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Abstract: The asymptotic distribution of the test statistic for testing the dimen-

sionality in the SIR-II method is derived and shown to be a linear combination

of χ2 random variables under weak assumptions. This statistic is based on Li’s

(1991) sequential test statistic for sliced inverse regression (SIR). Also presented is

a simulation study of the result.
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1. Introduction

In this article, the asymptotic distribution of the test statistic for the dimen-
sion reduction method SIR-II (Li (1991)) is developed under the null hypothesis
for the dimension. The test statistic is based on the sequential test statistic for
SIR suggested by Li (1991). In Section 2, a brief review of the SIR-II method is
given; in Section 3, the asymptotic distribution for the test statistic is developed.
A simulation study of the result is presented in Section 4. All proofs are in the
Appendix.

It is assumed throughout this work that the data (Yi, XT
i ), i = 1, . . . , n, are

i.i.d. observations on (Y , XT ), and that the first four moments are finite. Here
S(B) denotes the subspace of Rt spanned by the columns of a t×u matrix B, PB

denotes the projection operator for S(B) with respect to the usual inner product,
and QB = I − PB.

2. The SIR-II Method

Li (1991) proposed an innovative method, SIR, using the inverse mean
E (X|Y ) as a way to estimate the subspace of Rp spanned by the columns βj

of the p × k matrix β• = (β1, . . . ,βk) in regression models of the form

Y = g(βT
• X, ε),

where g is an arbitrary unknown function and the error ε is independent of X.
However, the inverse mean E (X|Y ) may fail to recover β•. For example, consider
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the case y = x2
1 +ε where ε and xi, i = 1, . . . , p, are independent standard normal

variables. Then E (X|Y ) results in a vector of zeros, when in fact β• = e1

where e1 denotes the p × 1 vector with 1 in the first position and 0 elsewhere.
Other methods based on inverse variance, Var (X|Y ), have subsequently been
suggested. Cook and Weisberg (1991) proposed a sliced average variance estimate
(SAVE), and Li (1991) proposed SIR-II, which is described in more detail later
in this section. Both methods can recover the true dimension, e1, in the previous
example. Under certain conditions, these methods estimate part of the central

subspace, SY |X, defined as the smallest subspace of Rp so that Y X|PSY |X
X,

where denotes independence (Cook (1994, 1996)).
Let Σx = Var (X) > 0, and let Z = Σx

−1/2(X− E (X)) be the standardized

predictor. Then SY |X = Σx
− 1

2SY |Z (Cook (1998b), Proposition 6.1)). If the

columns of the matrix η form a basis for SY |X, then the columns of γ = Σx
1

2 η

form a basis for SY |Z, the central subspace for the regression Y on Z. Thus there
is no loss of generality in working on the Z scale.

Let ΣY = Var (Z|Y ). Then SIR-II (Li (1991)) is defined as

MSIR−II = E(ΣY − E (ΣY ))2.

In fact (Li (1991)):
MSAVE = M2

SIR + MSIR−II,

where MSIR = Cov (E (Z|Y )) is the SIR matrix, and MSAVE = E(ΣY − Ip)
2 is

the SAVE matrix. Thus SAVE combines SIR and SIR-II in a special way. It is
well-known that SIR catches the inverse means and SIR-II catches the inverse
variances, while SAVE catches both. There have been extensive asymptotic re-
sults for testing the dimension for SIR (e.g., Li (1991), Schott (1994), Velilla
(1998), Ferré (1998) and Bura and Cook (2001)). There is no asymptotic result
for testing the dimension for SAVE in general, though empirical methods such
as a graphical check or an eigenvalue comparison have been used for SAVE (e.g.,
Cook and Critchley (2000)). So far there is no asymptotic result for testing the
dimension for SIR-II either. The above matrix relationship among SIR, SIR-II
and SAVE does not reduce the importance of finding such a testing method for
SIR-II since the dimensions of these matrices are complicated and, as Cook and
Yin (2001) pointed out, in some cases the SIR-II matrix itself may be important.

