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Abstract: Functional magnetic resonance imaging studies answer questions about

activation effects in populations of subjects. To begin with, this involves appro-

priate modeling of the fMRI data at the within-subject level. This is followed by

extending the model to multiple subjects. There have been several attempts toward

this extension, all of which have focused on inference on a single effect of interest

(e.g., fMRI response for one type of working memory). However, the existing lit-

erature does not seem to say much about the relevant inferential procedures when

multiple effects are of interest (e.g., response for four different types of working

memory). In particular, the within subject dependence of one activation effect on

another is an important issue with a multivariate repeated measures model. While

most standard statistical methods regard such correlation as a nuisance, to be ad-

justed for and then ignored, we develop two simple and intuitive tests to make

inference on the existence of such correlation. We demonstrate use of these tests

by application to an fMRI study of attention switching. These tests are different

not only from conventional tests for sphericity but also, more importantly, from

the likelihood ratio test (LRT) of the relevant hypothesis. We also discuss what

prompts us to look for tests different from the LRT.
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1. Introduction

Functional magnetic resonance imaging studies answer questions about acti-
vation effects in populations of subjects. To begin with, this involves appropriate
modeling of the fMRI data at the individual single-session level (e.g., Bullmore
et al. (1996), Woolrich et al. (2001), Worsley and Friston (1995)). This is fol-
lowed by extending the model to include data from multiple participants, treating
participants as a random effect. There have been several attempts toward this
extension by Holmes and Friston (1998), Worsley et al. (2002), Beckmann, Jenk-
inson and Smith (2003), Woolrich et al. (2004), and others. However, existing
‘massive univariate’ analysis tools such as SPM software (Friston et al. (2002),
FSL (Smith et al. (2004)), or AFNI (Cox (1996)) are geared toward providing
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inferences on a set of activation coefficients from a single contrast (i.e., whether
voxels are ‘activated’), not on dealing with covariance among multiple contrasts
(i.e., whether activations among several contrasts are correlated). Some software
packages provide facility for testing whether the multivariate mean of a set of
activation coefficients is nonzero (e.g., using an F -test across multiple contrasts
in SPM2). This is a test of the location of coefficients from several contrasts,
and a significant result indicates confidence that the set of contrasts produced
increases or decreases in activity on average. Here we are interested in developing
methods for testing the covariance of coefficients from several contrasts. In such
tests, a significant result indicates confidence that the activations across task
types are correlated. In brief, we seek a test for correlations among responses
evoked by different tasks, expressed over subjects. This can be regarded as a test
for non-sphericity induced by correlations or dependencies among task-dependent
responses at the between-subject level.

Let us illustrate this problem with a concrete example. Recently, we provided
support for the idea that multiple types of attention shifting increase activity in
the same voxels in parietal and posterior prefrontal cortices (Wager, Jonides,
Smith and Nichols (2005a)). One natural conclusion is that the same brain re-
gions are involved in different types of attention shifts. However, the analyses
that support this conclusion ignore a very important additional source of evi-
dence contained in the data; namely, whether individuals who show high activity
in a region in one shift type also show high activity in other shift types. Testing
correlations across measures of performance has been fundamental to the devel-
opment of theories of intelligence and cognitive function in psychology (Dempster
and Corkill (1999), Duncan et al. (1996), Kane and Engle (2003), Miyake et al.
(2000), Wager, Jonides and Smith (2006) and Sylvester, Lacey, Nee, Franklin and
Jonides (2005c)). The logic is that if measures are correlated, they are likely to
share common underlying mental abilities. Positive correlations across a range
of cognitive tasks, for example, is a primary basis for the notion of general fluid
intelligence (G) (Burgess et al. (1998), Duncan, Burgess and Emslie (1995), and
Duncan et al. (1996)). While measures of correlations across tasks are the ‘bread
and butter’ of many cognitive and social scientists, they have not been widely
applied to brain imaging data. Doing so would require tests of the form we
propose.

