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Abstract: Empirical likelihood is a natural tool for nonparametric statistical infer-

ence, and a member of nonparametric likelihoods. Inferences based on this class

of likelihoods have the same first order asymptotic properties. One member of

the class, exponential tilting likelihood, has been found to be stable to model mis-

specification but is not as efficient as empirical likelihood. Exponentially tilted

empirical likelihood, also called exponential empirical likelihood, was proposed to

achieve both stability and efficiency. Unlike empirical likelihood, however, the hy-

brid likelihood is not Bartlett correctable, and the precision of its confidence regions

is compromised when the sample size is not large. We introduce a novel adjustment

procedure and show that it attains the high order precision that is not attained by

the usual Bartlett correction. Simulation results confirm the improved precision in

coverage probabilities.
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1. Introduction

Empirical likelihood (EL) as proposed by Owen (1990, 2001) is a popular
tool for constructing nonparametric confidence regions and making other non-
parametric inferences. Under mild conditions on the nonparametric distribution
family, the profile empirical likelihood ratio statistic has a chi-square limiting
distribution (Wilks’ Theorem). The confidence regions based on this are trans-
formation invariant, range respecting, and free of the burden of estimating scaling
parameters, but often have lower than nominal coverage probabilities. However,
DiCiccio, Hall and Romano (1991) found that the precision of the chi-square
approximation can be substantially improved by a Bartlett correction.

Empirical likelihood belongs to a class of nonparametric likelihoods called
empirical discrepancy (Baggerly (1998); Corcoran (1998); Schennach (2007)).
Most nonparametric likelihoods have the same first-order asymptotic properties.
One member of this class, exponential tilting likelihood (ET), has been found
to be stable to model mis-specification. However, ET loses some optimality
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properties such as efficiency. A hybrid method, exponentially tilted empirical
likelihood, also called exponential empirical likelihood (EEL), has been proposed
as a procedure that is both stable and efficient (Schennach (2007)). The hybrid
procedure, however, is not Bartlett correctable (Jing and Wood (1996); Corcoran
(1998)) in the sense of DiCiccio, Hall and Romano (1991). Without Bartlett
correction, the chi-square-approximation based confidence intervals/regions often
have lower than nominal coverage probabilities.

Recently, Chen, Mulayath and Abraham (2008) proposed an adjustment
technique for empirical likelihood. Empirical likelihood works well for infer-
ence problems in nonparametric distribution families characterized by estimating
functions (Qin and Lawless (1994)). When the equation constraints defining the
profile empirical likelihood have no solutions, however, the likelihood becomes
undefined and a convention of assigning a 0-value is adopted. This convention
does not affect the asymptotic properties, but can be a nuisance in applications.
The adjustment proposed by Chen, Mulayath and Abraham (2008) eliminates
this problem and has additional benefits. In particular, Liu and Chen (2010)
show that by choosing an appropriate level of adjustment, the precision of the
chi-square approximation can be improved to O(n−2), the same as that attained
by the Bartlett correction.

In this paper, we demonstrate further benefits. While exponential empirical
likelihood is not Bartlett correctable, a specific adjustment is found that enables it
to attain high order precision. Consequently, the adjusted exponential empirical
likelihood is more stable and equally efficient, and has high order precision in
constructing confidence regions.

2. Exponential Empirical Likelihood

Assume that we have a set of independent and identically distributed (i.i.d.)
vector-valued observations y1, y2, . . . , yn from an unknown distribution function
F (·). Let θ = θ(F ) be a q-dimensional parameter, defined as the unique solution
to some estimating equation E{g(Y ; θ)} = 0, where g(·) is a p ≥ q dimensional
function. Empirical likelihood (Owen (1990)) is a natural tool for constructing
nonparametric confidence regions. Let Y be a random vector with distribution
F and write pi = P (Y = yi), i = 1, . . . , n. When there are no ties in yi, the
nonparametric likelihood of F is given by Ln(F ) =

∏n
i=1 pi. The likelihood is

maximized when pi = n−1, or at F (y) = Fn(y) = n−1
∑n

i=1 I(yi ≤ y), where I is
the usual indicator function. Thus the empirical distribution is the nonparametric
maximum likelihood estimator of F . In general, because F is a distribution
function, we must have pi ≥ 0 and

∑n
i=1 pi ≤ 1. Without loss of generality

(Owen (2001)), we may simply require
∑n

i=1 pi = 1.
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The profile empirical likelihood is defined as

Ln(θ) = sup
{ n∏

i=1

pi :
n∑

i=1

pi = 1;
n∑

i=1

pig(yi; θ) = 0; pi > 0
}

,

and the profile empirical log-likelihood ratio function as

WEL(θ) = −2 sup
{ n∑

i=1

log(npi) :
n∑

i=1

pi = 1;
n∑

i=1

pig(yi; θ) = 0
}

.

