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Abstract: In this paper, we propose a new nonparametric method to impose time

varying restrictions in econometric models. The method relies on the assumption

that the structural parameters evolve smoothly over time and they are required to

satisfy some pre-specified constraints. Smoothing techniques are employed in order

to estimate the parameter sequences. In particular, we propose a local constrained

least squares method. The asymptotic properties are derived and a test proce-

dure for the validity of the time varying constraints is derived. The methodology

is applied to estimate a time varying demand system and a simulation study is

performed to illustrate the estimation method as well as the test procedure.
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1. Introduction

In empirical specifications of production and consumption systems it is some-

times necessary to impose additional restrictions on the structural parameters. In

production theory, regardless of the parametric specification chosen for the pro-

duction function, we estimate the structural parameters subject to restrictions

implied by homogeneity, product exhaustion, symmetry and monotonicity (see

Fried, Lovell and Schimdt (1993) and Jorgenson (2000)). Also in consumption,

when a demand function is specified, the assumption of linear budget constraints

leads to added homogeneity restrictions. Furthermore, some additional restric-

tions are suggested by economic theory, such as the Slutsky symmetry condition

or the Engle condition (see Deaton and Muellbauer (1980)). Usually, once these

constraints have been imposed on structural econometric models, it is of interest

to test them for validity.

These issues are well known to applied econometricians, and many different

procedures to both estimate and test possibly nonlinear systems incorporating

linear or nonlinear constraints have been proposed in the relevant literature (see

Gourieroux and Monfort (1989)). Most of the theoretical models that have been

used by empirical researchers are based on a non-dynamic framework, and this

might be the main reason why most of the restrictions quoted above have been
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considered as time invariant. However, if we have a richer source of data, then

there is no reason to keep considering non-dynamic models and, therefore, time

invariant restrictions.

In fact, there are many examples where it becomes natural to impose time

varying restrictions. In the production setting, Diewert and Wales (1987) pro-

pose methods for introducing global curvature conditions in the context of cost

function estimation. Meanwhile when estimating a translog cost function, if

technical progress is allowed, then linear homogeneous restrictions become time

varying. In their paper, they assume that the dual production function does

not exhibit technical changes and this implies that the restrictions are time in-

variant. In the demand setting, consumer demand systems which are linear in

variables (in logs) have restrictions that are typically time varying even when

considering the elasticities time invariant. Doran and Rambaldi (1997) motivate

imposing time varying constraints, instead of the usual “at the mean” one, by

consistency and efficiency considerations. First, if the theory implied constraints

are non-linear in the data, imposing them at the mean will lead to inconsistency.

Second, even if they are linear in the explanatory variables, to impose them at

every point may lead to an efficiency gain over the “at the mean” constrained

estimators. Such theory-implied constraints include the Engle condition and the

Slutsky symmetry condition.

In this paper, we propose a new method of incorporating and testing time

varying restrictions in econometric models. Our method relies on the assumption

that structural parameters evolve over time with some degree of smoothness while

they are required to satisfy some pre-specified constraints.

Many alternative smoothing methods for estimating unrestricted varying

coefficient models have been proposed in the literature. Hastie and Tibshirani

(1993) propose an algorithm based on backfitting; Cai, Fan and Yao (2000) and

Cai, Fan and Li (2000) approach the problem using local polynomials in regres-

sion and time series models. Chen and Tsay (1993) and Chen and Liu (2001)

use kernels in a similar context. Robinson (1989, 1991) proposes a local least

squares method. However, all previous nonparametric approaches have paid

no attention to the problem of incorporating restrictions on the coefficients.

Orbe, Ferreira and Rodriguez-Poo (2000, 2005) are the first to consider seasonal

restrictions using Robinson’s approach.

In this paper, the problem of interest is to estimate time varying param-

eters under cross restrictions. To the best of our knowledge, the properties of

smoothing techniques in this context have not been studied so far. Our objective

is twofold. First, we seek to derive a consistent nonparametric method based on

smoothers that introduce the time varying restrictions on the coefficients. Sec-

ond, we propose several statistics in order to test the validity of such restrictions.
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The rest of the paper is organized as follows. Section 2 presents the non-
parametric method developed for estimating the structural parameters of a econo-

metric model incorporating some pre-specified constraints. We also obtain the
statistical properties of these estimators under some general conditions, such as

consistency and asymptotic normality. Section 3 proposes several statistics to
test for the time varying restrictions. In Section 4 the restricted time varying

coefficients are estimated in a data framework, where a demand system model
for different categories of meat is considered. Section 5 provides the results from

both parts, estimation and testing, of a simulation study, and proofs are provided
in the Appendix.

2. Parameter estimation under time varying constraints

Consider a general linear model of the form

yt = βT
t xt + εt t = 1, . . . , n, (1)

where yt and xt = (x1t, . . . , xpt) are the observed values for the dependent and the
p explanatory variables, respectively. The vector βt = (β1t, . . . , βpt)

T contains the

coefficients associated with the variables at the tth moment and they are assumed
to be an unknown but deterministic function of the time index; i.e. βt = β (t/n),
where n is the sample size. The error terms, εt, are assumed to be independently

distributed with zero mean and finite, possibly heteroskedastic, variance σ2
t .

