful and interpretable models, sparse

modeling via regularization has shown its strengths in handling high-dimensional

data sets; see, for example, Tibshirani (1996), Fan and Li (2001), Zou and Hastie

(2005), Zou (2006), Candes and Tao (2007), Liu and Wu (2007), Zou and Li

(2008), Bickel, Ritov and Tsybakov (2009), Fan, Richard and Wu (2009), Lv and

Fan (2009), Zhang (2010), Sun and Zhang (2012), Fan and Lv (2013), Zheng, Fan

and Lv (2014), Song and Liang (2015), Kong, Zheng and Lv (2016), Weng, Feng

and Qiao (2017), and Hao, Feng and Zhang (2018). Based on sparse regularized

estimators, statistical inferences such as hypothesis testing and confidence inter-

vals can be made when the asymptotic distributions of the pilot estimators are

derived. See, for instance, Lockhart et al. (2014) and Lee et al. (2016) for infer-

ences using model selection and the Lasso (Tibshirani (1996)), and Javanmard

and Montanari (2014), van de Geer et al. (2014), and Zhang and Zhang (2014)

for inferences with de-biasing of the penalized estimators. We focus on improv-

ing the scalability of the methods in a big data setting, because the de-biasing

procedure increases the computational cost by an order of magnitude close to the

dimensionality compared with that of the initial penalized estimation, causing

computational bottlenecks in large-scale applications.

A natural and efficient way to deal with big data problems is to use data split-

ting, where the entire data set is split into subsamples, and then the estimators

obtained from each subsample are aggregated. This divide and conquer idea has

been widely used to solve various kinds of problems (Fan, Guo and Hao (2012);

Decrouez and Hall (2014); Kleiner et al. (2014); Mackey, Talwalkar and Jor-

dan (2015); Shang and Cheng (2015); Zhang, Duchi and Wainwright (2015); Xu,

Zhang and Li (2016); Zhao, Cheng and Liu (2016); Shang and Cheng (2017); Lian

and Fan (2018)), with benefits such as robustness and enhanced stability in addi-

tion to the computational advantage being demonstrated. For high-dimensional

regression models, divide and conquer methods also play important roles in the

analysis of extraordinarily large data sets. For instance, Chen and Xie (2014)

developed a split and conquer penalized estimation approach that retains desired

statistical properties and be more resistant to false model selections. Lee et al.

(2017) devised a one-shot approach for a distributed sparse regression that aver-

ages the de-biased Lasso estimators and is shown to converge at the same rate

as the Lasso. Battey et al. (2018) proposed divide and conquer Wald and score

statistics for hypothesis testing based on the de-biasing procedures in Javanmard

and Montanari (2014) and van de Geer et al. (2014), respectively.

Despite the fast growing literature, how to construct confidence intervals in

the presence of large-scale high-dimensional data remains largely unexplored. In
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general, deriving confidence intervals is not as flexible as hypothesis testing, be-

cause test statistics may not be inverted to pilot estimators. Even if we use the

divide and conquer algorithm, how to preserve asymptotically equivalent statis-

tical accuracy and efficiency for the full sample procedure is unclear. Moreover,

neither the theoretical results nor the empirical performance of existing high-

dimensional split and conquer inference methods allow for large split sizes. It

would be interesting to study whether the largest split size with a statistical

guarantee can be improved, both theoretically and empirically, to enhance the

scalability of big data applications. In this study, we provide answers to the

aforementioned questions by introducing a new methodology for a scalable in-

ference with partitioned data for deriving high-dimensional confidence intervals.

The proposed method randomly splits the whole data set into subsamples of

equal size, and generates a de-biased estimator for each subsample. Then, it con-

structs confidence intervals based on the bagging estimator that aggregates the

estimators from all the subsamples.

The main contributions of this study are fourfold. First, we develop a new

partitioned approach that substantially increases the computing speed of deriv-

ing confidence intervals in high dimensions. We prove that the length of the

established confidence interval is asymptotically the same as that using all of the

data, which means the information loss due to the divide and conquer procedure

is negligible. Second, we demonstrate a significant improvement in the upper

bound on the split size, which becomes the square of that in Battey et al. (2018),

by separating the initial estimation and the relaxed projection steps. Thus the

sample sizes needed in order for these two steps to enjoy statistical guarantees

are different. Lastly, we propose a refined inference procedure to address the in-

flation issue in the finite sample performance when the split size indeed becomes

large. Numerical studies show that the suggested methodology is communication

efficient and can be more robust and resistant to heavy-tailedness and outliers.

The rest of the paper is organized as follows. Section 2 presents the proposed

methodology of scalable inference with partitioned data in a big data settings. We

provide confidence intervals based on the partitioned approach and the desired

statistical guarantees in Section 3. The computational advantage and theoretical

properties are demonstrated empirically using simulation studies in Section 4 and

real data analyses in Section 5. Section 6 concludes with extensions and potential

future research. All technical details are relegated to the Supplementary Material.
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2. Scalable Inference with Partitioned Data

We illustrate scalable inferences with partitioned data to using high-dimensional

linear regression models. Let y = (y1, . . . , yn)T be the n-dimensional response

vector, and let X = (x1, . . . ,xp) be an n × p random design matrix with p co-

variates. Assume that the rows of X are independent and normally distributed

with mean zero and covariance matrix Σ: that is, X ∼ N(0, In ⊗Σ). Consider

the linear regression model

y = Xβ + ε, (2.1)

where β = (β1, . . . , βp)
T is a p-dimensional regression coefficient vector, and

ε = (ε1, . . . , εn)T ∼ N(0, σ2In) is an n-dimensional error vector independent of

X. The true regression coefficient vector β is assumed to satisfy the following

capped L1 sparsity condition:

p∑
j=1

min

{
|βj |
σλuniv

, 1

}
≤ s, (2.2)

where λuniv =
√

(2/n) log p. This condition is weaker than the direct sparsity

assumption ‖β‖0 ≤ s, because it allows for a large number of nonzero coefficients,

as long as their magnitudes are small. We focus on the big data settings in

which both the sample size n and the number of covariates p diverge, satisfying

log(p) = o(n), and n can be extremely large.