Let θ0 be the parameter value that solves E{g(Y ; θ)} = 0, then WEL(θ0) → χ2
p

in distribution as n → ∞ under some mild conditions. This is Wilks’ Theorem
and the basis for constructing confidence regions for θ.

Empirical likelihood is one of many possible empirical dispersion measures
between the unknown distribution F and the empirical distribution Fn. Most
of them can be utilized to make nonparametric inferences in the same way. In
this paper, we focus on exponential tilting likelihood, or ET (Efron (1981)). For
brevity, we directly introduce its profile log-likelihood ratio function

WET (θ) = 2 sup
{ n∑

i=1

(npi) log(npi) :
n∑

i=1

pi = 1;
n∑

i=1

pig(yi; θ) = 0
}

.

Putting gi = g(yi; θ), the solution in pi to ET is

pi(λ) =
exp(λT gi)∑n

j=1 exp(λT gj)

with the vector λ being the solution of
∑n

i=1 pi(λ)gi = 0.

The empirical likelihood procedure can be thought of as maximizing a likeli-
hood and the exponential tilting likelihood as maximizing an entropy. EL inherits
the efficiency of the usual parametric likelihood; ET, on the other hand, is stable
to model mis-specification in the form of E{g(Y ; θ)} 6= 0.

To take advantage of both likelihoods, the (profile) log exponential empirical
likelihood, or EEL, ratio is

WEEL(θ) = −2
n∑

i=1

log{npi(λ)},

with pi(λ) as defined previously. Under mild conditions, WEEL(θ0) → χ2
p in

distribution. Thus, a nonparametric confidence region for θ can be constructed
accordingly. EEL is as efficient as, and more stable than, empirical likelihood
(Schennach (2007)). However, unlike EL, EEL is not Bartlett correctable
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(Jing and Wood (1996)). Searching for other methods to attain high order ap-
proximation precisions is an interesting research problem.

When the convex hull of {gi; i = 1, . . . , n} does not contain 0, there is no
solution to

∑n
i=1 pigi = 0 in pi such that pi > 0 and

∑
pi = 1. Consequently,

the EL, ET, and EEL values are all undefined, forcing researchers to assign a
conventional 0-value. A more attractive alternative, proposed by Chen, Mulayath
and Abraham (2008), is to create some pseudo-values gn+i, i = 1, . . . ,m, such
that the convex hull of {gi; i = 1, . . . , n+m} contains 0. Applying the same idea
to EEL, the adjusted (profile) log-likelihood ratio would be

WA(θ) = −2
n+m∑
i=1

log{(n + m)pi(λ)}, (2.1)

such that

pi(λ) =
exp(λT gi)∑n+m

j=1 exp(λT gj)
,

with the vector λ being the solution of
∑n+m

i=1 pi(λ)gi = 0. Under certain condi-
tions, the first order asymptotic properties remain unaltered.

By careful choice of gn+1 and gn+2 with m = 2, the new WA(θ) is always
defined and we show that its chi-square approximation has a precision of order
O(n−2). We now introduce some notation before stating the main result.

Let Σ0 be the variance-covariance matrix of g(Y ; θ0). Let gr be the rth
component of g, and similarly for other vectors. For any set of positive integers,
r, s, . . . , t, we write

αrs···t = E[{Σ−1/2
0 g}r{Σ−1/2

0 g}s · · · {Σ−1/2
0 g}t]

for the standardized moments of g. Correspondingly, we let

Ars···t = n−1
n∑

i=1

[{Σ−1/2
0 gi}r{Σ−1/2

0 gi}s · · · {Σ−1/2
0 gi}t] − αrs···t

be the centered sample moments. In addition, we adopt the tensor notation of
DiCiccio, Hall and Romano (1991): when an index appears more than once in a
term, the term represents the sum over the range of that index.

Theorem 1. Let y1, . . . , yn be a set of independent and identically dis-
tributed vector observations from an unknown distribution F , and θ = θ(F )
be a q-dimensional parameter. Assume that

(a) F satisfies the generalized estimating equation E{g(Y, θ)} = 0 for some
p-dimensional estimating function g;
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(b) the characteristic function of g satisfies Cramér’s condition

lim sup
‖t‖→∞

E‖ exp{itT g(Y, θ)}‖ < 1;

(c) E{‖g(Y, θ)‖18} < ∞.