The restrictions suggested by economic theory are introduced into the model

through the time varying constraints

gjt (βt) = 0 t = 1, . . . , n; j = 1, . . . , q < p, (2)

where q is the number of restrictions considered and n is the number of obser-

vations. The function gjt (·) is a known function from IRp to IR. Note that we
are allowing for restrictions varying with time. If this is not the case, we have

gjt ≡ gj . In general, we are considering functions without imposing any relation
between them for the different indexes; that is, between gjt and gjs for t 6= s.

That is, cross restrictions are allowed but not restrictions along time.
Depending on the context, model (1) can represent a production function,

a cost function, a linear expenditure system or a log linear demand function;
the restrictions represented in (2) can be homogeneity, Slutsky conditions or any
other cross restrictions.

Now we proceed to estimate the sequence of parameter vectors β1, . . . , βn,
taking into account the set of restrictions mentioned above. We solve the follow-

ing optimization problem for each r = 1, . . . , n,

minS(βr)

s.t. gjr(βr) = 0 for j = 1, . . . , q, (3)



1316 SUSAN ORBE, EVA FERREIRA AND JUAN RODRIGUEZ-POO

where S(βr) is a local measure of the goodness of fit. We consider

S(βr) =

n∑

t=1

Krt(yt − βT
r xt)

2 for r = 1, . . . , n, (4)

where Krt play the role of local weights. These are defined as (nh)−1K((r −
t)/nh), where K(·) is a second order kernel and h is the bandwidth. Hence,

this criterion function becomes a smoothed local residual sum of squares, similar

to that proposed in a likelihood context by Staniswalis (1989) and Robinson

(1989). The weights control the smoothness of the parameter changes through the

bandwidth h. It is of interest to point out that if p = 1, the direct minimization of

the previous criterion without introducing kernel weights will give us a degenerate

solution. On the other hand if p > 1, the direct minimization of (4) with h = 0

leads to identification problems. Thus, the introduction of the weights with h > 0

turns the problem into a solvable one. And, as it will be shown, this is the case

also under restrictions.

According to the constraints, we focus on solving the problem when the

functions gjr(·) are linear, although they are allowed to vary with r. That is, for

each period r, the considered optimization problem can be formulated as

minS(βr)

s.t. Grβr = gr, (5)

where Gr is a (q× p) matrix and gr is a q order vector. The Lagrangian function

associated to this constrained optimization problem can be defined in a matrix

notation as

So(βr, λr) = S(βr) + 2λT
r (Grβr − gr), (6)

where λr is a (q×1) vector that contains the Lagrange multipliers and S(βr) can

be written as S(βr) = (y − Xβr)
T Wr (y − Xβr), where y = (y1, . . . , yn)T and X

is the (n × p) data matrix, with its tth row given by the vector xt. The weight

matrix, Wr, is a diagonal matrix of order n with its tth element given by Krt.

Let us denote by β̂o
r and λ̂o

r the solution to the constrained optimization

problem

(β̂o
r , λ̂o

r) ≡ argminβr,λr
So(βr, λr). (7)

A closed expression for the vector containing the coefficient estimators will

be obtained from the first order conditions in (6) as

β̂o
r = β̂r −

(
XT WrX

)−1
GT

r

[
Gr

(
XT WrX

)−1
GT

r

]−1
(Grβ̂r − gr), (8)
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where β̂r represents the unconstrained estimator; that is, the one obtained when
λr = 0. This estimator corresponds to the solution of the unrestricted problem
(see Robinson (1989)), and it is computed as

β̂r = (XT WrX)−1XT Wry. (9)

Thus, from (8) we obtain an expression for the constrained estimator β̂o
r in terms

of its relation with the unconstrained estimator. The estimator of the Lagrange
multiplier is also derived from the first order conditions.

λ̂o
r =

[
Gr

(
XT WrX

)−1
GT

r

]−1
(Grβ̂r − gr). (10)

As usual, λ̂o
r estimates the cost of imposing a non-true restriction, so that its value

increases in the same direction as the difference Grβ̂r − gr. Sufficient conditions
for these estimators to be the unique solution of the optimization problem given
in (7) are guaranteed by the assumption

(A.1) Rank
(
W

1/2
r X

)
= p < nh ∀r = 1, . . . , n, and Rank(Gr) = q for r =

1, . . . , n.
That is, we consider full rank local data matrix and we do not allow restrictions
that can be obtained as linear combinations of others.

At this point, we would like to make some remarks about the role of the
parameter h in both constrained and unconstrained estimators. As expected in
a nonparametric context, the behavior of the unconstrained estimator depends
crucially on the value of the smoothness parameter h. High values of h eliminate

the variability of the coefficients. In fact, when this value tends to infinity, we
obtain one unique coefficient per explanatory variable; which is equivalent to
the time invariant OLS estimator. Small values of h allow differences between
adjoining coefficients, and the estimator can therefore present more roughness.

