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Abstract: Factorial and fractional factorial designs are widely used for assessing the
impact of several factors on a process. Frequently, restrictions are placed on the
randomization of the experimental trials. The randomization structure of such a
factorial design can be characterized by its set of randomization defining contrast
subspaces. It turns out that in many practical situations, these subspaces will
overlap, thereby making it impossible to assess the significance of some of the
factorial effects. In this article, we propose new designs that minimize the number
of effects that have to be sacrificed. We also propose new designs, called stars, that
are easy to construct and allow the assessment of a large number of factorial effects
under an appropriately chosen overlapping strategy.
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1. Introduction

In the initial stages of experimentation, factorial designs with p independent
factors, each at ¢ levels (usually ¢ = 2), are commonly used to help assess the
impact of several factors on a process. Ideally, one performs the experimental
trials in a completely random order. Complete randomization of trials is often in-
feasible, and randomization restrictions are imposed. Indeed, in many situations
different factors must be held fixed at each stage of the experimental process
(e.g., see [Mee and Batesl (1998)); [Vivacqua and Bisgaard| (2004); Bingham et al.
(2008)). In the analysis of the such experiments, there are variance components
associated with each stage of randomization. Preferably the experiment can be
designed so that the variance components have as little impact as possible on
the variance of the effect estimators. Designs aimed at minimizing the impact
of randomization restrictions on the analysis of multistage factorial experiments
are the primary focus of this work.

Bingham et al| (2008) proposed using randomization defining contrast sub-
groups (RDCSGs) to describe the randomization structure of multistage factorial
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designs (e.g., blocked designs, split-plot designs, strip-plot designs, split-lot de-
signs). This representation can be viewed as a generalization of a block defining
contrast subgroup (see, e.g.,[Sun, Wu and Chen| (1997)). Recently, Ranjan, Bing-
ham and Dean! (2009) developed a finite projective geometric formulation of the
RDCSGs, called randomization defining contrast subspaces (RDCSSs), that helps
establish the existence and construction of such designs in practical settings.

The RDCSSs indicate which effects are impacted by the variance from each
stage of randomization. It is important to note that each point in a subspace
is associated with a factorial effect. So, for non-overlapping subspaces, each
effect appearing in a RDCSS has a variance that is a linear combination of the
replication error variance and the variance component associated with that stage
of randomization. On the other hand, when RDCSSs are not disjoint, the effects
in the overlap will have variance that is a linear combination of all of the variances
associated with the overlapping subspaces. As a result, the distribution of an
effect estimator depends on its presence in different RDCSSs.

The selection of a design is usually based on properties from a data analysis
viewpoint. A common strategy for assessing the significance of factorial effects
in unreplicated factorial designs is to use half-normal plots (Daniel (1959)) with
the restriction that the effects appearing on the same plot must have the same
error variance. In the current setup, the RDCSSs indicate which effects have the
same variance and thus can appear on the same half-normal plot.

In this article, we focus on unreplicated experiments. However, if it is possi-
ble to replicate an experiment, one has a few choices. First, the experiment could
be replicated and the usual variance components analysis can be conducted. Un-
less the number of replicates is large, one would likely opt to use a half-normal
plot analysis since the error degrees of freedom would be small. Instead of repli-
cating the design, one has the option of performing a larger fractional factorial
design, perhaps with higher resolution. In this case, one would also use the visual
method to identify the significant effects.

A desirable feature for the randomization structure of an unreplicated facto-
rial design is to have disjoint RDCSSs that are large enough to construct useful
half-normal plots. However, it is not always feasible to construct a desired num-
ber of disjoint RDCSSs that satisfy the size requirement (Ranjan, Bingham and
Deanl (2009)). Here we focus on regular (fractional) factorial designs with ran-
domization restrictions when an overlap among the distinct RDCSSs cannot be
avoided. Two RDCSSs S; and S; are said to be distinct if (S; U Sj)\(S; N S;)
is nonempty. We propose two new classes of factorial designs with randomiza-
tion restrictions: (a) when the overlap among the RDCSSs is minimized, and
(b) when overlap among the distinct RDCSSs is used as an advantage for con-
structing designs that allow for the assessment of a larger number of the factorial
effects.
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The paper is organized as follows. We introduce the notation necessary to
establish the relationship between randomization restrictions and RDCSSs in
Section 2. In Section 3, we propose adapting results from a projective geometric
structure called a minimal (¢t —1)-cover of PG(p—1, ¢) to construct (regular frac-
tional) factorial designs with randomization restrictions. An overlapping strategy
is proposed in Section 4 that leads to a new geometric structure we call a star
in PG(p — 1,q). The factorial designs constructed from stars allow for the as-
sessment of a relatively large number of effects. The existence and construction
of factorial designs based on stars are developed in Section 5. In Section 6, we
establish the relationship between stars and the minimal covers of PG(p — 1, q).
We conclude the paper with a brief discussion in Section 7.

2. Background Review and Notation

Throughout the article, g is a prime or prime power. Let b be a p-dimensional
pencil over the Galois field GF(q) (e.g., Dey and Mukerjee| (1999)). For non-zero
a € GF(q), b and ab represent the same g — 1 degrees of freedom pencil. A
pencil b represents an r-factor interaction if b has exactly r nonzero elements.
Denote the (p — 1)-dimensional finite projective geometry, given by the set of all
p-dimensional pencils (or points) over GF(q), as PG(p — 1, ¢). In this sense, we
often refer to P = PG(p — 1,q) as the effect space. For ¢ = 2, a pencil b with r
nonzero elements uniquely corresponds to an r-factor interaction in a 2P factorial
design with a single degree of freedom. Thus, the set of all effects (excluding
the grand mean) of a two-level factorial design with p independent factors is
equivalent to the set of all points in PG(p — 1, 2).