At the true parameter θ0, if gr
n+1 = n(αrstαtuvAsAuAv−αrstuAsAtAu +ArAsAs)

/8 and gr
n+2 = −bAr/2, where b = (αrrss/2−αrstαrst/3)/q, then, for WA at (2.1),

we have

P{WA(θ0) ≤ x} = P (χ2
p ≤ x) + O(n−2),

where χ2
p is a chi-square distributed random variable with p degrees of freedom.

The proof is in the next section. Replacing the two pseudo-observations
in the theorem by a single pseudo-observation gn+1 + gn+2 does not change the
precision. Because gn+2 is in the opposite direction of A, the current arrangement
ensures the existence of a solution to the equation constraints. The moment
requirement (c) is required because six cumulants of g3 are needed for Edgeworth
expansion.

In applications, we must evaluate WA at all potential θ values. Yet at values
far from θ0, the size of gn+1(θ) far exceeds what Op(n−1/2) might indicate. This
results in bounded WA(θ) and hence nonsensical confidence intervals, particularly
when the data are from a severely skewed population. To prevent this problem,
we scale down Ar. Let θ̂ be the corresponding maximum nonparametric likelihood
estimate of θ, and

νr =

[∑n
i=1{gr

i (θ̂)}2∑n
i=1{gr

i (θ)}2

]1/2

.

We then replace Ar by νrAr in gn+1 and gn+2. Furthermore, we counter large
gr
n+1 values by replacing them with

gr
n+1(θ) exp[−

√
n{Ar(θ)}2].

Note that at θ = θ0, we have ν = Op(1 + n−1/2) and exp[−
√

n{Ar(θ0)}2] =
1 + Op(n−1/2). In addition, we also bound the estimated b by log n. Because
these changes are in high order terms, they do not invalidate Theorem 1 at θ = θ0.

It is natural to ask whether the same technique could be used to enable
the unadjusted ET likelihood to attain high order precision. Our investigation
reveals that the answer is positive. The result for multidimensional θ, however,
is messy; here we consider only a scale parameter θ.
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Theorem 2. Under the same conditions as in Theorem 1, let p = q = 1. Let
gn+1 = nα3A

2
1/6, and gn+2 = (−1/8 − α4/24 + α2

3/12)nA3
1 − (α4/4 + α2

3/24)A1.

If

WAET (θ) = 2
n+2∑
i=1

(n + 2)pi(λ) log[(n + 2)pi(λ)] (2.2)

is such that pi(λ) = exp(λgi)/
∑n+2

j=1 exp(λgj), with the scalar λ being the solution
of

∑n+2
i=1 pi(λ)gi = 0, then Pr{WAET (θ0) ≤ x)} = Pr(χ2

1 ≤ x) + O(n−2).

The proof is in the next section.

3. Proofs

Proof of Theorem 1. Without loss of generality, assume Σ0 = I, the iden-
tity matrix. Then αrs = δrs, where δ is the Kronecker delta symbol. Before
any pseudo-values are added to the data set, the Lagrange multiplier λ in EEL
satisfies

∑n
i=1 pi(λ)gi = 0, and ‖λ‖ = Op(n−1/2). Under the model assumption,

αr = 0, and we can easily verify that ‖gn+j‖ = O(n−1/2), j = 1, 2. Conse-
quently, it can easily be seen that the first order asymptotic properties of EEL
are preserved. In particular, denote the new Lagrange multiplier that solves∑n+2

i=1 pi(λ)gi = 0 as λ̃. We still have ‖λ̃‖ = Op(n−1/2).
Applying routine Taylor expansion procedures, or taking advantage of the

expansions in DiCiccio, Hall and Romano (1991) or Jing and Wood (1996), leads
to the decomposition λ̃ = λ̃1 + λ̃2 + λ̃3 + Op(n−2), where

λ̃r
1 = −Ar;

λ̃r
2 = AsArs − 1

2
αrstAsAt;

λ̃r
3 =

1
2
αstuAtAuArs + αrstAsAuAtu +

1
6
αrstuAsAtAu − AtArsAst

−1
2
αrstαsuvAuAvAt − 1

2
AsAtArst − 1

n
(gr

n+1 + gr
n+2)

and ‖λ̃j‖ = Op(n−j/2) for j = 1, 2, 3.
Substituting the expansion of λ̃ into WA(θ0), we get

WA(θ0) = nR̃T R̃ + Op(n−3/2) = n(R̃1 + R̃2 + R̃3)T (R̃1 + R̃2 + R̃3) + Op(n−3/2),
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with

R̃r
1 = Ar,

R̃r
2 =

1
3
αrstAsAt − 1

2
AsArs,

R̃r
3 =

3
8
AtArsAst − 5

12
αrstAsAuAtu − 5

12
αstuAtAuArs +

1
3
AsAtArst

−1
8
ArAsAs − 1

8
αrstuAsAtAu +

23
72

αrstαtuvAsAuAv +
1
n

(gr
n+1 + gr

n+2).