Let γ be a basis of SY |Z. Then under

A. E (Z|γTZ) = PγZ and

B. Var (Z|γTZ) = Qγ ,

we have S(MSIR−II) ⊆ SY |Z (Li (1991) and Cook (1998b)). If Y is discrete,
then this result can be used to justify using conditional sample variances to
form MSIR−II, and to estimate vectors in SY |Z. When Y is continuous, Li (1991)
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suggested replacing Y with a discrete Ỹ based on partitioning the observed range
of Y into H + 1 fixed, non-overlapping slices. The fact that Y Z|γTZ implies
that Ỹ Z|γTZ. Thus SỸ |Z ⊆ SY |Z. In addition, provided that H is sufficiently
large, SỸ |Z = SY |Z, and there is no loss of information when Y is replaced

by Ỹ . A sample version M̂SIR−II can be constructed, and then S(M̂SIR−II) ⊆
SY |Z. Let b = dim(S(MSIR−II)). The span of the b eigenvectors of the sample

version M̂SIR−II that correspond to its b largest eigenvalues is an estimated part
of SY |Z. Recently Saracco (2001) and Gannoun and Saracco (2003) obtained
the consistency and asymptotic normality of the estimators of SIR-II assuming
b is known. Since in practice b is unknown, it is important to have an inference
method for b, and that is the goal of this article. The only other work addressing
this point is Kötter (1996), who used the cumulative proportion of the estimated
eigenvalues to estimate b, empirically.

Given a random sample {(Yi,X
T
i )}n

i=1 from (Y,XT ), construct first a discrete
version Ỹ of Y , where Ỹ = {0, ...,H}. Let Σs = Var (Z|Ỹ = s) for s = 0, . . . ,H.
Then, form Σ̂s, the sample version of Σs. Let M = E(ΣỸ − Σ0)

2, where Σ0 is
the conditional variance of Z|Y for Y ’s in the first slice of the population. Then
form

M̂ =

H
∑

s=1

fs(Σ̂s − Σ̂0)
2,

where fs = ns/n is the fraction of observations falling in slice s. Note that this
M is different from M̃SIR−II = E(ΣỸ − E (ΣỸ ))2, the corresponding version of

MSIR−II; however, they are equivalent since S(M̃SIR−II) = S(M). M is used
instead of M̃SIR−II because E (ΣỸ − E (ΣỸ )) = 0, making one of the terms in

M̃SIR−II redundant.
Note that when Y is binary, so that H = 1, M reduces to the Difference Of

Covariances (DOC) method (Cook and Lee (1999)). In this article, we assume
that H ≥ 1 is fixed. If H = 0, then both population and sample kernel matrices
reduce to the null matrix. Let d = dim(S(M)). When Y is discrete, testing H0:
d = 0 is a by-product of the results in Section 3. This can be considered as an
alternative method to Zhu, Ng and Jing (2002) and Zhang and Boos (1992) for
testing homogeneity of the covariance matrices for multi-groups without multi-
normality, and without reference to the likelihood ratio or union intersection
principle.

3. Asymptotic Distribution for The Test Statistic

Suppose that M̂ has eigenvalues, λ̂1 ≥ · · · ≥ λ̂p. The test statistic is the
sequential test statistic suggested by Li (1991) for SIR:

Λ̂d = n

p
∑

j=d+1

λ̂j . (1)
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Once the distribution of this test statistic under a null hypothesis is known, the

number d of nonzero eigenvalues of M can be estimated as follows: the null

hypothesis that d = m is rejected in favor of the alternative that d ≥ m+1 when

Λ̂m is bigger than the percentage point of its distribution. If Λ̂m+1 is less than

the same percentage point of its distribution, one may then infer d = m + 1.

Cook and Lee (1999) developed the asymptotic distribution of (1) when Y is

binary. A completely different test statistic, proposed by Schott (1994) for an

alternative form of SIR, uses ΣY in a sequence test with a test statistic that

requires elliptically symmetric regressors, and for which the tuning constant is

the number of observations per slice (rather than the number of slices).

Our result is developed under very weak conditions of finite first four mo-

ments, without any restrictions on the predictor distribution and without re-

quiring conditions A and B given in Section 2. However, to ensure that the

dimensions found by this method belong to the central subspace, the two con-

ditions are required. The sequential test statistic of Li (1991) has been used

as a typical test statistic for moment dimension reduction methods when H is

fixed (e.g., Li (1991, 1992), Cook (1998a), Bura and Cook (2001), Cook and Yin

(2002) and Yin and Cook (2004)). The general logic behind our development

is similar to that used by Cook (1998a) to derive the asymptotic distribution of

statistics used in the method of principal Hessian directions (PHD, Li (1992)).

This kind of idea has also been used by Bura and Cook (2001), Cook and Yin

(2002) and Yin and Cook (2004). The procedure has become a preferred one for

moment dimension reduction methods assuming a fixed number of slices, but the

same result can be obtained by using perturbation theory such as employed by

Li (1991) for SIR.