The restrictions on the randomization of experimental runs are equivalent
to grouping experimental units into sets of trials. We follow the usual approach
of forming these sets for factorial experiments by using independent pencils to
define the groupings. Blocked factorial designs, for example, use ¢* (t < p)
combinations of ¢ independent pencils to divide ¢P treatment combinations into
q* blocks. These factorial effects are then completely confounded with the block
effects and represent ¢t randomization restriction factors. The set S of all non-
null pencils formed from these ¢ randomization restriction factors in P forms a
(t — 1)-dimensional projective subspace of P. We call such a subspace a RDCSS.

For a ¢-level factorial design with p independent factors and m stages of
randomization, the m RDCSSs can be denoted by the projective subspaces
S1,...,Sn contained in P. For each i, let S; be generated from ¢; independent
pencils (0 < t; < p), so that |S;| = (¢ —1)/(¢ — 1). It turns out that the exis-
tence of fractional factorial designs with randomization restrictions is equivalent
to the existence of distinct projective subspaces S;’s in P that accommodate the
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desired randomization structure. It is not easy to establish the existence of such
designs that can be analyzed effectively (Ranjan, Bingham and Dean| (2009)).

For a factorial design with m stages of randomization and RDCSSs denoted
by S;, i = 1,...,m, the error vector, ¢, in the linear regression model is a sum of
m + 1 error terms, € = g9 + &1+ ---&,,. Here, g9 denotes the observational error
vector, and €; (1 < i < m) is the error vector associated with the randomization
restriction characterized by S;. Consequently, if a pencil belongs to more than
one RDCSSs (say, in S; and S;), then the distribution, and hence the variance
of the estimator of any contrast representing the pencil, depend on a linear
combination of the variance associated with g, ¢; and ¢; (Ranjan, Bingham
and Deanl (2009)). This necessitates separate analyses for pencils in S; NS and
those in S;\(S;NS;). From this perspective, factorial designs with randomization
restrictions ideally have disjoint RDCSSs. [Ranjan, Bingham and Dean| (2009)
show that the existence of disjoint RDCSSs of equal size is equivalent to that of
full or partial (¢ — 1)-spreads.

A (full) (¢t — 1)-spread of P is a collection of (¢t — 1)-dimensional subspaces
of P which partition P, whereas a partial (t — 1)-spread of P is a collection of
(t — 1)-dimensional subspaces of P that are pairwise disjoint. The existence of
full and partial (¢ — 1)-spreads have been studied in [Andrél (1954) and [Eisfeld
and_Stormel (2000). For practical use, however, mere existence is not enough,
one needs to find the designs. To this end, [Ranjan, Bingham and Dean| (2009)
proposed a methodology for constructing designs with disjoint RDCSSs, not nec-
essarily of the same size. We focus here on designs where the projective subspaces
corresponding to the RDCSSs are such that overlap among them is unavoidable.

3. Minimal Overlap and (¢ — 1)-covers

In this section, we adapt results used to study a geometric structure, called
a (t —1)-cover of PG(p—1,¢q), to construct designs that maximize the number of
distinct subspaces and minimize the overlap among the intersecting subspaces for
constructing distinct RDCSSs. The resulting subspaces are used to set the levels
of each factor at each stage of randomization, and also to identify which pencils
are estimated with the same error variance. Our aim is to construct designs that
are easy to analyze and allow the significance assessment of lower order effects.

Definition 1. A (t —1)-cover, C, of P = PG(p—1,¢q) is a set of distinct (¢t —1)-
dimensional subspaces of P which cover all the points of P.

A (t — 1)-cover is called minimal if no other (¢ — 1)-cover contains a smaller
number of subspaces. Although the subspaces forming a minimal cover may
overlap, the size of the overlap is often small.
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Since effects appearing in the overlap have a different error variance than
effects not in the overlap itself, it is often preferable to minimize the degree
of intersection among the subspaces (we argue later that there are sometimes
advantages to not doing so). This makes minimal covers attractive for designs
with randomization restrictions where overlap among the RDCSSs is unavoidable.

Remarks. (i) For a half-normal plot analysis, the S;’s have to be reasonably
large (e.g., see Bingham et al. (2008)). For instance, in 2-level factorial designs,
the size of each S; should be at least 221 (i.e., t; > 3). (ii) Factorial designs with
randomization restrictions are often larger than completely randomized designs.
Since, at each stage of randomization, multiple experimental units are processed
simultaneously. For example, [Jones and Goos (2009) used a 128-run design to
analyze a cheese-making experiment, and Mee and Bates (1998) proposed 64-
wafer and 81-wafer designs for an integrated circuit experiment.

Example 1 presents a scenario where the overlap among the RDCSSs cannot
be avoided, and a minimal (¢ — 1)-cover is used to construct a good design.

Example 1. Following Bingham et al| (2008), consider a 2° factorial experiment
performed in three stages to identify the factors suspected to have a significant
impact on a specific plutonium alloy. The three stages of randomization were
characterized by S1 D {A, B}, S D {C}, and S3 D {D, E}, where A, B repre-
sented the casting mechanism for creating a type of plutonium alloy, and C, D, E
were the heat treatments applied in the manufacturing process.

For a half-normal plot analysis we need |S;| > 7 for all i. Using a result
from [Ranjan, Bingham and Dean| (2009)), we find that any two distinct S; share
at least one effect. Bingham et al| (2008) also reached this conclusion after an
exhaustive search.