1. Low dimensional projection estimator. As mentioned in Section 1, there are

several de-biasing-based inference methods for constructing confidence intervals

in high dimensions. In this study, we adopt the low dimensional projection esti-

mator (LDPE) proposed in Zhang and Zhang (2014) to illustrate our partitioned

approach, owing to the appealing property that the LDPE does not require the

minimum signal strength condition.

First, we need an initial penalized estimator β̂
(init)

= (β̂
(init)
1 , . . . , β̂

(init)
p )T ,

which can be generated from the scaled Lasso (Sun and Zhang (2012)) given by

{β̂
(init)

, σ̂} = argmin
b∈Rp, σ>0

{
‖y−Xb‖22

2σn
+
σ

2
+ λ0‖b‖1

}
,

where λ0 is a universal regularization parameter independent of the noise level.

As a self-bias correction from the initial estimator, the LDPE β̂ = (β̂1, . . . , β̂p)
T

is then defined through each coordinate as
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β̂j = β̂
(init)
j +

zTj (y−Xβ̂
(init)

)

zTj xj
, (2.3)

for 1 ≤ j ≤ p, where zTj (y −Xβ̂
(init)

)/zTj xj is the de-biasing term, and zj is a

relaxed orthogonalization of xj against the other covariate vectors. For simple

tuning, zj can be obtained as the residual of the scaled Lasso regression for xj
against X−j = (xk : k 6= j) with the weighted L1-penalty. That is,

zj = xj −X−jγ̂j , (2.4)

{γ̂j , σ̂j} = argmin
b∈Rp−1,σ∈R+

{
‖xj −X−jb‖22

2nσ
+
σ

2
+ λ0

∑
k 6=j

‖xk‖2√
n
|bk|

}
,

where the vector b is indexed by {k : 1 ≤ k ≤ p, k 6= j}.
The LDPE has been shown to enjoy an asymptotic normal distribution. To

gain insight into this, we consider the following decomposition:

β̂j − βj =
zTj ε

zTj xj
+

∑
k 6=j zTj xk(βk − β̂

(init)
k )

zTj xj
,

where the first term is normally distributed, and the second term shows the

approximation error. Let

τj =
‖zj‖2
|zTj xj |

and ηj = max
k 6=j

|zTj xk|
‖zj‖2

. (2.5)

Then, τj is the noise factor relative to the standard deviation of the asymptotic

distribution, and ηj is the bias factor controlling the approximation error by∣∣∣∣∣∑
k 6=j

zTj xk(βk − β̂
(init)
k )

∣∣∣∣∣ ≤ (max
k 6=j
|zTj xk|)‖β̂

(init)
− β‖1 = ηj‖zj‖2‖β̂

(init)
− β‖1.

This shows that the roles of the initial estimator β̂
(init)

and the relaxed projection

vectors zj are relatively independent, which motivates us to separate the initial

estimation and the relaxed projection steps in our partitioned approach.

2. Scalable inference with partitioned data. For bias correction-based high-

dimensional inference methods such as the LDPE, the computational bottleneck

comes from the de-biasing step rather than the initial estimation. This is be-

cause the initial Lasso-type estimator is a linear programming problem that can



1940 ZHENG ET AL.

be solved efficiently and implemented using packages such as ”lars” and ”glmnet”,

while the de-biasing step, in general, requires intensive computing. For instance,

the construction of all relaxed projection vectors zj requires p times Lasso-type

solutions in LDPE, which accounts for the majority of the computational cost in

high dimensions.

Furthermore, a larger sample size provides better accuracy in controlling the

approximation error and the role of the initial estimator is relatively independent

of the projection vectors. Thus the proposed methodology focuses on improving

the speed of calculating the relaxed projection vectors through data splitting, and

uses the initial estimator generated by the full sample. The extra benefit of this

strategy on the largest possible split size, subject to a statistical guarantee, is

demonstrated in Theorem 1. In cases where the initial estimator is infeasible ow-

ing to an extraordinarily large sample size or different locations, we suggest using

the split and conquer approach of Chen and Xie (2014) to generate regularized

initial estimators.

Our methodology for scalable inferences with partitioned data begins by

splitting the entire data set into subsamples of equal size. Then it generates a

de-biased estimator for each subsample using the same initial estimator. Finally,

the de-biased estimators from all of the subsamples are aggregated using the

mean in each coordinate. Specifically, we divide the whole data set of size n into

K groups of size ñ = n/K, and generate relaxed projection vectors z
(l)
j from

the corresponding predictors x
(l)
j in the lth subsample, for 1 ≤ l ≤ K. Then,

we obtain the de-biased estimator β̂
(l)

= (β̂
(l)
1 , . . . , β̂

(l)
p ) for each subsample by

applying the bias correction idea of the LDPE to the initial estimator β̂
(init)

using the vectors z
(l)
j and x

(l)
j . Finally, the mean bagging estimator β̂

(mean)
=

K−1
∑K

l=1 β̂
(l)

averages the de-biased estimators over all subsamples. That is,

β̂
(mean)
j = β̂

(init)
j +

K−1
∑K

l=1(z
(l)
j )T (y(l) −X(l)β̂

(init)
)

(z
(l)
j )Tx

(l)
j

.

We derive confidence intervals based on this mean bagging estimator in Section

3 by breaking the communication barriers between subsamples.

From a practical point of view, the proposed partitioned approach can sig-

nificantly reduce the computational cost. As discussed in Chen and Xie (2014),

the popular LARS algorithm (Efron et al. (2004)) used to generate the Lasso

solution takes computing steps of O(n2p+ n3), which is around O(n3) when the

sample size n is at least of the same order as p. Therefore, the computational
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cost of the LDPE, which needs about p Lasso solutions, is around O(n3p). Using

our partitioned approach, the computational cost is K · O(ñ3p) = O(K−2n3p),

representing a reduction by a factor of K−2 compared with the LDPE using the

entire sample. In fact, for any algorithm of de-biased estimator that requires

O(napb) computing steps, with some constants a > 1 (nonlinear in n) and b > 0,

the partitioned approach can improve the computing speed by Ka−1 times in the

same device, and Ka times if K devices are employed simultaneously, when the

computational cost of the bagging procedure is negligible.