In this paper, we develop a test for whether activation contrast estimates are
correlated across a set of tasks. The method applies to data from N subjects on
q tasks (or contrasts of interest) measured at one brain voxel. A single summary
statistic provides an inferential test of the null hypothesis that activation for the
q contrasts is uncorrelated. We apply the method to each voxel in the brain to
generate whole-brain statistical parametric maps (SPMs) for the relatedness of
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activation measures on the set of q contrasts. The statistical analysis is developed
from first principles, and it avoids issues in earlier likelihood ratio tests (Neter et
al. (1996)) that rely on approximations based on asymptotic assumptions. While
the development of the test is motivated by application to brain imaging, it could
be applied to any set of data, i.e., behavioral performance data on a set of q tasks.

The organization of the paper is as follows. In Section 2, we describe the
attention shifting task design and the psychological hypotheses to be tested. In
Section 3, we describe our model, the data characteristics, and the statistical
formulation of the problem. In Section 4, we describe the inferential procedures
for the tests. In Section 5, we present results from the attention-switching data
set. In Section 6, we discuss the results and the tests, and highlight issues for
future work.

2. Task Design and Psychological Hypotheses

While the main purpose of this paper is to explicate a new statistical method
for analyzing covariance structures in brain imaging data, we illustrate the use-
fulness of the method by applying it to an empirical dataset to address questions
of theoretical interest in the domain of cognitive control. Previous work on
task switching and other executive functions has examined correlations in per-
formance across different types of executive tasks (Miyake et al. (2000), Salthouse
et al. (1998), Wager, Jonides and Smith (2006) and Ward, Roberts and Phillips
(2001)), and found that response latencies to switch attention from one object or
object feature to another are among the more reliable of the available measures
of cognitive control.

In a typical switching paradigm, an experimental participant must perform
a series of speeded judgments on some attribute of an object (e.g., the color,
shape, size, orientation, numerosity, etc.). Cues before or during the presenta-
tion of each stimulus in the series instruct the participant which attribute to
judge. On ‘no-switch ’ trials, the attribute judged (e.g., shape) is the same as on
the previous trial (e.g., shape), whereas on ‘switch’ trials, the attribute judged
(e.g., shape) is different that the one judged on the previous trial (e.g., orienta-
tion). A large number of studies have documented reliable increases in reaction
time and switch costs for ‘switch ’ trials compared with ‘no-switch’ trials. Re-
cently, we reported modest but quite reliable correlations among four types of
switching tasks (Wager, Jonides and Smith (2006)). Participants either switched
which of two attributes was judged (shape or orientation of a composite stimu-
lus) or which of two objects the judgment was applied to. We refer to these as
‘attribute’ and ‘object’ switching, respectively. Furthermore, in some blocks of
trials, objects were visible on-screen throughout the trials, whereas in others, ob-
jects disappeared after an initial learning period (usually 1-2 s) and all judgments
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were made from memory. We refer to these as ‘external’ switches and ‘internal’
switches of attention, respectively. Thus, four types of attention switching were
crossed in a 2 × 2 factorial design, with switching type (Attribute or Object)
crossed with locus of representation (External or Internal).

We used this task in a recent fMRI study using this paradigm (Wager et
al. (2005a)). Participants (N = 39) performed switch and non-switch trials of
each type, which were pseudo-randomly intermixed in a rapid event-related de-
sign. The brain measure of interest for each switch type was fMRI blood-oxygen
level dependent (BOLD) activation to switch trials in each type, contrasted with
matching non-switch trials in each type. More details about the acquisition and
analysis methods can be found in Wager et al. (2005a). Here, we focus on analysis
of covariances among activation coefficients for the four switch types.

The procedures we develop test the omnibus null hypothesis of no corre-
lations among tasks. They may reveal brain regions associated with common
mechanisms for different types of task switch in a way that simply co-localizing
activations in different switch types cannot. The logic is that if a brain area
encodes a mechanism common across tasks, and there are reliable individual
differences in how strongly this mechanism is engaged, then a participant who
activates more on one task should also activate more on the others. This in-
formation can only be obtained by analyzing covariances among task activation
coefficients.