The design proposed by Bingham et al,| (2008), is characterized by S; =
(A,B,ABCDE), Sy = (C,AD, ABCDE) and S3 = (D, E, ABCDEFE) where, for
instance, (A, B, ABCDE) is the subspace spanned by the pencils representing
the factorial effects A, B and ABCDE.

Note that Si,S2,S3, together with Sy = (AC,AE, ABCDE) and S5 =
(BC,BD, ABCDE), form a minimal 2-cover of P = (A, B,C, D, E). That is, the
design proposed in Example 1 can be constructed without using an exhaustive
computer search. The following result specifies the size of such a minimal cover.

Lemma 1 (Eisfeld and Storme! (2000)). A minimal (t — 1)-cover of P =
PG(p—1,q) contains ¢° [(¢* — 1)/q" — 1]+1 distinct (t—1)-dimensional subspaces
of P, wherep=Fkt+s,0<s<t<p, and k > 1.
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It turns out that for any ¢ < p, there always exists a minimal (¢t — 1)-
cover with ¢* [(¢* —1)/(¢* — 1)] + 1 distinct (¢ — 1)-dimensional subspaces of P.
This is indeed very useful for design construction. Next, we outline a recursive
technique for constructing a minimal (¢ — 1)-cover, C, of P = PG(p — 1,q).
The proposed method shares features with the construction of a maximal partial
(t — 1)-spread (see [Eisfeld and Storme (2000) and Ranjan, Bingham and Dean
(2009)) for details).

Construction: A minimal (t—1)-cover of P consists of ¢* [(¢* — 1)/(¢" — 1)]—
¢® disjoint (¢ — 1)-dimensional subspaces of P if £ > 1, and ¢° + 1 distinct (¢ —1)-
dimensional subspaces that overlap on a common (¢—s—1)-dimensional subspace.
The construction of ¢* [(¢* —1)/(¢' — 1)] — ¢* disjoint elements of the minimal
cover C begins by defining a sequence of indices w; =it +sfori=1,...,k—1,
and setting P, = P. The recursive algorithm starts from ¢ = k — 1 and goes
down to ¢ = 1.
1. Construct a projective space P; = PG(2w; — 1, ¢) that contains P;_ ;.

2. Construct a (w; — 1)-spread S, of P; that contains an (w; — 1)-dimensional
subspace, Us, of P/ ;.

(a) Construct a (w; — 1)-spread S/ of P; as in Ranjan, Bingham and Deanl
(2009).

(b) Transform the spread S/ to S, by finding an appropriate collineation (see
Batten! (1997) and Ranjan, Bingham and Dean| (2009)) such that U; € S..

3. Construct S; = {SNP: 5 eS\{U;}}.
4. Define P; = U; and then set i =4 — 1. If i > 0 go to Step 1.

For every i € {1,...,k—1}, S; is a set of (¢t — 1)-dimensional subspaces in P, and
SiNS; = ¢ for i # j. Finally, S = UF'S; contains ¢° [(¢* — 1)/(¢" — 1)] — ¢°
disjoint (¢t — 1)-dimensional elements of C. The construction of the remaining
¢® + 1 elements is shown in a more general setup (Section 5), where we also show
that the set of such overlapping elements of C form a new geometric structure
called a star.

The above technique facilitates the construction of minimal (t—1)-covers and
hence factorial designs with efficient assessment of many factorial effects except
for a few higher order interactions. Although constructing a minimal (¢—1)-cover
does not require an exhaustive computer search, the pencils (or effects) in the
subspaces constituting the minimal cover may have to be relabeled to get the
desired design. Next, we revisit Example 1 and construct the design proposed in
this example using a minimal (¢ — 1)-cover approach.

Example 1 (contd.) From Lemma 1, a minimal 2-cover C of P = PG(4,2)
contains 5 (since t = 3,k = 1 and s = 2) distinct subspaces. Also note that, any
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Table 1. The ANOVA table for the plutonium alloy experiment.

Effects Appearing on Variance Degrees of Freedom
the Same Half-normal Plot
S$i\{ABCDE} 20?4+ Lo? 6
S\{ABCDE} 203+ Lo? 6
Ss\{ABCDE} 202 + Lo? 6
{ABCDE} 3—2(0% + 03 +03) + 5507 1
P\(Sl UsSs, U Sg) 2%0'2 12

pair of 2-dimensional subspaces of PG(4,2) shares at least one effect. That is,
|S; NSj] > 1 for all ¢ # j and S;,S; € C. This also meets the size constraint
(5([2% — 1] — [2' — 1]) + [2! — 1] = 25 — 1) on the subspace structure of C. The
construction of a minimal 2-cover (same as a star in this case) of PG(4,2), as out-
lined in Section 5.2, results in C = {S1,..., S5}, where S; = (D, BC, ABCDE),
Sy = (C,AB,ABCDE), S3 = (B, ACD,ABCDE), S; = (A, BD, ABCDE),
and S; = (CD, AC, ABCDE). Since these subspaces do not satisfy the desired
requirements on the RDCSSs, by using the relabeling

A — CD B — D cC — BD
D — A F — FE

we get S1=(A, B,ABCDE), So=(BD,C,ABCDE), S3=(D,ABC,ABCDE),
Sy =(CD,AD,ABCDE), and S5 = (ABD, ACD, ABCDE); these meet the re-
strictions on the three stages of randomization. Bingham et al.| (2008)) found the
same design via a computer search. Since Si, S92, and S3 intersect in ABCDE,
the error variance of ABCDFE effect estimator is a linear combination of all the
components. Constructing a half-normal plot with one point is not informative,
and hence ABCDE could not be assessed (see Table 1). Sacrificing the assess-
ment of ABCDE was not an issue here because the impact of the five-factor
interaction ABC'DFE was assumed to be negligible.