To make sense of the above expansion, compare it to the expansion of em-
pirical likelihood given by DiCiccio, Hall and Romano (1991):

WEL(θ0) = n(R1 + R2 + R3)T (R1 + R2 + R3) + Op(n−3/2),

where

Rr
1 = Ar,

Rr
2 =

1
3
αrstAsAt − 1

2
ArsAs,

Rr
3 =

3
8
AtArsAst − 5

12
αrstAsAuAtu − 5

12
αstuAtAuArs +

1
3
AsAtArst

−1
4
αrstuAsAtAu +

4
9
αrstαtuvAsAuAv.

We note that R̃r
1 = Rr

1, R̃r
2 = Rr

2, and

R̃r
3 = Rr

3 −
1
8
αrstαtuvAsAuAv +

1
8
αrstuAsAtAu − 1

8
ArAsAs +

1
n

(gr
n+1 + gr

n+2).

With the choice of gn+1 and gn+2 given in the theorem, the third relationship
further simplifies to R̃r

3 = Rr
3 − bAr/(2n).

A formal Edgeworth expansion of R̃, according to Bhattacharya and Ghosh
(1978), can be obtained through its first four cumulants. Let Qn =

√
nR̃, and

let the cumulants of Qn be denoted by κr,s,...,t. Some tedious but straightforward
computation gives

κr = n−1/2kr
1,1 + n−3/2kr

1,2 + o(n−2),

κr,s = δrs + n−1krs
2,2 + n−2krs

2,3 + o(n−2),

κr,s,t = n−3/2krst
3,1 + o(n−2),

κr,s,t,u = n−2krstu
4,1 + o(n−2),

where kr
1,1 = −αrss/6, krs

2,2 = αrstt/2 − αruvαsuv/3 − αruuαsvv/36 − bδrs and the
exact values of the remaining constants kr

1,2, krst
3,1 , and krstu

4,1 are not needed.
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Let χn(·), fQn(·) be the characteristic and density functions of Qn, respec-
tively. From the relationship between the characteristic function and the cumu-
lants of a random vector, we have

χn(τ) = E{exp(iτT Qn)}

= exp{iκrτ
r − 1

2
κr,sτ

rτ s − 1
6
iκr,s,tτ

rτ sτ t +
1
24

κr,s,t,uτ rτ sτ tτu + o(n−2)}

= exp{−1
2
τT τ + in−1/2kr

1,1τ
r − 1

2
n−1krs

2,2τ
rτ s + O(n−3/2)}

= exp{−1
2
τT τ}{1 + in−1/2kr

1,1τ
r − 1

2
n−1(kr

1,1k
s
1,1 + krs

2,2)τ
rτ s} + O(n−3/2).

To justify that the above expansion has retained all leading terms, the cumulants
of Qn, of orders five and six must be o(n−2). The order assessments of the
cumulants of Qn can be done easily through the relationship between R and R̃,
and the existing results on R.

Let φ(x) be the density function of the standard multivariate normal distri-
bution, r1(τ) = kr

1,1τ
r, and r2(τ) = (kr

1,1k
s
1,1 + krs

2,2)τ
rτ s/2. The density function

with characteristic function χn(τ) is then

fQn(x) = φ(x) + n−1/2r1(−
d

dx
)φ(x) + n−1r2(−

d

dx
)φ(x) + O(n−3/2).

According to Bhattacharya and Ghosh (1978), this formal Edgeworth expansion
has O(n−3/2) precision. Consequently, the cumulative distribution function of
WA = QT

nQn is obtained through a simple integration as

Pr{WA(θ0) ≤ y}
= Pr{QT

nQn ≤ y} + O(n−3/2)

=
∫

xT x≤y

{
1 + n−1/2r1(−

d

dx
) + n−1r2(−

d

dx
)
}

φ(x)dx + O(n−3/2).

Notice that r1(−d/dx)φ(x) = kr
1,1x

rφ(x) is an odd function. Hence, when
integrated over a symmetric region,∫

xT x≤y
r1(−

d

dx
)φ(x)dx = 0.

For the second polynomial, we find that

r2(−
d

dx
)φ(x) =

1
2
(kr

1,1k
s
1,1 + krs

2,2)(x
rxs − δrs)φ(x).

Recall that when an index repeats, the corresponding term sums over its range.
The above expression is a sum of many ordinary terms. Among them, the terms
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corresponding to r 6= s are odd functions. Hence, their integrations over sym-
metric regions are zero. We need only keep the terms with r = s in the expansion
of Pr(WA(θ0) ≤ y). After these 0 terms are removed, we arrive at

Pr(WA(θ0) ≤ y)

=
∫

xT x≤y
φ(x)dx +

1
2n

(kr
1,1k

r
1,1 + krr

2,2)
∫

xT x≤y
(xrxr − δrr)φ(x)dx + O(n−3/2).