3. Comparison with existing works. Several methods use the split and conquer

framework in high-dimensional regression models, including Chen and Xie (2014),

Lee et al. (2017), and Battey et al. (2018), which are closely related to our

work. In Chen and Xie (2014), a divide and conquer approach is proposed for

a penalized estimation of the regression coefficients under extraordinarily large

data, where the combined estimator is shown to be asymptotically equivalent to

the estimator analyzing all of the data, and is more robust in terms of variable

selection. Theoretical and numerical analyses demonstrate similar asymptotic

efficiency and robustness when deriving confidence intervals using our partitioned

approach. The other two works, Lee et al. (2017) and Battey et al. (2018), are

more related to ours, because both use de-biased estimators in each subsample.

Because Lee et al. (2017) focuses mainly on estimation accuracy in a distributed

sparse regression, we compare our work with that of Battey et al. (2018), who

considered hypothesis testing using split and conquer approaches.

Battey et al. (2018) propose a divide and conquer Wald statistic that aggre-

gates the Wald statistics from different subsamples through the mean for hypoth-

esis testing in high dimensions. Its asymptotic inferential efficiency was proved by

showing that the mean bagging estimator has the same statistical error as that of

the full sample de-biased estimator. In contrast, we establish confidence intervals

using the partitioned approach, and show the equivalence in asymptotic efficiency

by proving that the lengths of the confidence intervals are the same. This is a

more concrete result, because the length of the confidence interval considers both

the bias and variance. Moreover, by separating the initial estimation and the

relaxed projection steps, we show in Theorem 1 that the theoretical upper bound

on the split size is K = o(ns−2 log−2 p), which is a significant improvement over

the largest split size of K = o(n1/2s−1 log−1 p) in Battey et al. (2018). This

implies that the sample sizes needed for the initial estimation and the relaxed

projection to enjoy statistical guarantees are indeed different.
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3. Theoretical Properties

Because our partitioned approach focuses on speeding up the de-biasing step,

we impose the same assumption on the initial estimator as that in Zhang and

Zhang (2014).

Condition 1. Assume that the initial estimator {β̂
(init)

, σ̂} satisfies that

P

{
‖β̂

(init)
− β‖1 ≥ C1sσ

∗

√
2

n
log

(
p

ε

)}
≤ ε,

P

{∣∣∣∣ σ̂σ∗ − 1

∣∣∣∣ ≥ C2s

(
2

n

)
log

(
p

ε

)}
≤ ε,

for some positive constants C1 and C2, and any ε satisfying α0/p
2 ≤ ε ≤ 1, where

α0 ∈ (0, 1) is a preassigned constant, and σ∗ = ‖ε‖2/
√
n is the oracle estimate of

the noise standard deviation σ.

Condition 1 characterizes the estimation accuracy of the initial estimator,

which has been shown to hold for various regularized estimators, including the

scaled Lasso under both fixed and random design settings, with mild regularity

conditions. When the data sets are located in different areas, we can use the

initial estimator based on the divide and conquer approach proposed in Chen

and Xie (2014), whichthey show achieves similar asymptotic estimation accuracy.

In the fixed design setting, the confidence intervals of the LDPE are provided

in Zhang and Zhang (2014). Here, we focus on the random design case with

X ∼ N(0, In ⊗Σ) to analyze some key quantities such as ‖zj‖2, τj , and ηj in a

probabilistic sense, and to derive confidence intervals based on the LDPE using

the full sample of size n.

Proposition 1. Suppose that s = o(
√
n/ log p) and λ0 = (1 + ε)

√
2δ log(p)/n,

for some δ ≥ 1 and ε > 0 in (2.4). Assume in addition that the eigenvalues of

Σ are bounded within the interval [M∗,M
∗], for some positive constants M∗ and

M∗, and tha the rows of Σ−1 are sparse, with maxi
∑p

j=1 I{Σ
−1
ij 6= 0} ≤

√
s,

where I{·} is the indicator function. Then, for sufficiently large n, there exist

positive constants cj, c̃j, and Cj such that

c̃jn
−1/2 ≤ τj ≤ cjn−1/2, ηj ≤ Cj

√
log(p), (3.1)

and limn→∞ τjn
1/2 = Σ

−1/2
jj hold simultaneously with probability at least 1 −

o(p−δ+1).

Furthermore, if Condition 1 holds with C1Cjs
√

(2/n) log(p) log(p/ε) ≤ ε′n,
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C2s(2/n) log(p/ε) ≤ ε′′n, and max(ε′n, ε
′′
n) → 0 as n → ∞, then for sufficiently

large n, the LDPE in (2.3) satisfies

P (|β̂j − βj | ≥ τj σ̂t) ≤ 2Φn−1

{
[−(1− ε′′n)t+ ε′n] ·

√
1− n−1

}
+ 2ε+ o(p−δ+1)

for any t ≥ (1 + ε′n)/(1 − ε′′n), where Φn(t) is the Student t-distribution function

with n degrees of freedom. By setting n→∞, we get

lim
n→∞

P

{
|β̂j − βj | ≤ τj σ̂Φ−1

(
1− α

2

)}
= 1− α, (3.2)

where Φ(t) is the normal distribution function.

Both the conditions and the confidence intervals in Proposition 1 are very

similar to those of Zhang and Zhang (2014) under a fixed design setting. However,

we also provide a quantitative analysis for the bias and noise factors ηj and τj
from a probabilistic point of view. Based on the confidence intervals established in

(3.2), the noise factor τj is a key quantity for determining the statistical accuracy

(the length of the confidence interval for a preassigned α), which is of order n−1/2

given (3.1), denoted as τj � n−1/2. We compare the statistical accuracy of the

confidence intervals achieved using the partitioned approach with those based on

the entire sample, given in Proposition 1.

Let τ
(l)
j and η

(l)
j be the noise and bias factors, respectively of the lth subsam-

ple, τ̃j = max1≤l≤K τ
(l)
j , and η̃j = max1≤l≤K η

(l)
j . The following theorem provides

the confidence intervals based on the bagging estimator β̂
(mean)

, which takes the

mean of β̂
(l)

through each coordinate in the proposed partitioned approach, with

a subsample size of ñ = n/K.