However, this is not the case for the restricted estimator. For a better un-
derstanding of this fact let us consider two particular cases, unrealistic but useful
for this illustration. First, consider the case where q = 1, Gr ≡ G, and gr takes

the value one when r is odd and zero otherwise; that is, gr is a function that
varies drastically with r. Now, if the value of h is very high, the unconstrained
estimator β̂r will be a constant vector, but the restriction will make the con-
strained estimator β̂o

r very sharp, since it must fulfill the restriction. Specifically,
the constrained estimator will be

β̂o
r =

{
β̂ + B(Gβ̂ − 1), when r is odd,

β̂ + BGβ̂, when r is even,

where B is a matrix that does not depend on r. Therefore, it is clear that the
constrained estimator can be very rough even when a large amount of smoothness

is imposed through the bandwidth.
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For the second case, let q = p, Gr ≡ I and gr ≡ g. In this case, if the value

of h is taken to be very low, the unconstrained estimator can be very rough.

However, given the imposed constraints, the constrained estimator is just β̂o
r = g

for all r. Thus, the constrained estimator is very smooth (it is the same constant

for all r) although the smoothing parameter is small.

Hence, in the nonparametric constrained setting, the size of h does not di-

rectly dictate the degree of the smoothness for the estimated coefficients. As can

be read from (8), β̂o
r is a mixture of the unconstrained nonparametric estimator,

where the role of h is the usual one in this context, and the other term that forces

β̂o
r to fulfill the restrictions.

We now proceed to present the main asymptotic results for the constrained

estimator. The following additional assumptions are needed.

(A.2) βit = βi(t/n), where βi ∈ C2[0, 1] for all i = 1, . . . , p.

This assumption introduces some degree of smoothness into the coefficient

changes without imposing any pre-specified functional form.

(A.3) The function K(·) is a second order kernel with compact support Ω =

[−1, 1]. We also assume that the Fourier transform of Krt is absolutely

integrable and
∫
ω K4(u)du is bounded.

This compactness assumption can be relaxed if we assume the existence of finite

higher order moments. In fact both assumptions are standard in nonparametric

regression literature (see Härdle (1990)).

(A.4) The observations x1, . . . , xn are independent realizations from a random

variable X ∈ IRp. We define Mt = E(xtx
T
t ) a p order symmetric positive

definite matrix with generic element mijt = E(xitxjt) that can be decom-

posed as mij(t/n) + O(n−1). The functions mij(t/n) are at least twice

differentiable and uniformly bounded, and all cross moments involving

xit are uniformly bounded up to order eight.

(A.5) The explanatory variables are statistically uncorrelated with the error

term, and E|εt|2+δ < ∞ for some δ > 0.

These assumptions are standard in nonparametric estimation. However,

(A.4) is weaker than the usual assumption of i.i.d. explanatory variables. In fact,

this assumption allows for locally stationary variables, as defined in Dahlhaus

(2000), and studied as explanatory variables in Orbe, Ferreira and Rodriguez-

Poo (2005).

Now we present some results that resemmue those obtained in standard

restricted least squares regression.

Theorem 1. Under (A.1) to (A.4), h → 0 and nh → ∞ as n tends to infinity,

the asymptotic bias and variance for the constrained coefficients estimator are

BIAS(β̂o
r ) = Qr(gr − Grβr) +

dkh
2

2
(I − QrGr)M

−1
r β′′

r + o(h2), (11)
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V (β̂o
r ) =

σ2
rck

nh
(I − QrGr)M

−1
r + o((nh)−1), (12)

where ck =
∫
Ω K2(u)du, β̂′′

r is a p order vector that contains the second derivatives

of the coefficients, dk =
∫
Ω u2K(u)du and Qr = M−1

r GT
r (GrM

−1
r GT

r )−1.

Note that the result coming from the previous theorem puts the well known

conclusions for restricted parametric regression into the nonparametric frame-

work. Thus, the bias shown in (11) has two terms. The first one, as in the

standard parametric case, appears when the restriction is not true. The second

term is due to the smoothness. This last term vanishes when h tends to zero,

whereas the first part of the bias can be zero, if the restriction is fulfilled, or

nonzero if the imposed restriction is wrong. The variance term is dominated by

the smoothness although, as it can be observed in (12), the restriction plays a

role in the leading term. Thus, for small sample sizes, the variance of the unre-

stricted estimator is going to be larger than the restricted one, uniformly in h.

This is exactly the same as in the parametric case.

Therefore, when the restricted model is estimated, the parameter h is selected

under this null hypothesis. According to the previous findings it is then possible

to use, as a data driven method, cross validation techniques. For this type of

generalized ridge regression estimators, as stated by Li (1986), cross validation

works for any estimator that converges at a smaller rate than root n. This is

clear in our case. We can also use plug-in or penalized methods, where the unique

difference is that the mean square error and the projection matrix have now a

different expression than in the unrestricted model.