There are a few issues worth noting. First, sometimes lower order inter-
actions in the common overlap are unavoidable. For instance, consider a 2°
regular fractional factorial design setup with two stages of randomization, where
S1 D {A,B,C,D} and Sy D {E}. Since |S2| > 7 is required for significance
assessment of effects in Sy, if S1 = (A4, B,C, D) and Sz D {E} with |Sy| = 23 —1,
then |[S; N S| > 3. Moreover, since S; N Sy is a subspace of Si, at least one
2-factor interaction is contained in S7 N S5. This results in sacrificing the assess-
ment of the three pencils in S; N Ss and four pencils including one main effect
in S2\(S1 N S2). That is, the assessment of seven factorial effects including one
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main effect and at least one two-factor interaction have to be sacrificed, which
is certainly undesirable. Second, if a regular fractional factorial design has to be
constructed, sacrificing the assessment of even higher order interactions of the
base factorial design (constructed from the basic factors only) is not always de-
sirable; many good regular fractional factorial designs (e.g., minimum aberration
designs) tend to choose higher order interactions for the fractional generators.
As a result, minimizing the size of the overlap among the RDCSSs is also not
desirable. In the next section, we propose a strategy for choosing RDCSSs with
larger overlaps to allow the assessment of all effects.

4. A New Overlapping Strategy

The key idea in this section is that when an overlap among the RDCSSs is
unavoidable, the size of the overlap itself can be made large enough to allow anal-
ysis of all the factorial effects. That is, we can use the overlap to our advantage
rather than being forced to sacrifice the assessment of the pencils therein.

In Example 1, since the design was a full factorial, sacrificing the assessment
of a b-factor interaction was possible. If instead, a fractional factorial was to
be performed, one might construct a design by assigning the added factors to
the higher order interactions of the basic factors. Example 2 presents a scenario
where a larger overlap leads to a better design.

Example 2. Consider the plutonium alloy example in Example 1 (Section 3).
Suppose the experimenter wishes to introduce two additional factors (F,G) at
the second stage of randomization without increasing the run size (i.e., a 272
fractional factorial experiment). If we consider the randomization structure of
Example 1 for the base factorial design, the minimum aberration design has
resolution IV with fractional generators F' = ABDFE and G = ACE. This leads
to sacrificing the assessment of FC = ABCDE, as it is common to all S;. This
is certainly undesirable, as two-factor interactions are of utmost priority.

Instead of minimizing the overlap, we suggest finding a design with large
enough overlap to construct a separate half-normal plot for the pencils in the over-
lap. For instance, the desired 27~2 regular fractional factorial split-lot design with
3 stages of randomization can be constructed by defining S1=(A, AB, DE, ACD),
So=(C,AB,DE,ACD) and S3 = (D, AB, DE, ACD) with the same fractional
generators F' = ABDFE and G = ACE. The resulting design has minimum aber-
ration and allows the assessment of all the factorial effects using four separate
half-normal plots (Table 2).

A key feature of a good overlapping strategy is that all non-disjoint subspaces
should have a common overlap. This keeps the number of half-normal plots small,
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Table 2. The sets of effects having equal variance in the 22 split-lot design.

Effects Variance Degrees of Freedom
S1\(AB, DE, ACD) 207 + Lo 8
So\(AB, DE, ACD) 203+ Lo 8
S3\(AB, DE, ACD) 03 + %o’ 8
(AB,DE, ACD) g—;(of + 03 +0}) + 5507 7

Table 3. The ANOVA table for the battery cell experiment.

Effects Variance Degrees of Freedom
S1 NS, 3—20% + 3—20% + 3502 1
S1\(S1 N Sa) 207 + Lo 14
S5\ (S N Sa) 202 + Lo 6
P\(S1 U Ss) 73502 42

i.e., with m stages of randomization, at most m + 2 half-normal plots are needed
to assess the significance of all the pencils.

Given the number of independent basic and added factors and the random-
ization restrictions, the existence and construction of designs with large enough
overlap is not straightforward. The RDCSSs are also often stipulated by the
experimenters and are likely to be of different sizes (see Example 3), thereby
complicating matters.

Example 3. Consider the battery cell experiment in [Vivacqua and Bisgaard
(2004)). In this setup, a company manufacturing electric batteries was interested
in identifying the factors that could have significant impact on the open circuit
voltage of batteries. A 2% factorial experiment was performed, where the man-
ufacturing took place in a two-stage process: (a) assembly - characterized by
S1 D {A,B,C, D}, and (b) curing - characterized by Sy D {E, F'}. The original
design used S; = (4, B,C,D) and Se = (E,F). Since |S2| = 3 and the half-
normal plots require more than six effects per plot, the effects in Sy could not be
assessed. One could instead use a design with Sy = (E, F, ABCD) to allow the
assessment of all factorial effects except ABCD (see Table 3).

Since the minimal (¢ — 1)-cover approach focusses on projective subspaces of
equal size only, it is not possible to appeal to related results. A new geometric
structure, a star, is proposed in the next section. This is quite general and
accommodates unequal sized RDCSSs. We revisit Example 3 in Section 5.2,
where stars are used to construct similar designs with unequal sized RDCSSs.
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5. Stars and RDCSSs

The geometric structure called a star was introduced (Shaw and Maks| (2003]) )
for a set of 1-dimensional projective subspaces with a common overlap on a point
in PG(p — 1,2). Here, we first propose a generalization of the star to (¢t — 1)-
dimensional subspaces of P = PG(p — 1, q), for arbitrary 1 < ¢ < p and prime or
prime power ¢, and then to subspaces of unequal sizes. Next, we develop results
for the existence and construction of stars in P. The designs constructed allow
large overlaps that facilitate the assessment of all factorial effects.