Theorem 1. Suppose that s = o(
√
ñ/ log p), λ0 = (1 + ε)

√
2δ log(p)/ñ, for some

δ > 1 and ε > 0, and both the initial estimator and Σ satisfy the same conditions

as in Proposition 1. Then, the following statements hold.

(A) (Asymptotic efficiency). For any t ≥ (1 +
√
K)ε′n/(1− ε′′n), with sufficiently

large n, the bagging estimator β̂
(mean)

satisfies

P (
√
K|β̂(mean)

j − βj | ≥ τ̃j σ̂t)

≤ 2Φn−1[−(1− ε′′n)t+
√
Kε′n] + 2ε+ o(Kp−δ+1),

where τ̃j � ñ−1/2 with probability at least 1 − o(Kp−δ+1). Furthermore, if
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√
Kε′n → 0, we have

lim
n→∞

P

{
|β̂(mean)
j − βj | ≤ K−1/2τ̃j σ̂Φ−1

(
1− α

2

)}
= 1− α. (3.3)

(B) (Refined inference). Let ω
(l)
j = τ̃−1

j τ
(l)
j and Kj = [

∑K
l=1(ω

(l)
j )2]−1K2. Thus,

Kj ∈ [K, c∗jK] holds with probability at least 1− o(Kp−δ+1), for some con-

stant c∗j ≥ 1. Then, for any t ≥ (1+
√
Kjε

′
n)/(1−ε′′n), with sufficiently large

n, the bagging estimator β̂
(mean)

satisfies

P (
√
Kj |β̂(mean)

j − βj | ≥ τ̃j σ̂t)
≤ 2Φn−1[−(1− ε′′n)t+

√
Kjε

′
n] + 2ε+ o(Kp−δ+1).

Moreover, if
√
Kjε

′
n → 0, we have

lim
n→∞

P

{
|β̂(mean)
j − βj | ≤ K−1/2

j τ̃j σ̂Φ−1

(
1− α

2

)}
= 1− α. (3.4)

Theorem 1 establishes the confidence intervals based on the mean bagging

estimator of the suggested partitioned approach by breaking the communication

barriers between the subsamples. Given the confidence intervals in (3.3), the

statistical accuracy of our partitioned approach is asymptotically equivalent to

that using the full sample, because K−1/2τ̃j � K−1/2ñ−1/2 = n−1/2 � τj by

Theorem 1 and Proposition 1, and the limits of K−1/2τ̃jn
1/2 and τjn

1/2 are both

Σ
−1/2
jj . This means that the lengths of the confidence intervals are the same in

the asymptotic sense, given a preassigned level α. For finite samples, the tail

probability is inflated from o(p−δ+1) to o(Kp−δ+1), but the partitioned approach

saves the computational cost by about K2 times, as discussed Previously.

Furthermore, Theorem 1 provides the theoretical upper bound on the largest

split size of K = o(ns−2 log−2 p), given the constraints that the validity of

Theorem 1 relies on
√
Kε′n = o(1), with ε′n ≥ C1Cjs

√
(2/n) log(p) log(p/ε).

Compared with the theoretical largest split size K = o(n1/2s−1 log−1 p) in

Battey et al. (2018) for statistical inference, our new approach allows for much

larger split sizes by separating the initial estimation and the relaxed projection

steps. It also implies that the sample size needed in the relaxed projection pro-

cedure with a statistical guarantee is smaller than that needed in the initial

estimation. In fact, the upper bound K = o(n1/2s−1 log−1 p) of the number of

partitions in Battey et al. (2018) is the sharp one for valid inferences using each

subsample, in the sense of the minimax error bound for the initial Lasso esti-
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mator (Raskutti, Wainwright and Yu (2011)). We can improve the bound of K

because we use a different partitioned inference strategy, where the de-biasing

procedure is implemented using different subsamples to improve the computa-

tional efficiency, and the initial estimator is computed based on the full data set.

If some other penalty function beyond the Lasso is adopted to reduce the bias

of the initial estimator, the theoretical upper bound of the number of partitions

may be improved further.

Although the theoretical upper bound allows for large split sizes, the con-

fidence intervals (3.3) yield higher coverage probabilities, in gereral, than the

preassigned level in terms of the finite sample performance when the split size

indeed becomes large, as shown in Section 4. Therefore, the statistical accu-

racy is insufficient,because the lengths of confidence intervals are longer than

expected. This issue mainly results from the inflation of the overall noise factor

τ̃j = max1≤l≤K τ
(l)
j , the magnitude of which can be larger than ñ−1/2 when K is

large, owing to randomness in the subsamples. In this case, the order of K−1/2τ̃j
deviates from n−1/2, leading to an overestimation of the variance.

To address this inflation issue and to take full advantage of the large theoret-

ical split sizes with statistical accuracy, we propose a refined inference procedure

in Part (B) of Theorem 1 that considers the noise factor τ
(l)
j of every subsample

to adjust the length of the confidence intervals. The corresponding noise factor

K
−1/2
j τ̃j = K−1/2

√∑K
l=1(τ

(l)
j )2/K � K−1/2ñ−1/2 = n−1/2 in the refined confi-

dence intervals (3.4) is more accurate under finite samples because it takes the

average rather than the maximum of the noise factors. Because Kj and K differ

only by a constant, the asymptotic efficiency and upper bound on the split size

for Part (A) also apply to Part (B). We show that this refined procedure main-

tains statistical accuracy, even under very large split sizes, making it applicable

to large-scale applications with massive data sets.

Based on the asymptotic normality of the bagging estimator established in

Theorem 1, we immediately have the following simultaneous confidence intervals

for multiple coefficients βj .

Theorem 2. For any subset S ⊂ {j : 1 ≤ j ≤ p} with a finite number of elements

|S|, under the assumptions of Theorem 1, we have the following statements.