Finally, it is worth noting that the constrained estimator (β̂o
r ) is consistent,

and presents a smaller bias than the unconstrained one (β̂r). For the variance

term, regardless of the constraint, the constrained estimator provides a smaller

variance than the unconstrained one. These results are also similar to those ob-

tained in classic regression analysis. The formal statements can be read from the

following corollary, where we compare bias and variance for the two estimators.

Corollary 1. Given the assumptions in Theorem 1

V (β̂r) − V (β̂o
r ) =

σ2
rck

nh
M−1

r GT
r (GrM

−1
r GT

r )−1Gr is positive semidefinite.

In addition, if Grβr = gr, then

BIAS(β̂r) − BIAS(β̂o
r ) =

dkh
2

2
M−1

r GT
r (GrM

−1
r GT

r )−1Grβ
′′.

Next, we obtain the asymptotic distribution for the constrained estimator.
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Theorem 2. Given (A.1) to (A.5), if h = o(n−1/5) and nh → ∞, then under

the null hypothesis Ho : Grβr = gr, the asymptotic distribution of the constrained

estimator is

√
nh(β̂o

r − βr)
d−→ N

(
0, ckσ2

r [I − QrGr]M
−1
r

)
(13)

as n tends to infinity.

The unknown terms in the distribution can be consistently estimated as

Q̂r = M̂−1
r GT

r (GrM̂
−1
r GT

r )−1 where M̂r =
n∑

t=1

Krtxtx
T
t (14)

σ̂2
r =

∑n
t=1 Krt(yt − β̂0

1rx1t − β̂0
2rx2t − · · · − β̂0

prxpt)
2

∑n
t=1 Krt

. (15)

Note that the rate of convergence of the estimator is
√

nh and, given the assump-

tion for h, this is slower than the optimal parametric rate
√

n. This is a typical

result in nonparametric regression estimation. We pay a price for the flexibil-

ity of coefficient changes. Within the nonparametric framework, the assumption

for h allows us to attain the optimal rate of convergence. Moreover, it must be

noticed that there is no curse of dimensionality in this context. Let us recall

that the model is linear in the explanatory variables and the coefficients are the

parameters to be estimated nonparametrically, where the smoothing procedure

only considers time variation. That is, with respect to the kernel methodology,

the estimation is univariate.

So far, we have derived the consistency of the constrained estimator and

given its asymptotic distribution when the constraints are fulfilled. It is a natural

interest to test for this condition, and that will be the aim of the next section.

3. Hypothesis Testing

In this section we derive several statistics to test the validity of the con-

straints. These statistics will be natural adaptations of the standard ones in

econometric literature (see Gourieroux and Monfort (1989)). However, in order

to compute the critical regions, the whole theory needs to be revisited to account

for the nonparametric structure of both the restricted and unrestricted parameter

estimators.

We first consider a pointwise test; that is, we construct a statistic useful for

testing the restriction at a fixed time value. Fix an arbitrary r, and consider the

hypothesis,

H0 : Grβr = gr.
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The statistics proposed are based on the classic Wald (Wald (1943)), Score (Rao

(1947)), Hausman (Hausman (1978)) and Likelihood ratio test statistics. The

versions of these statistics in this framework are

(i) The Wald statistic

εW
r =

nh

ckσ2
r

(Grβ̂r − gr)
T [GrM

−1
r GT

r ]−1(Grβ̂r − gr); (16)

(ii) The Score statistic

εS
r =

nh

ckσ2
r

λ̂oT
r [GrM

−1
r GT

r ]λ̂o
r; (17)

(iii) The Hausman statistic

εH
r =

nh

ckσ2
r

(β̂o
r − β̂r)

T Mr(β̂
o
r − β̂r); (18)

(iv) The Likelihood ratio statistic

εR
r =

nh

ckσ2
r

(S(β̂r) − So(β̂o
r , λ̂

o
r)). (19)

The tests are defined through the critical region for these statistics. This

requires the asymptotic distribution for the Lagrange multiplier estimator, as

established in the next theorem.

Theorem 3. Under (A.1) to (A.5), if h → 0 and nh → ∞, the asymptotic

mean and variance of λ̂o
r are

E(λ̂o
r) = 2(GrM

−1
r GT

r )−1(Grβr − gr) + o(h2), (20)

V (λ̂o
r) =

σ2
rck

nh
(GrM

−1
r GT

r )−1 + o((nh)−1). (21)

Furthermore, if h = o(n−1/5) and Grβr = gr holds,

√
nh λ̂o

r
d−→ N

(
0, ckσ

2
r [GrM

−1
r GT

r ]−1
)

(22)

as n tends to infinity.

This result will allow us to prove the equivalence of the statistics defined

above, and the consistency of the tests defined through their critical regions, as

stated in the theorem below.

Theorem 4. Under (A.1) to (A.5), if h = o(n−1/5) and nh → ∞, then
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(i) the four statistics εW
r , εS

r , εH
r or εR

r are asymptotically equivalent almost

surely;
(ii) the test defined by the critical region {εr ≥ χ2

1−α(q)}, where εr can be any of

the statistics above, is consistent and has asymptotic level α, as n → ∞.