By explicitly spelling out the summations over the repetitive indices, it becomes
simple to show that∑

r

(kr
1,1k

r
1,1 + krr

2,2) =
1
2

∑
r,s

αrrss − 1
3

∑
r,s,t

αrstαrst − b
∑

r

δrr = 0.

Without summing over r,
∫
xT x≤y(x

rxr − δrr)φ(x)dx is a constant, say C, which
does not depend on r. Therefore

(kr
1,1k

r
1,1 + krr

2,2)
∫

xT x≤y
(xrxr − δrr)φ(x)dx = C

∑
r

(kr
1,1k

r
1,1 + krr

2,2) = 0.

That is, the second term in the expansion disappears, and

Pr(WA(θ0) ≤ y) =
∫

xT x≤y
φ(x)dx + O(n−3/2) = P (χ2

p ≤ y) + O(n−3/2).

Because we are working on a symmetric region in Qn, the expansion does not
contain terms of order n−j/2 if j is odd. Thus, the remainder term must have
the next possible order, O(n−2). This completes our proof.

Proof of Theorem 2. Without loss of generality, E{g(X, θ0)}2 = 1. It can be
seen that gn+1 = Op(1) and gn+2 = Op(n−1/2). Because we consider only the
case where p = q = 1, we do not need tensor notations and, for r = 1, 2, 3,

αr = E[g(Y ; θ0)]r, Ar = n−1
n∑

i=1

[g(yi; θ0)]r − αr.

Similar to the proof of Theorem 1, the Lagrange multiplier λ can be expanded
as the sum of

λ1 = −A1,

λ2 = A1A2 −
1
2
α3A

2
1 − n−1gn+1,

λ3 =
3
2
α3A

2
1A2 +

1
6
α4A

3
1 − A1A

2
2 −

1
2
α2

3A
3
1 −

1
2
A2

1A3

+n−1(A2 − α3A1 + gn+1A1)gn+1 − n−1gn+2,
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after ignoring higher order terms. Clearly, λ = Op(n−1/2). Recall that

WAET (θ0) = 2
n+2∑
i=1

(n + 2)pi(λ) log{(n + 2)pi(λ)}

= 2(n + 2) log(n + 2) − 2(n + 2) log
[ n+2∑

j=1

exp (λgj)
]

+2(n + 2)λ
∑n+2

i=1 gi exp (λgi)∑n+2
j=1 exp (λgj)

.

Expanding in powers of λ, we get

WAET (θ0) = (1 + A2 − A2
1 + n−1g2

n+1)nλ2 +
2n

3
(α3 + A3 − 3A1)nλ3

+(
1
4
α4 −

3
4
)nλ4 + Op(n−3/2).

Substituting the expansion of λ into this expression, we get

WAET (θ0) = nV 2 + Op(n−3/2) = n(V1 + V2 + V3)2 + Op(n−3/2)

with

V1 = A1,

V2 = −1
2
A1A2 +

1
6
α3A

2
1 + n−1gn+1,

V3 =
3
8
A1A

2
2 +

1
6
A2

1A3 +
1
9
α2

3A
3
1 −

5
12

α3A
2
1A2 −

1
24

α4A
3
1 +

1
8
A3

1

+n−1gn+1

(
−1

2
A2 +

1
3
α3A1 −

1
2
gn+1A1

)
+ n−1gn+2.

Comparing this to the expansion of WEL(θ0) for the case of q = 1, and with the
choice of gn+1 and gn+2 given in the theorem, we find V1 = R1, V2 = R2, and

V3 = R3 −
1
6
A2

1A3 −
7
36

α2
3A

3
1 +

1
3
α3A

2
1A2 +

1
6
α4A

3
1

−n
1
72

α2
3A

5
1 − n−1A1(

1
4
α4 +

1
24

α2
3).

Because the cumulants of R are given in DiCiccio, Hall and Romano (1991),
we can compute the cumulants of Tn =

√
nV , κj , j = 1, 2, 3, 4, relatively easily.

They are

κ1 = n−1/2k1,1 + n−3/2k1,2 + o(n−2),
κ2 = 1 + n−1k2,2 + n−2k2,3 + o(n−2),
κ3 = n−3/2k3,1 + o(n−2),
κ4 = n−2k4,1 + o(n−2),
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Table 1. Less Biased Moment Estimators when p = 1.