(A) If, in addition, Condition 1 holds with maxj∈S CjC1s
√

(2/n) log(p) log(p/ε)

≤ ε′n, then for any t ≥ (1 +
√
Kε′n)/(1− ε′′n), the bagging estimator β̂

(mean)

satisfies



1946 ZHENG ET AL.

P

(
max
j∈S

√
K|β̂(mean)

j − βj |
τ̃j

≥ σ̂t

)
≤ |S| · 2Φn−1[−(1− ε′′n)t+

√
Kε′n] + 2ε+ o(Kp−δ+1).

(B) If, in addition, Condition 1 holds with maxj∈S
√
c∗jCjC1s

√
(2/n)log(p)log(p/ε)

≤ ε′n, then for any t ≥ (1 + maxj∈S
√
Kjε

′
n)/(1− ε′′n), we have

P

(
max
j∈S

√
Kj |β̂(mean)

j − βj |
τ̃j

≥ σ̂t

)
≤
∑
j∈S

2Φn−1[−(1− ε′′n)t+
√
Kjε

′
n] + 2ε+ o(Kp−δ+1).

Theorem 2 provides the simultaneous confidence intervals corresponding to

the two parts of Theorem 1 using Bonferroni adjustments, which mainly works

for a finite number of coefficients. For a statistical inference on a large number of

coefficients, we suggest a bootstrap-assisted procedure similar to that in Zhang

and Cheng (2017) based on the mean bagging estimator. It facilitates simulta-

neous inferences under the split and conquer framework for an arbitrary subset

G ⊆ {1, 2, . . . , p}, where |G| is allowed to grow as fast as p.

The bootstrap-assisted procedure starts by generating a sequence of random

variables {ei}ni=1
i.i.d.∼ N(0, 1). Then, the multiplier bootstrap statistic is defined

as

WG = max
j∈G

∣∣∣∣∣
√
n

K

K∑
l=1

ñ∑
i=1

z
(l)
i,j σ̂e

(l)
i

(z
(l)
j )Tx

(l)
j

∣∣∣∣∣ ,
where e(l) is the corresponding lth subsample of {ei}ni=1, and z

(l)
i,j is the ith entry

of z
(l)
j . When there is no splitting, that is, K = 1, the above statistic reduces

to that introduced in Zhang and Cheng (2017). The bootstrap critical value is

given by cG(α) = inf{t ∈ R : P (WG ≤ t|(y,X)) ≥ 1− α}. We have the following

theorem guaranteeing the validity of the proposed procedure.

Theorem 3. Under the same conditions as those in Theorem 1, and suppose that

s2(log(p))3/ñ = o(1), s(log(pñ))3(log(ñ))2/ñ = o(1), and (log(pn))7/n ≤ C3n
−c3

hold, for some positive constants C3 and c3. Then for any G ⊆ {1, 2, . . . , p}, we

have

sup
α∈(0,1)

∣∣∣∣P (max
j∈G

√
n
∣∣∣β̂(mean)
j − βj

∣∣∣ > cG(α)

)
− α

∣∣∣∣ = o(1).

Theorem 3 establishes the theoretical guarantee of constructing simultaneous
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confidence intervals using the proposed bootstrap-assisted procedure, which ex-

plicitly accounts for the effect of |G|, given the dependence of cG(α) on the set G.

The additional dimensionality constraints are imposed to control the estimation

errors, which are very similar to those in Zhang and Cheng (2017). The statistical

accuracy also remains the same in the asymptotic sense, because K−1/2τ̃j is of

similar magnitude to τj .

Lastly, similarly to Zhang and Zhang (2014), the de-biased mean bagging

estimator can also be used for variable selection and estimation for the entire

regression coefficient vector after a simple soft thresholding: that is,

β̂
(t)
j = sgn(β̂

(mean)
j )(|β̂(mean)

j | − t̂j)+,

with the selected model

Ŝ(t) = {j : |β̂(mean)
j | > t̂j},

for some thresholds t̂j . Then, we have a parallel theorem guaranteeing the vari-

able selection and estimation properties listed below, showing that the soft thresh-

olded mean bagging estimator enjoys the same asymptotic efficiency in variable

selection and estimation as that in Zhang and Zhang (2014).

Theorem 4. Let L0 = Φ−1(1 − α/(2p)), t̃j = K−1/2τ̃jσL0, and t̂j = (1 + cn)

K−1/2σ̂τ̃jL0, with positive constants α and cn. Assume that Condition 1 holds,

with maxj≤p η̃jC1s/
√
ñ ≤ ε′n and

P

{
(σ̂/σ) ∨ (σ/σ̂)− 1 + ε′nσ

∗/(σ̂ ∧ σ)

1− (σ̂/σ − 1)+
> cn

}
≤ 2ε.

Let β̂(t) = (β̂
(t)
1 , . . . , β̂

(t)
p )T be the soft thresholded mean bagging estimator with

these t̂j. Then, for any given X, there exists an event Ωn with P {Ωn} ≥ 1− 3ε,

such that

E
∥∥∥β̂(t) − β

∥∥∥2

2
IΩn

≤
p∑
j=1

min

{
β2
j ,

1

K2

K∑
l=1

(τ
(l)
j )2σ2

(
L2

0 (1 + 2cn)2 + 1
)}

+
εLnσ

2

pK

p∑
j=1

τ̃2
j ,

where Ln = 4/L3
0 + 4cn/L0 + 12c2

nL0. Furthermore, with probability at least

1− α− 3ε, {
j : |βj | > (2 + 2cn) t̃j

}
⊆ Ŝ(t) ⊆ {j : βj 6= 0} .
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4. Simulation Studies

In this section, we investigate the finite sample performance of the two ver-

sions of the scalable inference with partitioned data (denoted by IPAD and

R-IPAD, respectively) listed in Theorem 1 with different split sizes K, and

compare it with that of the LDPE using the full data set. We adopt similar

high-dimensional settings to those in Zhang and Zhang (2014), where (n, p) =

(600, 1000) in the first example, and (n, p) = (2000, 3000) with higher dimen-

sionality in the second example. Each simulation consists of 100 replications.

In every replication, we generate the data set (X,y) from the linear regression

model in (2.1), where the rows of X are independent and identically distributed

(i.i.d.) N(0,Σ), with Σ = (ρ|j−k|)p×p for ρ = 0.2, and ε ∼ N(0, In).