We have derived a pointwise test that can test the restrictions in the model
for a fixed time value. The next theorem states the asymptotic distribution of
a statistic defined as the sum of the pointwise statistics at separate locations, in
order to test overall structure.

Theorem 5. Assume (A.1) to (A.5), and that h = o(n−1/5) and nh → ∞
as n → ∞. Then, for εr defined as in the previous theorem and under the null

hypothesis,
{

rk∑

r=r1

εr

}
d−→ χ2(kq),

where r1, . . . , rk are locations. Separed by order nh points.

4. An Application: Estimation of a Demand System under Several
Time Varying Constraints

The purpose of this section is to illustrate the performance of the proposed
methodology. We consider a log linear demand system (Deaton and Muellbauer
(1980)) to model the demand for different categories of meat in the U.S. The
dataset used consists of yearly observations for the period 1970-1998, collected
from the U.S. Economic Research Service. The meat categories considered are
beef, pork, lamb and poultry, and for each category we use per capita consump-
tion (qit) and retail prices (pit). Following Murray (1984) we assume that the
consumer’s utility function is weakly separable between meat and all other com-
modity groupings, so we have taken the total expenditure per year on meat for
the income variable, Et. This meat demand system has the following structural
equations

ln q1t = α1t + δ1t ln p1t +
∑

j 6=1

β1jt ln pjt + γ1t lnEt + u1t

ln q2t = α2t + δ2t ln p2t +
∑

j 6=2

β2jt ln pjt + γ2t lnEt + u2t

ln q3t = α3t + δ3t ln p3t +
∑

j 6=3

β3jt ln pjt + γ3t lnEt + u3t (23)

ln q4t = α4t + δ4t ln p4t +
∑

j 6=4

β4jt ln pjt + γ4t lnEt + u4t

j = 1, 2, 3, 4, t = 1, . . . , T,
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where j denotes the meat category, t the time period, qjt the consumption of the

jth category of meat during the tth year, pjt is the retail price of the jth category

of meat during the tth year and Et stands for the income at time t. The errors ujt

are assumed to be i.i.d. Given the model’s log-linear structure, the coefficients

δjt correspond to the time-varying own price elasticity, βjit the time varying

cross price elasticity and γjt the income elasticity. According to economic theory

(Pollak and Wales (1992)) the coefficients of the structural equations must fulfill

next restrictions for each period:

• The Engel condition

4∑

j=1

wjtγj = 1 ∀t; (24)

• The Slutsky symmetry conditions

βij

wit
+ γj =

βji

wjt
+ γi j, i = 1, . . . , 4 j 6= i ∀t; (25)

• The Homogeneity condition

4∑

i=1

βij + γj = 0 j = 1, . . . 4. (26)

Here wjt is the weight wjt = pjtqjt/
∑4

i=1 pitqit. Note that the first two constraints

are time varying whereas the homogeneity restriction is time invariant. Moreover,

the first two equations introduce cross restrictions relating the different structural

equations while the homogeneity condition imposes constraints among coefficients

corresponding to the same equation.

The elasticities for the different meat categories are estimated using the

restricted nonparametric estimator proposed in Section 2, taking into account

the restrictions in (24), (25) and (26), and using the estimation algorithm in

Orbe,Ferreira and Rodriguez-Poo (2003). The kernel is Epanechnikov’s and the

bandwidths for each equation, hj , have been selected according to the Generalized

Cross Validation criterion.

Figure 1 shows the income elasticities for each meat category throughout the

sample time period and, as expected, all income elasticities are positive. It can

be observed that beef seems to be the preferred meat category for U.S. consumers

during the whole sample period. Pork appears to be the closest substitute for

beef, at least in a significant part of the sample period. Finally, lamb and poultry

present the lowest income elasticities and their tendency has shifted upwards

significantly by the end of the period of study.
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Figure 1. Restricted income elasticities for all meat categories. The y-axis

represents elasticities and the x-axis the time index.

Figure 2 shows the own price elasticities for each demand equations in (23).

In general they present negative signs, as expected, although they have changed

over time. It can be observed that in the poultry demand equation, the own

price elasticity takes positive values in a short time period, coinciding with a

change of thinking in response to an increasing health consciousness (see “Food

Consumption, Prices and Expenditures, 1970-97”, Economic Research Service,

USDA).

With respect to the cross price elasticities, the results are also quite rea-

sonable. Lamb prices do not have a significant influence over the consumption

of the other meat types, but the influence holds in the other direction. Beef

demand appears to be sensitive to changes in poultry price, although looking

at the estimated values, the symmetric behavior over time between poultry and

beef demand elasticities makes it difficult to state whether they are substitutes

or complements. The demand for beef and pork do not appear to be very sensi-

tive to changes in prices of each other. Beef’s price cross elasticity with respect

to poultry changes over time. At the beginning of the sample the elasticity

sign is positive, and pork and poultry could be interpreted as substitute goods.