A star with equal sized subspaces consists of two components: (i) a set of
(t — 1)-dimensional subspaces (m;’s) in P that we call rays of the star, and (ii)
the common overlap on a (tp — 1)-dimensional subspace (7, ), called the nucleus
of the star, where tg < t < p. Such a star is also a (t — 1)-cover of P if its rays
cover the effect space P.

Definition 2. A star St(u,m,m,) is a set of p rays consisting of (¢ — 1)-
dimensional subspaces (m;’s) of P = PG(p — 1,q), and a nucleus my,, where
T, (to < t) is a (t9p — 1)-dimensional subspace of P contained in each of the
rays.

If a star Q = St(u, m¢, m,) exists in P = PG(p—1, ¢), the maximum number
of rays in € is given by (¢? — ¢'°)/(¢* — ¢'°). For a star with the dimension of
rays being fixed, the smaller the nucleus, the fewer the number of rays (u).

Stars can be further generalized for a set of subspaces of unequal sizes with a
common overlap. Suppose a star consists of exactly k distinct-sized rays. Let f;

be the number of rays with dimension (¢; —1), for i = 1, ..., k, with the common
overlap for every pair of rays a (tg — 1)-dimensional subspace of P. Such a star
can be denoted by St(fi,..., fei ™, ..., Tt ; T ), where the total number of rays

ispu= Zle fi- Hereafter, without loss of generality, let 0 < tg <t; <to <--- <
tr < p. A star is called balanced if all its rays are of the same size (i.e., k = 1),
otherwise it is called unbalanced and k > 2. Next, we establish the existence of
both balanced and unbalanced stars.

5.1. Existence of stars

If there exists a star that covers the entire effect space P = PG(u — 1, q), for
positive integer u > 1, one can select an appropriate subset of rays to construct
the desired set of RDCSSs. Thus, our results focus on the existence of stars that
cover P. It turns out that stars and spreads are very closely related in terms of
their geometric structure.

Definition 3. A (h1—1,...,h,—1)-spread S of P = PG(u—1,q) is a collection
of u pairwise disjoint subspaces S;,i = 1,..., u, such that |S;| = (¢" —1)/(¢—1)
and P = U?lei.
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Rains, Sloane and Stufken| (2002) refer to such a (hqy —1,...,h, — 1)-spread
as a mixed spread of strength 2. If hy = --- = h, (= t, say) then a (hy —
1,...,h, — 1)-spread reduces to a (t — 1)-spread; otherwise, we call it a mixed
spread of PG(u — 1,q). Though the existence of a (¢t — 1)-spread of P is trivial
and well established (Andrél (1954)), determining the existence of a mixed spread
is nontrivial.

Lemma 2. For the existence of a (h1 —1,...,h, —1)-spread S of PG(u—1,q),
the following conditions are necessary:

(i) ¢"—1=30,(d" —1),
(ii) hi +hj <u for everyi #j (4,5 =1,...,1).

Proof of Lemma 2(i) follows trivially from the definition of a spread, and
Lemma 2(ii) comes from Ranjan, Bingham and Dean| (2009, Thm. 6). The con-
ditions in Lemma 2 are not sufficient. For example, let u =5,¢ =2, and p = 11,
where hy = -+- = hjgp = 2 and hy; = 1. Then both Lemma 2(i) and (ii) hold. If
such a (hy —1,...,h, — 1)-spread exists, then following [Wu, Zhang, and Wang
(1992), we would get an orthogonal array L3z(4!° x 21) of strength two and hence
L32(4'°) of strength two, which does not exist due to the Bose and Bushl (1952)
bound. To our knowledge, no necessary and sufficient conditions are known for
the existence of a mixed spread in PG(u — 1,q) for arbitrary positive integer u
and prime or prime power ¢q. Nevertheless, see in Section 5.2, the cases that are
of interest in statistical considerations can be completely settled. Next, we show
the equivalence between a star and a spread.

Lemma 3. The ezistence of a star Q= St(f1,..., fu; Ty, ..., T m) in PG(p—
1,q), that is also a cover of PG(p — 1,q), is equivalent to the existence of a
(hi—1,...,hy — 1)-spread S of PG(u —1,q), where uw = p — to, and for each i,
fi is the number of h;’s that are equal to t; — to.

Proof. For any 0 < ty < p, there exist two disjoint subspaces U; and Uy in
PG(p —1,q) such that [t4| = (¢ —1)/(g— 1) and [Us| = (¢t —1)/(¢ —1). If
there exists a (hy —1,...,h, — 1)-spread S of Uy, a star Q can be constructed
with nucleus U; and the set of rays defined by {R; = (U1,S5;) | S; € S, 1 < i < u}.

Now suppose, there exists a star Q = St(fi,..., fu; 7, ..., T, 7Tr,) that
covers PG(p — 1,q). Without loss of generality, let U; = m, = (F1,..., Fy,) be
the nucleus and Uy = (Fiy41, ..., Fp), where the Fj, i = 1,...,p form a basis for

PG(p —1,q). Then the set of u = Zle fi rays of © can be used to construct
a(h1—1,...,hy, —1)-spread S = {R; NU2| R; is aray of Q, 1 < i < pu} of Us.
Thus, the existence of the star €2 and the spread S are equivalent.