4.1. Simulation example 1

In this simulation study, the true regression coefficient vector β = (β1, . . . ,

βp)
T satisfies βj = 3λuniv with λuniv =

√
(2/n) log p, for j = 200, 400, 600, 800,

1000, and βj = 3λuniv/j for all other j. It is a mixture of strong and weak signals

without any zero coefficients, originally designed in Zhang and Zhang (2014).

By setting α = 0.05, we aim to achieve confidence intervals with 95% coverage

probability for each coefficient. For convenience, let S0 = {βj : βj = 3λuniv, j =

1, 2, . . . , p} and S1 = {βj : βj = 3λuniv/j, j = 1, 2, . . . , p} be the sets of strong

and weak signals, respectively. Table 1 and Figure 1 summarize the average

coverage probabilities for the coefficients in S0, S1, and all coefficients using

different methods, where K = 1 corresponds to the LDPE without partitioning

the data.

The coverage probabilities of IPAD match well with the preassigned level

when the split size K is relatively small (less than five), and start approaching

one when K gets larger. Thus, the length of confidence interval is longer than

needed, and so that the statistical accuracy decreases. This can be seen directly

from the average lengths of the confidence intervals for a typical strong signal

β200 and a weak signal β201 in Table 2.This agrees with our previous theoretical

analysis; that is, when K gets large, the randomness in the K groups inflates the

overall noise factor τ̃j , which is the maximum of the individual noise factors τ
(l)
j

over K groups.

On the other hand, this inflation issue is solved by the refined inference R-

IPAD given the corresponding results in Tables 1 and 2 and Figure 1 (b), because

the coverage probability stays around the preassigned 95 percent, and the length

of the confidence interval maintains the same level. Note that even if the split
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Table 1. Average coverage probabilities using different methods and split sizes over 100
replications in Section 4.1, with (n, p) = (600, 1000).

Method (LDPE) IPAD

K = 1 K = 3 K = 4 K = 5 K = 6 K = 7 K = 10 K = 15 K = 20

βj (S0) 0.9675 0.9400 0.9333 0.9672 0.9700 0.9867 0.9670 0.9889 0.9952

βj (S1) 0.9570 0.9589 0.9630 0.9629 0.9667 0.9692 0.9756 0.9851 0.9849

All βj 0.9571 0.9588 0.9628 0.9630 0.9669 0.9694 0.9756 0.9851 0.9850

Method R-IPAD

K = 3 K = 4 K = 5 K = 6 K = 7 K = 10 K = 15 K = 20

βj (S0) 0.9370 0.9475 0.9395 0.9576 0.9588 0.9628 0.9516 0.9530

βj (S1) 0.9426 0.9476 0.9450 0.9481 0.9510 0.9563 0.9484 0.9523

All βj 0.9425 0.9476 0.9451 0.9482 0.9510 0.9563 0.9484 0.9524
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Figure 1. Average coverage probabilities using different methods and split sizes over 100
replications in Section 4.1, with (n, p) = (600, 1000)

Table 2. Average lengths of confidence intervals for β200 and β201 using different methods
and split sizes over 100 replications in Section 4.1, with (n, p) = (600, 1000).

IPAD K = 1 K = 3 K = 4 K = 5 K = 6 K = 7 K = 10 K = 15 K = 20

β200 0.1733 0.1806 0.1821 0.1885 0.1935 0.1928 0.2020 0.2206 0.2280

β201 0.1793 0.1825 0.1869 0.1940 0.2003 0.2010 0.2064 0.2155 0.2243

R-IPAD K = 3 K = 4 K = 5 K = 6 K = 7 K = 10 K = 15 K = 20

β200 0.1735 0.1728 0.1744 0.1747 0.1753 0.1746 0.1782 0.1795

β201 0.1799 0.1787 0.1796 0.1804 0.1789 0.1773 0.1770 0.1765

size K is as large as 20, such that each subgroup contains only 30 samples, R-

IPAD still works well in terms of both the coverage probability and the statistical
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Table 3. Average system running times over 100 replications in Section 4.1, with (n, p) =
(600, 1000).

Split size K = 1 K = 3 K = 4 K = 5 K = 6 K = 7 K = 10 K = 15 K = 20

Time (mins) 114.0 41.1 24.0 13.5 12.1 11.1 8.8 6.3 4.0

Table 4. Coverage probabilities, average lengths of confidence intervals, and average sys-
tem running times for simultaneous confidence intervals over 100 replications in Section
4.1, with (n, p) = (600, 1000).

Probability K = 1 K = 3 K = 4 K = 5 K = 6 K = 7 K = 10 K = 15 K = 20

βj (S0) 0.91 0.97 0.92 0.94 0.95 0.98 0.94 0.93 0.92

All βj 0.94 0.96 0.95 0.91 0.93 0.93 0.94 0.97 0.98

Length K = 1 K = 3 K = 4 K = 5 K = 6 K = 7 K = 10 K = 15 K = 20

βj (S0) 0.2227 0.2241 0.2254 0.2300 0.2306 0.2286 0.2298 0.2273 0.2252

All βj 0.3542 0.3567 0.3552 0.3560 0.3565 0.3558 0.3579 0.3567 0.3561

Time K = 1 K = 3 K = 4 K = 5 K = 6 K = 7 K = 10 K = 15 K = 20

mins 126.6 50.5 35.5 28.9 23.7 19.1 14.3 10.1 7.2

accuracy. This makes the proposed partitioned approach scalable for analyzing

massive data sets with large splits. Of course, the split size should not keep

increasing because we need a sufficient sample size in each subgroup to provide

relatively accurate estimates.

Furthermore, the computational cost has been significantly reduced after

partitioning the data in Table 3 and Figure 3 (a), where the average system

running time for each replication is about two hours, using all samples at once.