The same occurs after the pork industry crisis when an aggressive campaign

announced that “pork is a white meat”.
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Figure 2. Restricted price elasticities for the beef demand equation (l. h. up-

per corner), pork demand equation (r. h. upper corner), lamb demand equa-

tion (l. h. lower corner) and poultry demand equation (r. h. lower corner).

The y-axis represents elasticities and the x-axis the time index.

It could be useful to test for the validity of the restrictions. We have used the

statistics presented in Section 3, and the conclusion leads to the rejection of the

null. However, there are different reasons why this test is not very useful for this

case. First, the sample is short. Second, we assume that the consumer’s utility

function is weakly separable between meat categories and all other commodity

groups. This is a questionable assumption since there might be other commodi-

ties (e.g., fish and eggs) that could also be considered in this group. Moreover,

we do not present the unrestricted estimators since this model only makes sense

when the restrictions hold. Thus, this example is useful to for checking the ability
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of the method to estimate the time varying parameters under cross restrictions,

and a more detailed analysis of the empirical properties of the method is done in

next section.

5. A Simulation Study

In this section a simulation study is performed to show, for several sample

sizes, the empirical accuracy of the estimation procedure and the performance of

the test statistics. In order to do this, we simulate a Cobb-Douglas production

function

Pt = Lβ1t

t Kβ2t

t eut ,

where P denotes production, L labor, K capital and u is the error term. The

linearized model to be estimated is

lnPt = β1t lnKt + β2t lnLt + ut. (27)

The coefficients β1t and β2t have the usual interpretation, labor and capital elas-

ticities (ceteris paribus). Thus the restriction β1t +β2t = 1 implies constant scale

economies for a given period t. Note that this time varying framework allows to

estimate and check weather the restriction is fulfilled for a subsample of periods

and, therefore, to consider a log-linear production function with variable scale

economies as described in Fried, Lovell and Schimdt (1993).

For the simulation study, the explanatory variables (L,K) are generated

independently N(50, σ2 = 6), and the error term ut in the linearized model is

N(0, σ2 = 0.05). Note the explanatory variables in the final model are lnL, and

lnK, and this explains the scale of the variances.

The selected function for the first coefficient is β(τ) = 1.3−cos(τ), τ ∈ (0, 1).

The coefficients for each sample are computed from the function, avoiding the

extremes of β1t = 1.3−cos(t+25/(n+50)), for t = 1, . . . , n, and for β2t = 1−β1t.

Three sample sizes were considered: n = 100, 500 and 1,000. For each

sample, 1,000 replications were generated and the smoothing parameters were

selected by generalized cross validation.

The results for the first objective of this study, the accuracy of the estimation

process, are summarized in Table 1 and Figure 3. Table 1 presents the lower

quartile, median and upper quartile of the empirical distribution for the mean

squared error MSEb(βi) = 1/n
∑n

t=1(βit−β̂it)
2, for b = 1, . . . , 1, 000 replications,

when the unconstrained estimator is considered, or MSEb(βi) = 1/n
∑n

t=1(βit −
β̂o

it)
2 when using the constrained estimator. The boxplot of each distribution is

presented in Figure 3.

As can be observed, the results support the theoretical results. First, as ex-

pected since the restriction is corrected, the restricted estimator leads to a smaller
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MSE. Moreover, as long as the sample size increases, the MSE decreases, as

do the differences between the restricted and the unrestricted estimator. This is

natural since both estimators are consistant. Finally, it is important to note the

accuracy of the estimator even with a sample size of n = 100.

Table 1. Statistics for the mean squared error.

Stat. upper quartile median lower quartile

Est. n=100 n=500 n=1, 000 n=100 n=500 n=1, 000 n=100 n=500 n=1, 000

β̂1 0.01933 0.00932 0.00340 0.01770 0.00597 0.00288 0.01604 0.00363 0.00242

β̂2 0.01931 0.00928 0.00337 0.01757 0.00596 0.00286 0.01594 0.00364 0.00241

β̂o

1 , β̂o

2 0.01535 0.00927 0.00310 0.01332 0.00566 0.00263 0.01154 0.00337 0.00221
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Figure 3. The left upper box shows the boxplots for the distribution of β̂1’s

MSE, with sample sizes n = 100, 500, 1, 000 in left to right order. The right

upper box shows the same for β̂2 and the down box for both (since the MSE

are equal) the restricted estimators β̂o

1 and β̂o

2 .

For the second objective, the performance of the four test statistics, were

computed and compared with the corresponding asymptotic χ2 distribution. Ta-
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ble 2 summarizes the results. Although the statistics are asymptotically equiv-

alent, it is clear that their performances in finite samples are very different. In

all cases, Wald and Hausman statistics provide the worst results, while the score

statistic appears to be the best.

Table 2. Empirical sizes.

α=0.05 Wald Score Hausman L.Ratio

n = 100 0.279 0.070 0.311 0.190

n = 500 0.212 0.068 0.234 0.186
n = 1, 000 0.083 0.039 0.116 0.089

Hence, the simulation study supports the practical validity of the estimation

process. For the testing part, it is clear that the method should be revised and

compared with others. It is possible that statistics based on the maximum rather

than on the sum, as the one used here, would lead to better results. That is,

more statistics can be used and compared in a practical setting. However, the

main objective of this section has been to demonstrate the theoretical properties

studied in the previous sections and, therefore, this further study is relegated to

further research.