Importantly, analyzing covariances in brain activity among tasks may pro-
vide new information that cannot be obtained by analyzing covariances in task
performance alone. Correlations among performance across cognitive control
tasks, while often reliable, have been notoriously low (Rabbitt and Lowe (2000)
and Robbins et al. (1998)). This is undoubtedly so partly because performance
measures on switching and other control tasks reflect multiple underlying pro-
cesses, each presumably implemented in different brain mechanisms, as illustrated
conceptually in Figure 1 for task switching. Some underlying processes might be
common to a set of tasks (top left) and will influence brain activation across tasks
in the same way. In switching, for example, good performance (low switch costs)
may be obtained by efficiently ignoring irrelevant perceptual information, effi-
ciently applying stimulus-response mapping rules, or maintaining a strong task
set, among other factors (Mayr and Kliegl (2000), and Rubinstein, Meyer and
Evans (2001)). If individuals are consistently good or poor at these processes,
any of them might constitute a common factor. Other mental processes might
be task-specific (bottom left) and either unique to one task type (as shown) or
common to a subset of tasks. For example, processes related to mental imagery
might be shared only by internal switching (when imagery is likely to be used to
guide choices).
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Figure 1. Schematic diagram illustrating how multiple mental processes
(circles) may influence performance. The diagram illustrates common factors
(top) that influence measured brain activity in different tasks (center boxes)
in the same way, and task-specific factors (bottom) that influence brain
activity only for one task or a subset of tasks. Behavioral performance
(right) is a composite measure reflecting the combined influences of both
common and task-specific factors. For this reason, examining correlations in
brain activity across tasks may yield more interpretable results closer to the
underlying mental processes than would examining correlations in behavioral
performance.

Overall behavioral performance (Figure 1, right) thus reflects multiple, po-
tentially independent factors. To the degree that different switching tasks differ-
entially load on these factors, correlations in performance measures will be low.
However, activation in a particular region of the brain is more likely to reflect
engagement of one particular cognitive process. Thus, testing correlations across
tasks in the brain may reveal the loci of common processes before they are mixed
with variability due to other factors.
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3. Model, Data and Statistical Formulation of the Problem

We work with a special case of the two-level linear mixed-effects model (e.g.,
Beckmann, Jenkinson and Smith (2003), Woolrich et al. (2004)). For a single
voxel and for the kth (k = 1, . . . , N) individual: (a) the n × 1 vector of fMRI
observations is denoted by Yk, (b) the corresponding vector βk of activation
coefficients is of size p × 1, (c) the corresponding design matrix, denoted X, is
of size n × p. For our particular data-set, n = 1, 440, N = 39, and p = 48. We
adopt the random-effects model (cf., Laird and Ware (1982))

Yk = Xβk + εk, εk ∼ Nn(0, σ2In), k = 1, . . . , N,

βk = β + δk, δk ∼ Np(0, Σ),
the errors ε1, . . . , εN , δ1, . . . , δN are independent.

(3.1)

The first equation assumes that the data have been pre-whitened; the second
equation expresses variation of the activation coefficients as a function of k. No-
tice that the design matrix X does not depend on k and that the variance σ2

also does not depend on k. However, σ and Σ do depend on the voxel under
consideration.

Our goal is to be able to test whether the dispersion matrix of a set of
contrasts of the vector βk of activation parameters is diagonal. Thus, if C is a
given q × p matrix (q = 4, in our data-set) whose rows give the contrasts under
consideration, we want to test if the dispersion matrix CΣCT of Cβk is diagonal.

Notice from the first equation of (3.1), that the ordinary least squares es-
timate of βk and the corresponding dispersion matrix are β̂k = (XTX)−1XTYk

and Var(β̂k) = σ2(XTX)−1, respectively. Consequently, an estimate of Cβk is
given by Zk

def= Cβ̂k = DYk, where D
def= C(XTX)−1XT. Write Var(Zk) = σ2U,

with U = C(XTX)−1CT, and let γk = Cβk, γ = Cβ. We pre-multiply both sides
of the first equation of (3.1) by D, and both sides of the second equation of (3.1)
by C, to obtain

Zk = γk + ηk, ηk
def= Dεk ∼ Nq(0, σ2U), k = 1, . . . , N,

γk = γ + ζk, ζk
def= Cδk ∼ Nq(0, Γ), Γ def= CΣCT,

η1, . . . , ηN , ζ1, . . . , ζN are independent.