Furthermore, it decreases dramatically after splitting the data, with a running

time of just four minutes when the split size is equal to 20. This statistical analysis

was performed on a usual PC with an Intel Core i7-7700 CPU (3.60 GHz) and

8 GB RAM. In addition, parallel computing was employed in the computation

of the relaxed projection residual vectors zj and the 100 simulation replications,

where the computation tasks were divided into seven cores using the R package

”snowfall,” confirming our aforementioned computational advantage using a fair

comparison on a single computing device. The computational advantage can be

enhanced further by using multiple PCs to analyze different subsamples.

Lastly, we present the coverage probabilities, average lengths of the confi-

dence intervals, and average system running times for the simultaneous confidence

intervals of the coefficients βj in S0 and all βj , using the proposed bootstrap-

assisted procedure with the preassigned 95% coverage probability over 100 repli-

cations in Table 4. The results show that, the coverage probabilities stay around
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Table 5. Average coverage probabilities using different methods and split sizes over 100
replications in Section 4.2, with (n, p) = (2000, 3000).

IPAD K = 5 K = 8 K = 10 K = 13 K = 16 K = 20 K = 25 K = 40

βj (S0) 0.9571 0.9403 0.9425 0.9601 0.9708 0.9679 0.9906 0.9952

βj (S1) 0.9545 0.9624 0.9631 0.9637 0.9708 0.9732 0.9766 0.9870

All βj 0.9545 0.9624 0.9630 0.9637 0.9708 0.9732 0.9766 0.9869

R-IPAD K = 5 K = 8 K = 10 K = 13 K = 16 K = 20 K = 25 K = 40

βj (S0) 0.9400 0.9364 0.9495 0.9460 0.9401 0.9514 0.9537 0.9525

βj (S1) 0.9487 0.9508 0.9529 0.9476 0.9514 0.9498 0.9504 0.9480

All βj 0.9487 0.9508 0.9529 0.9476 0.9514 0.9498 0.9503 0.9480

0.95 over different split sizes, and the average lengths of the confidence intervals

are also very stable, demonstrating the validity of the proposed method. More-

over, significant improvements in the running times are evident as the split size

becomes larger.

4.2. Simulation example 2

In this example, we increase both the dimensionality and the sample size to

p = 3,000 and n = 2,000, such that a usual PC finds it difficult to implement the

LDPE without partitioning the data, owing to the significant computational cost.

Therefore our statistical analysis starts with a split size K = 5 and ends with

K = 40. The true regression coefficient vector β takes strong signals of the same

magnitude as those in the first example for j = 500, 1000, 1500, 2000, 2500, 3000,

and adopts the same pattern for the weak signals. The sets S0 and S1 are defined

as before. Table 5 and Figure 2 summarize the results for the average coverage

probabilities using different methods and split sizes; a similar conclusion to that

in Section 4.1 can be drawn. The IPAD method works well when the split size

K is no larger than 10, but begins to lose statistical accuracy after K becomes

larger, owing to the inflation issue. However, R-IPAD maintains good perfor-

mance under different split sizes, as shown in Tables 5 and 6 and Figure 2. Even

if the split size K = 40, with each subgroup containing only 50 samples, the cov-

erage probability matches well with the preassigned level with a stable length of

confidence intervals. At the same time, a significant improvement in computing

speed is evident Table 7 and Figure 3 (b). The performance of the simultaneous

confidence intervals is also similar to that in the first example, as shown in Table

8.

Both simulation examples illustrate the statistical accuracy and computa-
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Table 6. Average lengths of confidence intervals for β500 and β501 using different methods
and split sizes over 100 replications in Section 4.2, with (n, p) = (2000, 3000).

IPAD K = 5 K = 8 K = 10 K = 13 K = 16 K = 20 K = 25 K = 40

β500 0.0938 0.0951 0.0969 0.0975 0.0989 0.0959 0.0978 0.1039

β501 0.0921 0.0939 0.0958 0.0972 0.0994 0.1015 0.1046 0.1067

R-IPAD K = 5 K = 8 K = 10 K = 13 K = 16 K = 20 K = 25 K = 40

β500 0.0915 0.0916 0.0919 0.0921 0.0923 0.0922 0.0929 0.0945

β501 0.0890 0.0889 0.0888 0.0893 0.0898 0.0901 0.0903 0.0900

Table 7. Average system running times over 100 replications in Section 4.2, with (n, p) =
(2000, 3000).

Split size K = 5 K = 8 K = 10 K = 13 K = 16 K = 20 K = 25 K = 40

Time (hours) 26.4 16.8 13.3 9.9 8.3 6.9 6.1 4.9

Table 8. Coverage probabilities, average lengths of confidence intervals, and average
system running times for the simultaneous confidence intervals over 100 replications in
Section 4.2, with (n, p) = (2000, 3000).

Probability K = 15 K = 20 K = 25 K = 30 K = 40
βj (S0) 0.93 0.97 0.92 0.93 0.94
All βj 0.96 0.96 0.95 0.95 0.97
Length K = 15 K = 20 K = 25 K = 30 K = 40
βj (S0) 0.1254 0.1271 0.1270 0.1266 0.1276
All βj 0.2026 0.2038 0.2047 0.2053 0.2067
Time K = 15 K = 20 K = 25 K = 30 K = 40
hours 10.2 8.7 7.7 7.0 5.7

tional advantage of constructing confidence intervals using R-IPAD, even under

very large split sizes. We focus on this refined inference procedure in our analysis

of real data sets.

5. Real-Data Analyses

In this section, we apply the LDPE and R-IPAD to two real data sets: a

student performance data set, and a polymerase chain reaction (PCR) data set.

5.1. Application to student performance data

This data set was studied in Cortez and Silva (2008) to evaluate students’ per-

formance in two Portuguese public schools, and is available from the UCI Machine
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Figure 2. Average coverage probabilities using different methods and split sizes over 100
replications in Section 4.2, with (n, p) = (2000, 3000).
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Figure 3. Average system running time over 100 replications under different settings in
Section 4.