3.1. General case

Write M̂ = KnK
T
n , where Kn = ((Σ̂1 − Σ̂0)

√
f1, . . . , (Σ̂H − Σ̂0)

√
fH) is a

p×(pH) matrix, and M = KKT , where K = ((Σ1−Σ0)
√

p1, . . . , (ΣH−Σ0)
√

pH)

is also a p × (pH) matrix, with ps denoting the probability of Y in slice s.

Suppose that the singular value decomposition of K is given by

K = ΓT

(

D 0

0 0

)

Ψ,

where ΓT = (Γ1,Γ0) is an orthonormal p× p matrix, Γ0 is a p× (p − d) matrix,

ΨT = (Ψ1,Ψ0) is an orthonormal (pH)× (pH) matrix, Ψ0 is a (pH)× (pH − d)

matrix, and D is a d × d diagonal matrix with the positive singular values of K

along its diagonal. Using an argument similar to that of Gannoun and Saracco

(2003) (see also Saracco (2001)), the p2H×1 vector vec(Vn) = vec(
√

n(Kn−K))

converges to a multivariate normal distribution with mean 0 and finite covariance
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matrix. It then follows from Eaton and Tyler (1994) that the limiting distribution

of the smallest min(p− d, pH − d) singular values of
√

n(Kn −K) is the same as

that of the corresponding singular values of the (p − d) × (pH − d) matrix

√
nUn =

√
nΓT

0 (Kn −K)Ψ0 =
√

nΓT
0 KnΨ0.

The asymptotic distribution of Λ̂d is the same as that of the sum of the

squares of the singular values of
√

nUn, which is the same as that of n ×
trace(UnU

T
n ). Therefore the asymptotic distribution of Λ̂d is the same as the

asymptotic distribution of nvec(Un)T vec(Un). The distribution of
√

nUn is

given in the following Lemma.

Lemma 1. vec(
√

nUn) → N(0,∆u), where ∆u = (ΨT
0 ⊗ ΓT

0 )∆(Ψ0 ⊗ Γ0),∆ =

(ggT )⊗∆0 +diag(ps∆s), g = (
√

p1, . . . ,
√

pH)T ,∆s = (1/ps)Var ((Z−µs)⊗(Z−
µs)|s), µs = E(Z|s), and ⊗ is the Kronecker product.

Since the dimension of ∆u is (pH − d)(p − d) × (pH − d)(p − d), based on

Lemma 1 and the work of Eaton (1983, p.112), the asymptotic distribution of Λ̂d

is given in the following theorem.

Theorem 1. Assume that p > d and H ≥ 1. The distribution of Λ̂d converges

to that of

Ω =

(pH−d)(p−d)
∑

k=1

ωkΩk,

where the Ωk’s are independent chi-squared random variables each with 1 degree

of freedom, and ω1 ≥ ω2 ≥ · · · ≥ ω(pH−d)(p−d) are the ordered eigenvalues of ∆u.

Theorem 1 allows for a general test of dimension, provided that one can

obtain a consistent estimate of ∆u from which to construct estimates of the

eigenvalues ωk. Based on previous formulas, ∆u can be estimated consistently

by substituting the corresponding sample versions. Additionally, under a hypoth-

esized value of d, Γ0 and Ψ0 can be estimated consistently by using the sample

versions computed from Kn. Let ∆̂u denote the resulting estimated version of

∆u and ω̂k denote the eigenvalues of ∆̂u. The limiting distribution of Λ̂d is then

consistently estimated by the distribution of

Ω̂ =

(pH−d)(p−d)
∑

k=1

ω̂kΩk. (2)

The estimation of the weight ω̂i in the asymptotic distribution of Ω̂ could cause

problems if the sample size is relatively small, making the estimates quite vari-

able. This possibility might be avoided by approximating the distribution of Ω̂
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with a scaled chi-square statistic. Bentler and Xie (2000) reported success with

this approach in the context of the PHD method (Li (1992); Cook (1998a)).

Their general conclusions are expected to apply in the present context as well.

If H = 1, then Ψ0 = Γ0 and ∆ = p1∆0 + p1∆1, yielding the following result.

Corollary 1. If H = 1, then Theorem 1 reduces to Theorem 2 of Cook and Lee

(1999).

3.2. Normality and conditional normality

When Z or Z|Y is normally distributed, the result in Theorem 1 simplifies

a little since only the first two moments need to be calculated.