(3.2)

Notice that the model specified by (3.2) is not identifiable, as the distribu-
tion of (Z1, . . . , ZN ) under (γ, σ1, σ2

2U) is same as that of (Z1, . . . , ZN ) under
(γ, σ2, σ

2
1U). So, we assume in (3.2) that σ is known and equals σ0. In other

words, Zk
i.i.d.∼ Nq(γ, σ2

0U + Γ), k = 1, . . . , N. The assumption that σ is known is
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reasonable, as an accurate estimate of σ can be obtained. We discuss in Section
4.3 how we choose and fix σ0.

We formulate now our question in terms of Γ as

H0 : Γ is diagonal against H1 : Γ is non-diagonal. (3.3)

4. Statistical Analysis: Two Simple and Intuitive Tests for (3.3)

We suggest in the appendix that finding even a tractable expression for the
LRT for (3.3) is quite formidable, not to speak of the difficulty of finding its
asymptotic distribution. Observe from Zk

i.i.d.∼ Nq(γ, σ2
0U + Γ), k = 1, . . . , N,

that conventional tests for non-sphericity (see, e.g., Section 10.7 of Anderson
(2003)) are not applicable for testing (3.3). We need to get rid of U . In view of
these facts, in what follows we develop two simple and intuitively plausible tests
for the problem at (3.3).

Write U = ((uij)), Γ = ((γij)), and take Λ = σ2
0U + Γ = ((λij)), say, where

λij = σ2
0uij + γij . We can write (3.3) as

H0 : λij = σ2
0uij for all i < j against H1 : λij 6= σ2

0uij for some i < j.

(4.1)
It should be noted that here #{(i, j) : 1 ≤ i < j ≤ q} = q(q − 1)/2 = 6. In

other words, H0 is associated with 6 hypotheses, corresponding to the elements
in the upper (or lower) triangle of Γ.

Let us recall the following result about asymptotic distribution of the entries
of a sample covariance matrix, when samples are being drawn from a multivariate
normal distribution.

Theorem.(Anderson (2003, p.87)) Let AN
def=

∑N
α=1(Xα − X̄N )(Xα − X̄N )T,

where X1, X2, . . . are i.i.d. Np(µ,Ψ) and N X̄N
def=

∑N
α=1 Xα. Then the limiting

distribution of BN
def= (

√
N − 1)−1[AN − (N − 1)Ψ] = ((bij,N )) is normal with

mean 0 and covariances E(bij,N bkl,N ) = ψikψjl + ψilψjk.

Corollary. By taking i = k, j = l, in the theorem above, it follows that the
asymptotic distribution of bij,N is univariate normal with mean 0 and variance
ψiiψjj + ψ2

ij .

We make use of the theorem and the corollary to propose two simple and
intuitively plausible tests for (3.3). Let us define the q×q matrices SN = ((sij,N ))

and TN = ((tij,N )) by (N−1)SN
def=

∑N
α=1(Zα−Z̄N )(Zα−Z̄N )T, where N Z̄N

def=
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∑N
α=1 Zα, and TN

def=
√

N − 1 [SN − Λ]. It should be emphasized that these
matrices refer to one voxel, and calculations are repeated for each one.

4.1. The first test for (3.3)

The asymptotic distribution of tij,N =
√

N − 1 (sij,N−λij) =
√

N − 1 (sij,N−
σ2

0uij − γij) is univariate normal with mean 0 and variance λiiλjj + λ2
ij =

(σ2
0uii +γii)(σ2

0ujj +γjj)+(σ2
0uij +γij)2, and a consistent estimate of λiiλjj +λ2

ij

is sii,N sjj,N + s2
ij,N . Also, under H0, λij = σ2

0uij . Therefore, under H0,

vij,N
def=

√
N − 1 (sij,N − σ2

0uij)√
sii,N sjj,N + s2

ij,N

d−→ N(0, 1) as N → ∞. (4.2)

This enables us to construct a test for

Hi,j
0 : λij = σ2

0uij against Hi,j
1 : λij 6= σ2

0uij , (4.3)

for every fixed i < j. We implement the test for every pair (i, j) with i < j and
employ Bonferroni’s inequality to test (3.3). The number of hypotheses of the
type (4.3) associated with (3.3) is 6 and so application of Bonferroni’s inequality
is not too conservative in this context. The details are given below.