Acknowledgement

This research has been supported by the Ministerio de Ciencia y Tecnoloǵıa,
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Appendix

In order to prove the main results we need some additional lemmas.

Lemma 1. Under (A.1) to (A.6), and if h → 0 and nh → ∞ as n tends to

infinity, then the asymptotic bias of the unconstrained estimator is

BIAS(β̂r) =
dkh

2

2
M−1

r β′′
r + o(h2), (28)

where β̂′′
r is a p order vector that contains the second derivatives of the coefficients,

and dk =
∫
Ω u2K(u)du. The variance is

V (β̂r) =
σ2

rck

nh
M−1

r + o((nh)−1), (29)

where ck =
∫
Ω K2(u)du.
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The proof follows directly from Orbe, Ferreira and Rodriguez-Poo (2005),

Theorem 1, for the particular case when the vector λ in that theorem is taken to

be zero.

Lemma 2. Under (A.1) to (A.6), if h = o(n−1/5) and nh → ∞ when n tends

to infinity, then

√
nh(β̂r − βr)

d−→ N(0, ckσ
2
r M−1

r ). (30)

The result follows directly from Orbe, Ferreira and Rodriguez-Poo (2005), The-

orem 2.

Proof of Theorem 1. First, consider that β̂o
r = β̂r − Q̃r(Grβ̂r − gr) = (I −

Q̃rGr)β̂r + Q̃rgr where Q̃r = (XT WrX)−1GT
r [Gr(X

T WrX)−1GT
r ]−1.

Given the results in Lemma 1, the asymptotic mean of β̂o
r is

E(β̂o
r ) = (I − QrGr)

[
βr +

dkh
2

2
M−1

r β′′
r + o(h2)

]
+ Qrgr

= βr − Qr(Grβr − gr) +
dkh

2

2
(I − QrGr)M

−1
r β′′

r + o(h2),

where Qr = M−1
r GT

r

[
GrM

−1
r GT

r

]−1
, and Q̃r

p−→ Qr.

Following similar arguments and taking into account that QrGr is an idem-

potent matrix, the asymptotic variance of the constrained estimator is

V (β̂o
r ) = (I − QrGr)V (β̂r)(I − QrGr)

T

=
ckσ

2
r

nh
(I − QrGr)M

−1
r (I − QrGr)

T

=
ckσ

2
r

nh
(I − QrGr)M

−1
r .

Proof of Corollary 1. The proof of this result is straightforward if Lemma 1

and Theorem 1 are applied.

Proof of Corollary 2. From the relation between β̂o
r and β̂r, using the result of

Lemma 2, the asymptotic distribution of the constrained estimator is immediate

using Cramer’s theorem:

√
nh(β̂o

r − βr)
d−→ N

(
0, ckσ

2
r [M

−1
r − M−1

r GT
r (GrM

−1
r GT

r )−1GrM
−1
r ]

)
.

The consistency for M̂r can be found in Orbe, Ferreira and Rodriguez-Poo

(2005) (Lemma 1). Next, we prove the consistency for the estimator of the error
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variance analyzing the absolute value of the difference

E|σ̂2
r − σ2

r | ≤ E
n∑

t=1

CKrtx
T
t (βt − β̂o

r )(βt − β̂o
r )

T xt + E|
n∑

t=1

CKrt(ε
2
t − σ2

r )|

+2CE|
n∑

t=1

Krtx
T
t (βt − β̂o

r )εt|,

since (
∑

Krt)
−1 ≤ C for some nonzero constant C.

Using the Cauchy-Schwartz inequality, the cross term is bounded by the

other terms. Based on the results of Theorem 1, the first term tends to zero.

The second term also tends to zero using Kintchine’s Theorem and, finally, using

the inequality of Markov, the consistency is proved.

Proof of Theorem 3. The first result is shown as follows. Based on the relation

between λ̂o
r and β̂r, given in expression (10), we can write

λ̂o
r =[Gr(X

T WrX)−1GT
r ]−1(Grβ̂r−Grβr)+[Gr(X

T WrX)−1GT
r ]−1(Grβr−gr).

The asymptotic mean of λ̂o
r is

E(λ̂o
r) =

[
GrM

−1
r GT

r

]−1
Gr BIAS(β̂r) +

[
GrM

−1
r GT

r

]−1
(Grβr − gr).

Replacing the bias of β̂r and simplifying terms we have that E(λ̂o
r) =

2[GrM
−1
r GT

r ]−1(Grβr − gr) On the other hand, the asymptotic variance is ob-

tained as

V (λ̂o
r) = [GrM

−1
r GT

r ]−1GrV (β̂r)G
T
r [GrM

−1
r GT

r ]−1 =
ckσ

2
r

nh
[GrM

−1
r GT

r ]−1.