Combining Lemma 2 and Lemma 3, we obtain necessary conditions for the
existence of a possibly unbalanced star that is also a cover of PG(p — 1, q).
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Lemma 4. For the existence of a star Q = St(fi,..., [u; Ty, Tt Tey) 00
P = PG(p—1,q) that is also a cover of P, the following conditions are necessary:

(i) ¢~ —1=31, filg" 0 —1),
(ii) t; +tj —to <p foreveryi#j (i,j=1,...,k),
(iii) 2t; — to < p for every i such that f; > 2.

The conditions in Lemma 4are not sufficient. In the special case of balanced
stars, however, Lemma 3 suggests that a balanced star St(u, m, m,) covering P
exists if and only if there exists a (¢t — tg — 1)-spread of PG(p —top — 1,q). In
conjunction with a result in [André| (1954)), this leads to the following lemma.

Lemma 5. There exists a balanced star St(u,m:, m,) in P = PG(p — 1,q) that
covers P, if and only if (t — to) divides (p — to). Furthermore, if (t — to) divides
(p — to), the number of rays is u = (¢gP~% — 1) /(g% —1).

Corollary 1. For everyt (2 <t <p) andty =t—1, there exists a balanced star
St(p, m, 7)) in P = PG(p—1,q) that covers P, where = (¢P~Ft —1)/(q—1).

Although most of the results developed in this section focus on the general
scenario (i.e., the existence of St(f1,..., fu; e, ..., T, ;T ) for k> 2), balanced
stars are more useful for designs with relatively smaller run size. Unbalanced
stars that are useful from statistical perspective tend to have large run sizes. For
instance, for a 2P factorial design, unbalanced stars that lead to informative half-
normal plots must contain at least 64 experimental units, since S;’s of unequal
sizes that overlap on at least 7 effects force t; > 4 and to > 5 (as to > t1). This
further implies that p > 6. While this may appear to apply for large designs,
as we have previously noted, multistage experiments are frequently larger than
completely randomized designs.

5.2. Construction

We first consider balanced stars covering P. By Lemma 5, such a star ) =
St(p, 7, m,) exists if and only if (¢ — ¢o) divides (p — tp). If this holds, then the
construction is precisely as in the first paragraph of the proof of Lemma 3 via
consideration of disjoint subspaces U; and Us. Cyclic projectivities (Hirschfeld
(1998))) can be used to construct a (t — ty — 1)-spread of Us. For instance, in
Example 1 (contd.), Uy = {ABCDE} and Us = (A, B,C, D). The 1-spread of
U, obtained by using the primitive polynomial w* + w + 1 is shown in Table 4
(see Ranjan, Bingham and Dean| (2009, Sec. 5.1) for details).

In Example 2 also, the design proposed is a star St(3,m4,m3) with U; =
(AB,DE, ACD) and Uy = (A, C). The 0-spread of U, given by {{A},{C},{AC}},
was used to construct the three rays (or the three subspaces) S, So, and Ss.
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Table 4. A 1-spread of PG(3,2).
S So Ss Sy Ss
D C B A CD
BC AB ACD BD AC
BCD ABC ABCD ABD AD

In this approach the experimenter has control over the choice of pencils in
the nucleus, but the spread construction limits the composition of the rays to
some extent. If necessary, as in Example 1 (contd.), one can find an appropriate
collineation (e.g., Batten| (1997); Ranjan, Bingham and Dean| (2009))) to trans-
form the spread (i.e., rays of Q) to meet the experimenter’s requirement for the
RDCSSs.

Turning to unbalanced stars, recall that the conditions in Lemma 4 are not
sufficient. While this precludes the development of a general construction, the
cases that are of practical interest from statistical considerations can easily be
constructed. We discuss the existence and construction of two-level factorial
designs that are obtained from stars covering PG(p — 1,2), where p < 7. In
terms of a star St(f1,..., fe; T, .., T, T, ), the cases of interest are as follows:

(a) p=4,5,6,T;to=1,t; >3 (i =1,...,k),
(b) p=5,6,T;tg=2,t; >4 (i=1,...,k),
k),
k),
(e) p=Tyto=5,t,>6 (1 =1,...,k).

The cases listed do not exhaust all feasible configurations of the parameters,
but the remaining cases are either trivial or do not lead to good designs. For
instance, consider the scenario with tg = 2,¢; = 3 for each ¢ and p = 4. From
Corollary 1, there exists a star St(3, w3, m2) that covers PG(3,2). Denoting the
rays of this star by Ri, Ra, R3, note that |R; N R;| = 3 and |R;\(R; N R;)| = 4
for all ¢ # j. The resulting design is not useful because none of the half-normal
plots has a sufficient number of effects. In general, designs with ;5 = 2 lead to
sacrificing the assessment of at least three factorial effects that are assigned to
the nucleus of the star. We consider the interesting cases one-by-one.

(al) p=4,to=1,t; >3 (i =1,...,k). Since t; < p, the only possibility is t; = 3

for all 7. Nonexistence follows from Lemma 5.

(a2) p = 5,t9p = 1,t; > 3 (i = 1,...,k). Then, ¢; is either 3 or 4. Lemma 4(i)
yields 15 = 3f; + 7fa2, with the only solution for (fi, f2) as (5,0). This

corresponds to t; = 3 for each 4, and existence follows from Lemma, 5.
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(a3) p = 6,t9 = 1,¢t; > 3 (¢ = 1,...,k). In this case, t; can be either 3, 4
or 5. Lemma 4(i) yields 31 = 3f; + 7f2 + 15f3, and the only solution for
(f1, f2, f3), meeting Lemma 4(ii) and (iii) as well, is (8,1,0). The existence
and construction for (fi, fa, f3) = (8,1,0) follows from Example (iii) after
Lemma 1 in [Rains, Sloane and Stufken| (2002).