Fix α. We reject H0 if

TN,1
def= max

i<j
|vij,N | = max

i<j

∣∣∣∣∣∣
√

N − 1 (sij,N − σ2
0uij)√

sii,N sjj,N + s2
ij,N

∣∣∣∣∣∣ > z1− α
12

, (4.4)

where zp is the pth quantile of standard normal distribution. For example,
z1−α/12 = 2.6383 (3.1440), when α = 0.05 (0.01).

4.2. The second test for (3.3)

The previous test uses the maximum of the off-diagonal elements of SN ,
suitably normalized, while the next test combines these elements to provide a
test for (3.3). Let

WN =
√

N − 1



s12,N − σ2
0u12

s13,N − σ2
0u13

s14,N − σ2
0u14

s23,N − σ2
0u23

s24,N − σ2
0u24

s34,N − σ2
0u34


, (4.5.1)
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and, by using the simplified notation sij in place of sij,N ,

∆̂N =



s11s22 s11s23 s11s24 s12s23 s12s24 s13s24

s11s33 s11s34 s12s33 s12s34 s13s34

s11s44 s12s34 s12s44 s13s44

s22s33 s22s34 s23s34

s22s44 s23s44

s33s44



+



s2
12 s13s12 s14s12 s13s22 s14s22 s14s23

s2
13 s14s13 s13s23 s14s23 s14s33

s2
14 s13s24 s14s24 s14s34

s2
23 s23s24 s24s33

s2
24 s24s34

s2
34


. (4.5.2)

Proceeding essentially along the same lines as in Section 4.1, it can be seen that,
under H0, the asymptotic distribution of (as N → ∞)

TN,2
def= W T

N∆̂−1
N WN (4.5.3)

is chi-square with d = 6 degrees of freedom. This fact enables us to construct a
test for (3.3). The details are given below.

Fix α. We reject H0, if
TN,2 > χ1−α,6, (4.5.6)

where χp,ν is the pth quantile of χ2 distribution with ν degrees of freedom. For
example, χ1−α/6 = 12.5916 (16.8119) when α = 0.05 (0.01).

4.3. Choice of σ2
0

We have assumed earlier (cf., last but one paragraph of Section 3) that σ is
known to be σ0. We describe below our choice of σ0.

Consider the maximum likelihood estimate of σ2 from each of the models
Yk = Xβk + εk, k = 1, . . . , N , where ε1, . . . , εN are i.i.d. Nn(0, σ2In) errors. This
estimate is given by (cf. (3.1))

σ2
k,0 =

Y T
k (In − H)Yk

n
, H

def= X(XTX)−1XT, k = 1, . . . , N. (4.7.1)

We choose

σ2
0 =

∑N
k=1 σ2

k,0

N
=

∑N
k=1 Y T

k (In − H)Yk

Nn
(4.7.2)

Thus, the separate estimates of σ2 are averaged to get σ2
0. This is expected to

be a fairly accurate estimate of σ2 as n is large. In passing, we note that this
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choice of σ2 makes use of the Yk’s and not the Zk’s. We also note the possible
dependence of σ0 on the voxels.

4.4. Correction for multiple comparisons

The test statistics described above correct for multiple tests on covariances
within a single voxel. For neuroscientific inference in cases where the technique is
applied over many voxels, additional spatial correction for multiple comparisons
is desirable. Such a correction using False Discovery Rate (FDR; Genovese, Lazar
and Nichols (2002)) control may be easily applied to p-values generated from our
test statistics. However, statistical power decreases dramatically both with the
number of tasks and the number of voxels tested. Alternatively, if anatomically
specific hypotheses are generated a priori (e.g., based on meta-analysis of previous
work; see Wager, Jonides and Reading (2004)), less stringent correction may be
imposed.