Parameter Estimator Expression
β2 β̃2 nβ̂2/(n − 1)
β4 β̃4 (nβ̂4 − 6β̃2

2)/(n − 3)
β2

2 β̃22 β̃2
2 − β̃4/n

β3 β̃3 nβ̂3/(n − 3)
β2

3 β̃33 β̃2
3 − (β̂6 − β̃2

3)/n

β3
2 β̃222 β̃3

2

with k1,1 = −α3/6, k2,2 = −α2
3/36, and k1,2, k3,1, k4,1 being non-random con-

stants whose exact values are not needed. The higher order cumulants of Tn in
the orders five and six are o(n−2).

Because the leading terms in these cumulants are the same as these of R̃ in
the proof of Theorem 1 (when q = 1), the Edgeworth expansion of

√
nV must be

the same as that of Qn =
√

nR̃. Consequently, the same expansion applies and
Pr(WAET (θ0) ≤ y) = P (χ2

1 ≤ y) + O(n−2). This completes the proof.

4. Estimation of the Coefficients in Adjusted Exponential Empirical
Likelihood

Our adjustment method contains unknown parameters αrs···t that must be
estimated. Moment estimators underestimate and do not allow the method to
achieve its full potential (Liu and Chen (2010)). Through some simple bias
analysis, Liu and Chen (2010) suggested a set of less biased estimators. We
follow their example, with details omitted.

Consider the case p=1. Let βr = E{g(Y, θ0)}r, with moment estimator
β̂r = n−1

∑n
i=1(gi − ḡ)r. If needed, we replace the unknown θ0 by the maximum

adjusted exponential tilt empirical likelihood estimator θ̂ = arg minθ{WEEL(θ)}.
The pseudo-observations gn+1 and gn+2 are functions of αr = β

−r/2
2 βr for r =

2, 3, 4. Closer investigation reveals that they depend only on β2, β
2
2 , β3

2 , β3, β
2
3 ,

and β4. In the simulation, we used the less-biased estimators of these parameters
given in Table 1. Note that we do not estimate, for example, β2

2 by (β̃2)2, but by
β̃22 to reduce potential bias.

When p > 1, we estimate Σ0 by the sample variance Σ̂0 of g(y, θ) at θ = θ̂.
We then compute xi = Σ̂−1/2

0 g(yi, θ̂) and the corresponding moment estimator
α̂rs···t = n−1

∑n
i=1 xi

rxi
s · · ·xi

t. Similarly to the case where p = 1, we use the
estimators given in Table 2.

5. Simulations

A classical problem is the construction of confidence regions or tests of a
hypothesis about a specific value of the population mean based on a set of n
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Table 2. Less Biased Moment Estimators when p > 1.

Parameter Estimator Expression
αrr α̃rr nα̂rr/(n − 1)
αrrss α̃rrss [nα̂rrss − 2α̂rrα̂ss − 4I(r = s)α̂rrα̂rr]/(n − 4)
αrrrs α̃rrrs nα̂rrrs/(n − 4)
αrst α̃rst nα̂rst/(n − 3)
αrstαrst α̃rst,rst α̃rstα̃rst − (α̂rrsstt − α̃rstα̃rst)/n
αrrαss α̃rr,ss α̂rrα̂ss − α̃rrss/n
αrrαssαtt α̃rr,ss,tt α̃rrα̃ssα̃tt

independent and identically distributed observations x1, . . . , xn. When we con-
sider the population mean, the estimating equation is E{g(X, θ)} = 0, where
g(x, θ) = x − θ. We investigate the coverage probabilities of level 0.90, 0.95,
and 0.99 confidence intervals and corresponding interval lengths based on six
methods.

1. Hotellling’s T 2 with T 2
n = n(X̄n − θ)T S−1

n (X̄n − θ), where X̄n is the vector
sample mean and Sn is the sample covariance matrix.

2. Empirical likelihood, EL.

3. Bartlett corrected empirical likelihood, BEL.

4. Adjusted empirical likelihood, AEL.

5. Exponential empirical likelihood, EEL.

6. Adjusted exponential empirical likelihood, AEEL.
We generated 10,000 samples from four distributions: the standard normal;

the exponential distribution with mean 1; a mixture of normal 0.2N(5, 1) +
0.8N(−1.25, 1); and the χ2

1 distribution. The coverage probability results are
presented in Table 3 and the corresponding interval lengths in Table 4. As
expected, AEEL improves EEL, and is comparable to other high order methods
in coverage probabilities without inflating average lengths. We conclude that
AEEL lives up to nice properties acclaimed by Theorem 1.