(ad) p=T,tg=1,t;, >3 (¢ =1,...,k). The choices for t; are 3, 4, 5 and 6.
From Lemma 4(i), 63 = 3f1 + 7f2 + 15f3 + 31f4, and the only solutions
for (f1, fa, f3, f4), meeting Lemma 4(ii) and (iii) as well, are (16,0, 1,0),
(0,9,0,0), (7,6,0,0),(14,3,0,0), and (21,0,0,0). The existence and con-
struction for the first four cases follow from |[Rains, Sloane and Stufken
(2002, Theorem 13), while the last case corresponds to a balanced star,
and its existence and construction follow from Lemma 5.

(bl) p=>5,tg =2,t; =4 (i =1,...,k). Nonexistence follows from Lemma 5.

(b2) p =6,tg = 2,t; > 4 (i = 1,...,k). The choices for ¢; are 4 and 5. From
Lemma 4(i), 15 = 3f1 + 7f2. This is the same scenario as in (a2).

(b3) p="T,tg =2,t; >4 (i =1,...,k). In this case, t; = 4,5 or 6. Lemma 4(i)
yields 31 = 3f; + 7f2 + 15 f3, leading to the same scenario as in (a3).

(cl) p=>5,tg=3,t; =4 (i =1,...,k). Existence follows from Corollary 1.

(c2) p=6,tg = 3,t; >4 (i = 1,...,k). The options for ¢; are 4 and 5. The
necessary condition in Lemma 4(i) yields 7 = f; + 3f2, and the only so-
lutions for (f1, f2) that meet Lemma 4(ii) and (iii) as well are (7,0) and
(4,1). For each of the two cases, the existence and construction follow in a
straightforward manner; see e.g., [Wu, Zhang, and Wang| (1992).

(c3) p=T,to=3,t; >4 (i =1,...,k). Thent; =4,5 or 6. Lemma 4(i) yields
15 = f1 + 3f2 + 7f3, and the only solutions for (fi, f2, f3) meeting Lemma
4(ii) and (iii) as well are (8,0,1) and (15 — 37, 4,0), 0 < j < 5. For each of
these, existence and construction follow from [Wu, Zhang, and Wang] (1992]).

(dl) p=6,tg=4,t; =5 (i =1,...,k). Existence follows from Corollary 1.

(d2) p=T,to =4,t; > 5 (i =1,...,k). Thus ¢t; = 5 or 6. Lemma 4(i) yields
7 = f1 + 3f2, leading to the same scenario as in (c¢2).

() p=T,to=5,t; =6 (i=1,...,k). Existence follows from Corollary 1.

We now revisit Example 3 and illustrate how the use of an appropriately

chosen star can entail a better experimental plan in the sense of making all
half-normal plots informative, thus allowing inference on all factorial effects.

Example 3(contd.) Among all cases (al)—(e), only (a3), (c2), and (d1) meet
the requirement that p = 6 with ¢; > 4 for at least one ray of the star. The design
proposed in Example 3, given by S; = (A, B,C, D) and Sy = (E, F, ABCD), is
an example of St(8,1; 73, my;m) discussed in (a3). This star leads to sacrificing
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the assessment on the factorial effects corresponding to the pencil in the nucleus
{ABCD}, which could be an issue if one wishes to construct a regular fractional
factorial design with the added factor being in S or Ss. However, if more stages of
randomization are to be introduced with added factors in them, St(8, 1; 73, m4; 71)
can serve the purpose.

Alternate designs can be constructed using St(4, 1; w4, w5; 73) or St(3; 75; m4),
the existence and construction of stars is discussed in (¢2) and (d1), respectively.
These two stars meet the size requirement and lead to construction of fractional
factorial designs that allow assessment of all the factorial effects.

The use of a star in designing the overlapping structure among the RDCSSs
turns out to be advantageous, but there is a tradeoff between number of effects
that can be assessed and the variance of the effect estimates. The effects in the
common overlap (7,) are estimated with a relatively large variance compared to
other effects. If the design under consideration is an unreplicated full factorial,
one may prefer to sacrifice a few effects by minimizing the overlap. On the other
hand, if unreplicated fractional factorial designs are required, sacrificing higher
order interactions of the basic factors is not desirable, and stars with relatively
large overlap as in Examples 2 and 3 (contd.) are more useful.

6. Balanced Stars and Minimal (¢ — 1)-covers

We begin by establishing a connection between balanced stars and minimal
covers, introduced in Section 3, and then indicate its applications.

Lemma 6. Let p =kt + s, where 0 < s <t <p and k > 1. Then there exists a
minimal (t —1)-cover C of P = PG(p—1,q) that consists of ¢*((¢* — 1)/(¢* — 1)
—1) disjoint (t — 1)-dimensional subspaces of P and a star St(q® + 1,7, m—s) in
P.

Proof. Let U be a (t+ s—1)-dimensional subspace of P. Following Corollary 2.3
in [Eisfeld and Stormel (2000), there exists a collection S of ¢*[(¢* — 1)/(¢t — 1) —
1] disjoint (¢ — 1)-dimensional subspaces of P which do no intersect ¢/ and form a
partition of P\U. Moreover, by Lemma 5, there exists a star Q = St(u, 7, m—s)
in U that also covers U, and the number of rays in  is 4 = ¢° + 1. Thus, the
disjoint (¢ — 1)-dimensional subspaces in S, together with the rays of Q form a
minimal (¢ — 1)-cover C of P, as envisaged in Lemma 1.