Here, we were primarily interested in demonstrating the technique, and we
thus used a somewhat lenient threshold that would provide high-enough sensitiv-
ity to compare results with those expected from previous literature, restricting
our interpretations to regions about which a priori anatomical hypotheses were
available. Thus, our results are thresholded at p < 0.01 (corrected for multiple
comparisons across tasks, but not across space) with an extent threshold of 20
contiguous voxels. However, we note that for the first test statistic, FDR correc-
tion across space at q < 0.05 yielded a threshold comparable to that employed
here (p < 0.012), but there were no significant regions correcting across both
space and pairs of tasks. For the second test, q < 0.05 FDR control yielded a
threshold of p < 0.0001, exceeded by 63 voxels.

We note, in passing, that the FDR correction procedure takes into account
correlations among parameter estimates across space, and results exist that pro-
vide valid FDR control with increased sensitivity when positive dependence is
assumed (as is typical of fMRI data).

We conclude Section 4 by noting the following.

(a) The stability of covariance estimates relies both on the number of observations
per participant (n = 1, 440 in our experiment) and the number of participants
(N = 39 in our study). Because the degrees of freedom at the second level is
typically much smaller than at the first level, N will typically be the limiting
condition for stability of contrast estimates. Whereas the test is valid for
smaller samples (e.g., N = 10−20, currently typical of neuroimaging studies),
power is expected to increase greatly as N increases. We recommend N ≈ 40
as a minimum sample size for tests on second-level covariance.
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(b) If q is moderately large, then use of Bonferroni’s inequality in the first test
may be conservative. Also, in the second test, we are effectively testing for
the mean of a q(q − 1)/2 = 6-dimensional approximately normal variable,
with sample size N = 39. This may suffer from the curse of dimensionality if
q is large; thus, while the test remains valid for q > 4, power is expected to de-
crease with increasing q, and it may be advisable to test lower q, particularly
if only small sample sizes (e.g., N < 100 with n > 500) are available.

5. Results and Interpretation

As shown in Figure 2, we observed multiple regions in which the null hy-
pothesis of no covariance across switch types was rejected. As the main focus of
this paper is on the development of the statistical tests, we only briefly interpret
these results and note how they may be of potential use in studying task switch-
ing and other psychological phenomena. Figure 2A shows maps of significant
regions for test statistic TN,1 (see (4.4)), and Figure 2B shows maps of signif-
icant regions for test statistic TN,2 (see (4.5.3)). We note that the tests have
different sensitivity to different covariance patterns, but they agree broadly in
many regions of the brain. Four such regions are shown here; reading from left
to right in Figure 2, they are right anterior prefrontal cortex (aPFC), left lateral
orbitofrontal cortex/inferior convexity (lOFC), cuneus, and posterior cingulate
cortex (PCC). The two frontal regions play roles in memory retrieval and se-
lection of information in memory (Badre et al. (2005), Nee, Wager and Jonides
(2007) and Schacter et al. (1997)), both of which are thought to be required for
successful task switches (Mayr and Kliegl (2000)). The cuneus and precuneus
are consistently activated in task switching (Wager, Jonides and Reading (2004))
and other executive functions (Wager and Smith (2003)). The posterior cingu-
late is important for aspects of memory retrieval and responds to complex visual
cues (Mesulam et al. (2001) and Pandya, Van Hoesen and Mesulam (1981)).

We examined the patterns of correlations among switch types in these regions
to interpret the results. Rejection of the null hypothesis could result from gen-
eral “positive manifold”, or positive correlations among all task types, suggesting
that the region might be activated by a mechanism common to all switch types.
Alternatively, the region could be activated by a mechanism shared by only some
switch types, indicated by positive correlations among a subset of switch types.
Finally, negative correlations could suggest strategic tradeoffs; participants might
be biased toward using a strategy such as rehearsal of specific response assign-
ments in one switch type (e.g., attribute switches), which may help performance
on that switch type but hurt performance on others.
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Figure 2. (A) Four regions showing significant results (p < 0.01) corrected
across tasks and 20 contiguous voxels) in the first test (Section 4.1). The
regions are, from left to right, anterior prefrontal cortex (aPFC), lateral
orbitofrontal cortex (lOFC), cuneus, and posterior cingulate (PCC). (B) The
same four regions also showed significant results in the second test (Section
4.2), though we note that the tests are somewhat differentially sensitive to
different covariance patterns. (C) Correlations in aPFC. Correlation values
are given in the upper triangle, and corresponding p-values in the lower
triangle, in yellow type. The color map indexes correlation values ranging
from -1 (dark blue) to 1 (bright green). Ext: External switches, stimuli
visible. Int: internal switches, stimuli held in memory. Obj: Switches among
objects. Att: Switches among attributes (i.e., features) of objects (e.g., shape
vs. orientation).