In the multivariate case, we conducted simulation experiments for p = q = 2,
and generated data from the bivariate standard normal distribution and three
other distributions as follows. We first generated a random observation D from
the uniform distribution on the interval [1, 2]. Given D, we generated X1, X2 as

(a) X1 ∼ N(0, D2), X2 ∼ Gamma(D−1, 1),

(b) X1 ∼ Gamma(D, 1), X2 ∼ Gamma(D−1, 1),

(c) X1 ∼ Poisson(D), X2 ∼ Poisson(D−1).

For each population, 10,000 data sets were generated with sample sizes n =
20 and 30. Table 5 presents the simulation results of coverage probability. From
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Table 3. Coverage probabilities for one-sample population mean.

n nominal T 2 EL BEL AEL EEL AEEL
N(0, 1) 20 90 89.6 88.2 89.5 89.4 87.4 89.6

95 95.0 93.6 94.5 94.5 92.6 94.6
99 98.8 98.2 98.6 98.6 97.7 98.6

30 90 89.8 89.5 90.4 90.4 89.0 90.5
95 94.9 94.5 95.1 95.1 93.9 95.2
99 99.0 98.7 98.9 98.9 98.3 98.9

Exp(1) 20 90 87.0 86.2 87.8 87.9 85.5 88.4
95 91.6 91.5 92.6 92.6 90.7 93.0
99 96.6 96.6 97.2 97.2 96.0 97.2

30 90 88.2 87.6 88.8 88.9 87.1 89.3
95 92.9 93.0 93.9 94.0 92.3 94.3
99 97.3 97.7 98.0 98.0 97.4 98.1

Mixture 20 90 89.1 88.6 90.4 90.0 88.1 90.6
95 93.3 93.7 95.0 94.8 93.3 94.9
99 97.3 98.0 98.2 98.2 97.8 98.1

30 90 89.2 89.6 90.5 90.4 89.3 90.9
95 93.7 94.3 95.1 95.0 94.0 95.4
99 97.9 98.7 99.0 98.9 98.4 98.9

χ2
1 20 90 84.1 83.6 85.6 85.6 82.8 86.6

95 88.8 89.2 90.6 90.7 88.5 91.3
99 94.4 95.2 96.0 95.9 94.6 96.3

30 90 85.9 86.0 87.5 87.5 85.4 88.3
95 90.4 91.7 92.8 92.8 91.9 93.3
99 95.5 96.8 97.3 97.3 96.3 97.5

this table, we can see that AEEL improves EEL substantially, but we also notice
that T 2 has the best performance in terms of the coverage probability, followed
by BEL, AEL and AEEL. This was also observed by Baggerly (1998) who noticed
that, for construction confidence interval of a univariate mean based on empirical
likelihood, Bartlett correction was better than the method using the critical
values from a scaled F-distribution only when the nominal level was at 50%.

We further computed the average areas of the 95% confidence regions of
T 2 and AEEL based on 1,000 data sets. For population (a) with sample sizes
n = 20 and 30, the ratios of these two areas were respectively 2.237/1.935 = 1.156
and 1.432/1.373 = 1.036. The gains for AEEL remained even after taking the
observed coverage probabilities into account (based on the current 1,000 data
sets). We attribute this gain to the data driven shape of the AEEL confidence
regions. The comparisons were similar for populations (b) and (c) and and other
nominal levels. We do not report these details here.
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Table 4. Average length of confidence interval for one-sample population mean.

n nominal T 2 EL BEL AEL EEL AEEL
N(0, 1) 20 90 0.75 0.73 0.76 0.76 0.71 0.77

95 0.91 0.87 0.91 0.91 0.85 0.92
99 1.25 1.16 1.21 1.20 1.10 1.21

30 90 0.61 0.60 0.62 0.62 0.59 0.62
95 0.73 0.72 0.74 0.74 0.70 0.74
99 0.99 0.96 0.99 0.98 0.92 0.99

Exp(1) 20 90 0.73 0.71 0.75 0.75 0.70 0.77
95 0.89 0.85 0.90 0.90 0.83 0.92
99 1.21 1.12 1.19 1.20 1.08 1.22

30 90 0.59 0.60 0.62 0.62 0.58 0.63
95 0.71 0.71 0.75 0.74 0.70 0.76
99 0.97 0.95 0.99 0.99 0.92 1.00

Mixture 20 90 2.03 1.90 1.98 1.98 1.88 2.00
95 2.46 2.27 2.36 2.36 2.22 2.39
99 3.35 2.96 3.09 3.09 2.88 3.12

30 90 1.64 1.58 1.62 1.62 1.57 1.63
95 1.98 1.88 1.93 1.93 1.86 1.94
99 2.67 2.47 2.53 2.53 2.41 2.55

χ2
1 20 90 1.00 0.98 1.04 1.04 0.96 1.08

95 1.21 1.17 1.25 1.25 1.14 1.29
99 1.66 1.55 1.66 1.67 1.50 1.70

30 90 0.82 0.83 0.87 0.87 0.81 0.89
95 0.99 0.99 1.04 1.04 0.97 1.06
99 1.34 1.32 1.39 1.39 1.28 1.41

6. An Application Example

We applied the AEEL and other methods to a data set from Efron and
Tibshirani (1993, Table 2.1). In a small experiment, 7 out of 16 mice were
randomly selected to receive a new medical treatment, while the remaining 9
were assigned to the non-treatment (control) group. The survival times following
surgery, in days, for all 16 mice are shown in Table 6. The objective of this
experiment was to test whether the new treatment would prolong survival.