In particular, for £ = 1, Lemma 6 implies the existence of a minimal (¢ —1)-
cover of P = PG(t+s—1, q) which equals St(¢°+1, my, m—s) in P. It is, however,
important to note that in many practical situations, one can find stars that are
not minimal covers but perform better in the present context than the stars that
are. For instance, both Q; = St(7,m4,m3) and Qo = St(5, 74, ma) cover PG(5,2).
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Although €5 is a minimal cover and €21 is not, the nucleus of € is large enough
to allow an informative half-normal plot, while that of €2 fails to do so.

Returning to Lemma 6, in the same spirit, one can consider replacing the
star Q = St(¢® + 1,7, m—s) in the minimal cover C by a star of larger nucleus,
whenever the nucleus of €2 is too small to allow an informative half normal plot.
The resulting geometric structure, say C*, has more (¢t —1)-dimensional subspaces
than C and can entail greater flexibility in the sense of accommodating more
RDCSSs, if required. The idea of replacing the star in C has potential applications
in areas such as microchip experiments where one can afford to have a reasonably
large number of experimental units. For instance, if p = 10, ¢ = 2, and t = 4,
then the minimal 3-cover C in Lemma 6 consists of 64 disjoint 3-dimensional
subspaces and a star St(5,my,m2). If we modify C by using a star St(7,m4, 73)
instead of St(5, 74, m2), the resulting structure C* would allow assessment of all
the effects in P = PG(9,2).

7. Discussion

We have proposed two classes of designs for efficient planning of full and
fractional factorial experiments under multistage randomization: designs that
adapt minimal (¢ — 1)-covers, and designs obtained from stars. It is seen that, in
contrast to minimal covers, stars enjoy considerable flexibility with regard to the
size of the overlap and hence have much greater scope in assessing the significance
of factorial effects.

As a practical guideline, if the assessment of all the effects is required, or a
few of the RDCSSs are of unequal size, stars can be used to construct designs
with multistage randomization. Whereas, since the effects in the common overlap
(nucleus of the star) are estimated with a larger effect variance, if one can sacrifice
the assessment of a few higher order interactions and the desired RDCSSs are of
equal sizes, minimal (¢ — 1)-covers can be used to construct designs.

Acknowledgement

The work of PR and DB were supported by grants from the Natural Sciences
and Engineering Research Council of Canada. RM’s research was supported by
a grant from the Indian Institute of Management Calcutta.

References

André, J. (1954). Uber nicht-desarguessche ebenen mit transitiver translationsgruppe. Math. Z.
60, 156-186.

Batten, L. M. (1997). Combinatorics of Finite Geometries. 2nd edition. Cambridge University
Press.



STARS AND FRACTIONAL FACTORIAL DESIGNS 1653

Bingham, D., Sitter, R., Kelly, E., Moore, L. and Olivas, J. D. (2008). Factorial designs with
multiple levels of randomization. Statist. Sinica 18, 493-513.

Bose, R. C. and Bush, K. A. (1952). Orthogonal arrays of strength two and three. Ann. Math.
Statist. 23, 508-524.

Daniel, C. (1959). Use of half normal plots in interpreting factorial two-level experiments. Tech-
nometrics 1, 311-341.

Dey, A. and Mukerjee, R. (1999). Fractional Factorial Plans. Wiley, New York.

Eisfeld, J. and Storme, L. (2000). (Partial) t-spreads and minimal t-covers in finite projective
spaces. Lecture notes, Universiteit Gent.

Hirschfeld, J. W. P. (1998). Projective Geometries over Finite Fields. Oxford University Press.

Jones, B. and Goos, P. (2009). D-optimal design of split-split-plot experiments. Biometrika 96,
67-82.

Mee, R. W. and Bates, R. L. (1998). Split-lot designs: Experiments for multistage batch pro-
cesses. Technometrics 40, 127-140.

Rains, E. M., Sloane, N. J. A. and Stufken, J. (2002). The lattice of N-run orthogonal arrays.
J. Statist. Plann. Inf. 102, 477-500.

Ranjan, P., Bingham, D. and Dean, A. (2009). Existence and construction of randomization
defining contrast subspaces for regular factorial designs, Ann. Statist. 37, 3580-3599.

Shaw, R. and Maks, J. G. (2003). Conclaves of planes in PG(4,2) and certain planes external
to the Grassmannian Gi 42 C PG(9,2). J. Geom. 78, 168-180.

Sun, D. X. Wu, C. F. J., and Chen, Y. Y. (1997). Optimal blocking schemes for 2" and 2" 77
designs. Technometrics 39, 298-307.

Vivacqua, C. A. and Bisgaard, S. (2004). Strip-block experiments for process improvement and
robustness. Quality Engineering 16, 495-500.

Wu, C. F. J., Zhang, R. and Wang, R. (1992). Construction of asymmetrical orthogonal arrays
of the type OA(s*, s™(s™)™1 ... (s™)™). Statist. Sinica 2, 203-219.

Department of Mathematics and Statistics, Acadia University, Wolfville, NS, Canada B4P 2R6.

E-mail: pritam.ranjan@acadiau.ca,

Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, BC, Canada
V5A 156.

E-mail: dbingham@stat.sfu.ca.

Indian Institute of Management Calcutta, Joka, Diamond Harbour Road, Kolkata 700 104,
India.

E-mail: rmukl@hotmail.com

(Received November 2008; accepted July 2009)


file:pritam.ranjan@acadiau.ca
file:dbingham@stat.sfu.ca
file:rmuk1@hotmail.com

	1. Introduction
	2. Background Review and Notation
	3. Minimal Overlap and (t-1)-covers
	4. A New Overlapping Strategy
	5. Stars and RDCSSs
	5.1. Existence of stars
	5.2. Construction

	6. Balanced Stars and Minimal (t-1)-covers
	7. Discussion