Figure 2C shows correlations in the aPFC. Correlation values for the four
switch types are in the upper triangle of the matrix, and corresponding p-values
are in the lower triangle. Correlations are strongest between the two external
switch types (r = 0.34) and the two internal switch types (r = 0.54), suggest-
ing that this region might reflect processes that are engaged in both external
and internal switches, but occur at a later stage of processing than other ex-
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ternal or internal-specific factors. This pattern most closely mirrors the corre-
lations in performance overall, which are strongest within external/internal and
object/attribute types, and weakest across types (Wager, Jonides and Smith
(2006)). This is consistent with a late-stage monitoring mechanism that tracks
performance and makes adjustments, though there are other possible interpreta-
tions.

Figure 2D shows correlations in lOFC. A moderately strong correlation (r =
0.664) is observed in lOFC between the two internal switch types, but not for the
others, suggesting that this region is recruited by a mechanism relatively unique
to switching attention in working memory. Figure 2E shows correlations in PCC,
though the cuneus showed the same pattern. In this region we observed general
positive manifold, suggesting that all task types are intercorrelated in this region,
and it may thus contain a mechanism, such as orienting to the visual stimulus,
that is common across switch types and shows consistent individual differences.

Interestingly, these regions overlap with those thought to be involved in cog-
nitive components of task switching, but notably absent are the canonical lateral
prefrontal and parietal regions consistently activated in task switches (Wager,
Jonides and Reading (2004)) and sometimes more generally referred to as the
“attention network”. This may be because the engagement of those regions is
influenced by multiple lower-level factors that are differentially involved in dif-
ferent switch types. Each independent component process adds noise, so that
brain networks that respond to the task are not necessarily the ones that show
correlated activation across tasks. This argument highlights the conceptual dif-
ference between measuring overlap in activation in a set of contrasts and testing
covariance among those contrasts, and suggests that tests on covariance may be
useful in identifying component processes. The tests developed here represent
one step in beginning to develop models of component processes, though there
is much more work to be done to develop this idea. Here, we use these results
merely to demonstrate the different kinds of patterns that may be identified, and
we leave the attempt to provide an integrated account of processes underlying
task switching for future work.

6. Conclusions and Future Work

Future work may build on the present methods to provide more tools for in-
terpreting correlation matrices within voxels in which a significant omnibus result
is obtained (i.e., using the methods developed here). Pattern hypothesis tests are
a particularly attractive alternative (Steiger (1980) and Steiger (2005)). Factor-
analysis methods may also be used, but the pattern hypothesis test provides
a specific mechanism for testing particular patterns of intercorrelations among
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tasks specified a priori, and thus offers a natural extension of the omnibus test
developed here.

Second, the tests we develop may aid in identifying regions for subsequent
confirmatory structural equation modeling (SEM) that could model multiple
mental processes implemented in different brain networks (Mechelli et al. (2002)
and Penny et al. (2004)). Conventionally, SEM has been applied to the covari-
ance matrix encoding correlations among brain regions. However, it could also
be applied to model inter-task correlations within a region of interest such as
those identified in the present work.

Third, a limitation of the current work is that correlations are highly suscep-
tible to outliers. Relationships between continuous variables can be influenced by
even a few points that violate the i.i.d. assumption, particularly when they fall
at the extremes of the distributions. Violations of the i.i.d. assumption can thus
create both false positives and decrease sensitivity, and such considerations have
spurred the development of robust estimators of covariance (e.g., Rousseeuw
(1984)). Also, misregistration and/or variability in normalization to a group
brain template is likely to have a significant impact on the estimation of second
order effects such as correlations. Therefore, it would be worthwhile to investigate
how robust the analysis is to misregistration. The use of robust regression tech-
niques is particularly promising with neuroimaging data because of the difficulty
of checking assumptions and dealing with outliers in the “massive univariate”
modeling framework (Wager, Keller, Lacey and Jonides (2005b)). Future work
may provide robust and nonparametric versions of the test statistics here.