Next, based on the asymptotic distribution of β̂r and the relation given in (10),

the asymptotic distribution of λ̂o
r, under the null hypothesis Ho : Grβr = gr, is

√
nh λ̂o

r
d−→ N

(
0, ck σ2

r [GrM
−1
r GT

r ]−1
)
. (31)

Proof of Theorem 4. If A−B → 0 a.s., we say A is asymptotically equivalent

to B and write A � B.

First we show the asymptotic equivalence between εR
r and εH

r . In matrix

notation we write the optimization functions as

S(β̂r) = yTWry − yT WrXβ̂r − β̂T
r XT Wry + XT WrXβ̂r

= (y − Xβ̂r)
T Wr(y − Xβ̂r), (32)

So(β̂o
r , λ̂o

r) = yT Wry − yT WrXβ̂r − β̂T
r XT Wry + XT WrXβ̂r

+2λ̂oT
r (Grβ̂

o
r − gr) = (y − Xβ̂o

r )T Wr(y − Xβ̂o
r ), (33)
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given that the constrained estimator satisfies the constraint, Grβ̂
o
r = gr. Then

we modify (33) accordingly:

So(β̂o
r , λ̂o

r) = (y − Xβ̂r + Xβ̂r − Xβ̂o
r )T Wr(y − Xβ̂r + Xβ̂r − Xβ̂o

r )

= (y − Xβ̂r)
T Wr(y − Xβ̂r) + (Xβ̂r − Xβ̂o

r )T Wr(Xβ̂r − Xβ̂o
r )

−2(y − Xβ̂r)
T Wr(Xβ̂r − Xβ̂o

r ). (34)

Based on the normal equation of the unconstrained optimization problem,

we set

(y − Xβ̂r)
T Wr(Xβ̂r − Xβ̂o

r ) = (y − Xβ̂r)
T WrX(β̂r − β̂o

r )

= (XT Wry − XT WrXβ̂r)
T (β̂r − β̂o

r )

= ~0T (β̂r − β̂o
r ) = 0,

So(β̂o
r , λ̂o

r)=(y − Xβ̂r)
T Wr(y − Xβ̂r)+(Xβ̂r − Xβ̂o

r )T Wr(Xβ̂r − Xβ̂o
r ), (35)

with the difference between (35) and (32)

So(β̂o
r , λ̂o

r) − S(β̂r) = (β̂r − β̂o
r )T XT WrX(β̂r − β̂o

r ).

Thus, taking into account that XT WrX −→ Mr a.s. we have,

εR
r =

nh

ckσ2
r

(So(β̂o
r , λ̂o

r) − S(β̂r)) �
nh

ckσ2
r

(β̂o
r − β̂r)

T Mr(β̂
o
r − β̂r) = εH

r .

We now state the asymptotic equivalence between εH
r and εW

r . This relation

is obtained by merely replacing the term β̂o
r − β̂r from expression (8) in the

expression for εH
r :

εH
r =

nh

ckσ2
r

(β̂o
r − β̂r)

T Mr(β̂
o
r − β̂r)

� nh

ckσ2
r

(Grβ̂r − gr)
T [GrM

−1
r GT

r ]−1(Grβ̂r − gr) = εW
r .

Finally, using the expression of λ̂o
r given in (10), we obtain the asymptotic

equivalence of εW
r and εS

r :

εW
r =

nh

ckσ2
r

(Grβ̂r − gr)
T [GrM

−1
r GT

r ]−1(Grβ̂r − gr)

� nh

ckσ2
r

λ̂oT [GrM
−1
r Gr]

−1λ̂o
r = εS

r .

Once asymptotic equivalence is established between the different test statis-

tics, we derive only the asymptotic distribution for the Wald test statistic.
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From the asymptotic normal distribution of
√

nh(β̂r − βr) given at (30), and

since Gr is a full rank non random matrix, it is straightforward to show that√
nh(Grβ̂r−Grβr)

d−→ N(0, ckσ2
rGrM

−1
r GT

r ). Under the null hypothesis, Grβr =

gr,
√

nh(Grβ̂r − gr)
d−→ N(0, ckσ2

rGrM
−1
r GT

r ). Therefore,

εW
r =

nh

ckσ2
r

(Grβ̂r − gr)
T [GrM

−1
r GT

r ]−1(Grβ̂r − gr)
d−→ χ2(q),

and this result means that the test with the critical region defined as {εW
r ≥

χ2
1−α(q)} has an asymptotic level equal to α.

We show now that this test is consistent. In fact, if βo
r 6∈ Θo = {βr :

Grβr = gr}, the unrestricted estimator β̂r converges to βo
r and Grβ̂r − gr con-

verges to a nonzero vector. Hence, the statistic εW
r converges to +∞ and

Pβ(εW
r ≥ χ2

1−α(q)) → 1.

Proof of Theorem 5. The proof of this result is straightforward since the

locations are selected such that the different terms in the sum are independent

(see Härdle (1990, p.100), for similar statistics). Then, taking the asymptotic

distribution, the result follows from Theorem 4.
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