The 90% confidence intervals of the average survival time for treatment and
control groups based on methods introduced in the simulation section, and their
lengths, are given in Table 7. We also calculated 90% confidence interval based
on the bootstrap-t method. From the table, we can see that all nonparametric
empirical likelihood confidence intervals shifted to the right compared to that
based on T 2, which is a desirable result, and the AEEL interval was a lot shorter
than the Bootstrap-t interval. The AEEL intervals were slightly longer than other
nonparametric likelihood confidence intervals, but the differences were negligible.
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Table 5. Coverage probabilities for one-sample bivariate population mean.

n nominal T 2 EL BEL AEL EEL AEEL
N(0, I) 20 90 90.3 84.7 87.3 87.3 82.8 86.6

95 95.0 91.0 92.6 92.8 89.0 92.1
99 99.0 96.6 97.4 97.5 95.4 97.1

30 90 90.8 87.0 88.6 88.5 85.8 88.0
95 95.7 92.4 93.6 93.6 91.2 93.0
99 99.3 97.6 98.1 98.1 96.9 97.7

(a) 20 90 86.1 81.5 84.4 84.7 79.9 83.8
95 91.2 87.9 90.0 90.2 86.0 89.4
99 96.4 94.5 95.7 95.8 93.3 95.4

30 90 88.1 84.9 86.9 87.0 83.6 86.3
95 93.2 90.6 92.2 92.2 89.3 91.5
99 97.8 96.6 97.3 97.4 95.8 97.0

(b) 20 90 84.2 81.0 84.0 84.3 79.4 83.7
95 89.5 87.1 89.4 89.7 85.6 89.1
99 95.4 93.7 95.1 95.3 92.5 94.8

30 90 86.6 84.5 86.9 87.0 83.4 86.5
95 91.7 90.4 91.9 92.1 89.5 91.6
99 96.7 96.5 97.2 97.2 95.6 96.8

(c) 20 90 88.1 83.6 86.4 86.4 82.2 85.7
95 93.2 89.9 91.6 91.7 88.3 91.0
99 97.7 95.9 96.7 96.8 94.9 96.4

30 90 89.2 86.2 87.8 87.8 85.1 87.1
95 94.5 92.1 93.2 93.2 91.0 92.6
99 98.6 97.4 97.9 97.9 96.6 97.5

Table 6. Survival times of the mice in the application example.

Group Survival time
Treatment: 94, 197, 16, 38, 99, 141, 23
Control: 52, 104, 146, 10, 50, 31, 40, 27, 46

In conclusion, this example shows that, as anticipated, the AEEL is a suitable
method for the construction of confidence intervals.

7. Conclusion and Discussion

This paper shows that the technique developed in Chen, Mulayath and Abra-
ham (2008) is useful to other nonparametric likelihoods in addition to the em-
pirical likelihood. Unlike the Bartlett correction, this technique is more widely
applicable and works when the accompanying estimating equations do not have
a solution.

The straightforward adjustment in Chen, Mulayath and Abraham (2008)
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Table 7. Confidence intervals (90%) and their lengths for the mean survival
time of the treatment and control groups.

Treatment Control
Method Confidence interval Length Confidence interval Length
T 2 (37.82, 135.89) 98.07 (29.93, 82.51) 52.58

EL (52.95, 127.86) 74.91 (38.39, 82.34) 43.95

BEL (51.62, 129.85) 78.23 (36.77, 85.57) 48.80

AEL (51.35, 129.67) 78.32 (36.14, 85.03) 48.89

EEL (53.83, 126.57) 72.74 (39.25, 81.83) 42.58

AEEL (52.11, 128.32) 76.21 (35.95, 86.46) 50.51

Bootstrap-t (42.99, 146.42) 103.43 (35.82, 116.74) 80.92

results in a bounded likelihood ratio function. When data are from a severely
biased population and the sample size is small, some AEL and AEEL confidence
regions can be unbounded. We employed some corrections to overcome this
shortcoming. The requirement of this remedy points to imperfectness of the
method and the need for more research. We plan to investigate these issues in
the future.
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