Finally, there are several additional developments of the statistical model
that could be pursued. First, the tests could be generalized to situations allowing
for non-orthogonal designs, accounting for correlation induced by the first level
design matrix. Second, Bayesian methods might be developed for the problem
studied in this paper.
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Appendix

None of the tests developed in Section 4 is the likelihood ratio test (LRT).
We indicate below why finding even a tractable expression for the LRT seems
formidable, not to speak of the difficulty of finding its asymptotic distribution.



INFERRING INDIVIDUAL DIFFERENCES IN FMRI 1497

Denote the likelihood function by L(γ,Γ) ≡ L(γ,Γ|Z1, . . . , ZN ). It is given
by (cf. the paragraph immediately preceding the beginning of Section 4.1)

L(γ,Γ) =
1

(2π)
Nq
2

1

| σ2
0U+Γ |

N
2

× exp

(
−1

2

N∑
k=1

(Zk−γ)T(σ2
0U+Γ)−1(Zk−γ)

)
.

For obtaining the LRT, we have to maximize L(γ,Γ|Z1, . . . , ZN ) both when Γ is
arbitrary and when it is diagonal. For obtaining the denominator of the LRT,
we have to consider set of all non-negative definite (n.n.d.) Γ. Notice that the
set of matrices of the form σ2

0U + Γ, Γ n.n.d is same as the set of p.d. matrices
which are “bounded below” by σ2

0U .
It can be seen that to obtain a tractable expression of the LRT, one has to

proceed along the following two steps (in principle):

(a) minimize log | detΣ | +trace(Σ−1S) subject to Σ ≥ Σ0, i.e., Σ−Σ0 is n.n.d.,
where S is an observed covariance matrix;

(b) minimize log | detΣ |+trace(Σ−1S) subject to Σ ≥ Σ0 and Σ−Σ0 is diagonal.

The problem in (a) has been addressed by several authors: by Michael Perl-
man in particular, in his Ph.D. thesis (1967) (Perlman (2006)) and by De Leeuw
(2006). The solution is described below.

(1) The problem in (a), with Θ = Σ−1/2
0 ΣΣ−1/2

0 and T = Σ−1/2
0 SΣ−1/2

0 can be
seen to be equivalent to the following: minimize log | detΘ | +trace(Σ−1T )
subject to Θ − I is n.n.d..

(2) Suppose that T = KΛKT is any spectral decomposition of T . Define the
new variables Ξ = KΘKT. Let Ξ = LΩLT be any spectral decomposition
of Ξ.

(3) After some algebra, it is possible to show that the solution to the problem
in (a) is given by Σ̂ = Σ1/2

0 KTΩ̂KΣ1/2
0 , where Ω̂ is the diagonal matrix with

entries max(λi, 1).

The above steps take care of the denominator of the LRT. It is clear that finding
an expression for the numerator is even more difficult, if not impossible.

To get a feel for why finding the asymptotic distribution of the LRT, whether
or not we succeed in obtaining a neat expression for it, is difficult, let us consider
the following univariate scenario. Suppose X1, . . . , XN are i.i.d. N(µ0, σ

2). We
wish to test the hypothesis H0 : σ ≥ σ0 against H1 : σ < σ0. It can be seen easily
that the likelihood (appearing in the numerator of the LRT) is maximized at σ0

with positive probability. This means the LRT will have a point mass. This also
“indicates” that the asymptotic distribution of the LRT “may” not be χ2.
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The arguments above indicate that in our case we should not expect to get a
chi-square distribution as the asymptotic distribution of the LRT. One source of
the problem is that the parameter spaces, corresponding to both H0 and H0∪H1,
have well-defined “boundaries” and so the maximum of the likelihood will fall on
these boundaries with positive probability. The asymptotics is, therefore, going
to be non-standard. There is a huge literature on such non-standard asymptotics
of LRT. Two important references are Chernoff (1954) and Self and Liang (1987).
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