Learning Repository (https://archive.ics.uci.edu/ml/datasets/Student+

Performance). It consists of 32 predictive variables, including the studying times,

first and second period grades, activities, health conditions and so on, obtained

from 395 students through school reports and questionnaires. The response of

interest is the final grade of the students. After removing 28 students with a zero

final grade,the final sample size was n = 357. Moreover, we added interactions

between each pair of variables, resulting in p = 528 predictors. The predictors

were standardized to have mean zero and L2-norm
√
n in each column, and the

response was centralized to have mean zero.

https://archive.ics.uci.edu/ml/datasets/Student+Performance
https://archive.ics.uci.edu/ml/datasets/Student+Performance
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Table 9. Model sizes, system running times, and confidence intervals of the three most
significant coefficients by the LDPE and R-IPAD over different split sizes in Section 5.1.

Split size K=1 K=3 K=5 K=10 K=15

Model size 29 31 33 33 34

Time (mins) 60.2 21.7 18.9 7.3 4.5

Grade 2 (2.35, 3.05) (2.42, 2.97) (2.44, 2.85) (2.45, 2.75) (2.44, 2.79)

V528 (0.26, 0.75) (0.31, 0.75) (0.35, 0.74) (0.38, 0.72) (0.40, 0.69)

V456 (−0.45,−0.13) (−0.43,−0.12) (−0.40,−0.11) (−0.38,−0.11) (−0.36,−0.08)

Similarly to Janková and van de Geer (2016), after constructing the confi-

dence intervals for all coefficients, we identified the significant level at α = 0.05,

meaning their confidence intervals of 95% coverage probability did not contain

zero. Table 9 shows the sizes of the selected models, system running times, and

confidence intervals of the three most significant coefficients in terms of the R-

IPAD p-values over different split sizes, where K = 1 corresponds to the LDPE.

The most significant variables were Grade 2 (second period grade), V528 (in-

teraction of Grade 1 and Grade 2 ), and V456 (interaction of whether attending

nursery school and time spending on going out with friends). They were also

identified using popular sparse modeling methods, including the Lasso, mini-

max concave penalty (Zhang (2010)), and smoothly clipped absolute deviations

penalty (Fan and Li (2001)), and tuned using cross-validation. From Table 9,

the sizes of the selected models and the confidence intervals of the three most

significant coefficients are all around the same level over different split sizes,

which demonstrates the statistical accuracy of R-IPAD. Furthermore, there is a

significant improvement in the computing speed when the split size increases.

5.2. Application to the PCR data set

In this second example, we compare R-IPAD with the LDPE on a PCR

data set. This set was originally studied in Lan et al. (2006). It examines the

genetics of two inbred mouse populations, and comprises n = 60 samples, with

29 males and 31 females. The expression levels of 22,575 genes were measured.

Following Song and Liang (2015) and Kong, Zheng and Lv (2016), we studied the

linear relationship between the numbers of phosphoenolpyruvate carboxykinase

(PEPCK), a phenotype measured by quantitative real-time PCR, and the gene

expression levels. We picked the p = 2,000 genes with the highest marginal

correlations with the PEPCK as predictors. The predictors were standardized

to have mean zero and L2-norm
√
n in each column, and the responses were

centralized before performing the analysis.
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Table 10. Model sizes, system running times, and confidence intervals for coefficients of
significant genes by LDPE and R-IPAD over different split sizes in Section 5.2.

Split size K=1 K=2 K=3
Model size 18 24 22
Time (mins) 42.2 24.8 16.4
1438819 at (−0.389,−0.113) (−0.398,−0.126) (−0.418,−0.142)
1460011 at (−0.317,−0.043) (−0.341,−0.064) (−0.343,−0.068)
1438937 x at (−0.002, 0.475) (0.097, 0.477) (0.158, 0.492)

We identified the significant predictors in the same way as in Section 5.1 at

the α = 0.005 level. This is stricter because hundreds of genes are selected if we

keep α = 0.05 after the de-biasing step, owing to the large residual errors of the

prediction based on the initial estimator. The split sizes for R-IPAD were two

and three. We did not split the data into more groups because there are only

60 samples in total. Nevertheless, because the dimensionality is high, there is

a significant improvement in computing speed, as shown in the system running

times in Table 10. The selected models varied womewhat over different split

sizes because the p-values of some selected genes were on the boundary. How-

ever, the confidence intervals of the most significant genes were around the same

level. See, for instance, the confidence intervals of the top two significant genes

”1438819 at” and ”1460011 at” over different split sizes in Table 10. Note that

the significant gene ”1438937 x at” identified by R-IPAD fell into the rejection

boundary of the LDPE in terms of its confidence intervals. However, this gene

was the only significant one reported in Song and Liang (2015), and is shared

by other five popular variable selection approaches. This verifies the robustness

of R-IPAD in presence of heavy-tailedness and outliers, owing to the split and

conquer procedure.

6. Discussion

We have proposed a new methodology for scalable inferences with partitioned

data for big data applications. To the best of our knowledge, this study is one of

the first attempts to derive high-dimensional confidence intervals using a split and

conquer framework. Compared with inferences using the LDPE without splitting

the data, the proposed method improves the computational speed by about K2

times in a single computing device, and by about K3 times if multiple devices are

employed simultaneously. We prove theoretically that the length of the confidence

intervals constructed using the partitioned approach is asymptotically equivalent

to that without splitting the data, along with a significantly larger upper bound
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on the split sizes. Moreover, a refined inference procedure is developed to address

the inflation issue under finite samples and large split sizes. Lastly, we suggest

a bootstrap-assisted procedure for simultaneous inferences on a large number

of coefficients. The results of our simulation studies are consistent with our

theoretical results, and real data analyses show that the proposed partitioned

approach can be more robust and resistent to heavy-tailedness and outliers.

In addition to the mean bagging estimator, we can also adopt other bag-

ging estimators, such as the median, to further enhance the robustness of the

partitioned approach. It would be interesting to derive the theoretical properties

and the noise factors based on other bagging estimators. Furthermore, we believe

that the idea of deriving high-dimensional confidence intervals using a partitioned

approach can be applied to other models, such as generalized linear models, to

reduce the computational cost of the de-biasing step. Then, the key questions

are about the upper bound on the split sizes, and how to develop an inference

procedure with accurate confidence intervals under finite samples and large split

sizes. These problems are beyond the scope of this research, and are left to future

research.

Supplementary Material

Proofs of the theoretical results are available in the online Supplementary

Material.
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