Theorem 2. Under

(a) p > d, H ≥ 1, Z|(Y = s) ∼ N(µs,Σs) and µs ∈ S(M); or

(b) p > d, H ≥ 1, Z is normally distributed and SY |Z = S(M),

the distribution of Λ̂d converges to that of

Ω =

(pH−d)(p−d)
∑

k=1

ωkΩk,

where the Ωk’s are independent chi-squared random variables each with 1 degree

of freedom, and ω1 ≥ ω2 ≥ · · · ≥ ω(pH−d)(p−d) are the ordered eigenvalues of

∆u = (ΨT
0 ⊗ ΓT

0 )∆(Ψ0 ⊗ Γ0), where

∆ = (IH +
1

p0
ggT ) ⊗ (Ip2 + Kpp + (Σ0 − I) ⊗ I) + diag((Σs −Σ0) ⊗ Ip),

and Kpp is a commutation matrix (Mangus (1988)).

Note that ∆u generally cannot be an idempotent matrix. This is in contrast

to the SIR case where a simple chi-squared distribution can be obtained. But it

is consistent with similar results obtained for binary Y by Cook and Lee (1999).

Again, if H = 1, then Ψ0 = Γ0, Γ0(Σ0 −Σ1) = 0 and ∆ = (1/p0)(IP 2 + KPP +

(p1−p0)(Σ0−Σ1)). Simple algebra shows that ∆u = (1/p0)(I(p−d)2+K(p−d)(p−d)).

Then the following corollary holds.

Corollary 1. If H = 1, then part (a) of Theorem 2 reduces to part (b) of

Corollary 1 in Cook and Lee (1999).

4. A Simulation Study

In this section, results of a simulation study are reported for the weighted

χ2 test for general and normal cases in Sections 3.1 and 3.2. Three examples are

considered. In order to make inference about d, one needs to calculate tail prob-

abilities of distributions of linear combinations of χ2 random variables as in (2).
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There is a substantial literature to assist in this computation (see Field (1993)

for an introduction). Field’s algorithm has been used by Cook (1998a) and Bura

and Cook (2001) for general cases of PHD and SIR, respectively. Bentler and

Xie (2000) proposed two modifications of Field’s algorithm. A different approach

is used in these simulations; an approach that takes advantage of modern com-

puting power and uses standard practices in statistical computing and numerical

analysis as found in texts such as Lange (1999).

In each of the examples presented below, sample sizes of n = 100, n = 500

and n = 1, 000 are used. The simulation study follows this procedure.

Step 1. Simulate data with sample size n according to the specified model.

Step 2. Compute the test statistic Λ̂d using the simulated data for d = 0, . . . , (p−
1).

Step 3. Again for each d = 0, . . . , (p − 1), construct the sampling distribution of

Λ̂d, using a parametric bootstrap approach (Lange (1999)), by drawing 10,000

realizations of Ω̂:

a. compute the eigenvalues ω̂k using the simulated data;

b. draw the required number of Ωk = χ2(1) variables;

c. compute Ω̂ as in Equation (2).

Step 4. The significance level is chosen to be α = 0.05. Thus, compute the 95th

percentile of these 10,000 draws of Ω̂.

Step 5. Compare the Λ̂d in Step 2 to the critical value found in Step 4.

These steps are repeated 1,000 different times. All our computations were

done using Matlab (Codes can be requested from the authors).

Example 4.1. This model is for discrete Y = 0, 1, 2 and X = (x1, x2, x3, x4)
T

with X|(Y = i) ∼ N(0,Σi), for i = 0, 1, 2, where

Σ0 =









2 0.5 0 0

0.5 1 0 0

0 0 1 0

0 0 0 1









,Σ1 =









3 0.2 0 0

0.2 2 0 0

0 0 1 0

0 0 0 1









and Σ2 =









1 −0.3 0 0

−0.3 3 0 0

0 0 1 0

0 0 0 1









.

Thus d = 2. Since Y is discrete, the number of slices is H = 3. Table 1 lists

the rejection rates at α = 0.05 when replicated with 1,000 repeated simulation

runs. When the sample size is small, both sample powers and sample significance

levels are away from the theoretical ones in the general test of Theorem 1 and

the normal test of Theorem 2. However, with large sample sizes, powers are very

high while sample α levels are anti-conservative compared to the theoretical one

in the general test. While achieving approximately the same powers, the sample
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α levels can be significantly improved by using the normal test. The scaled test

and adjusted test (Bentler and Xie (2000)) were also run for the normal test with

sample size n = 1, 000. The powers are the same as shown here, and the actual α

levels are 0.099 and 0.056, respectively. But its computation is a lot faster than

sampling from Ω̂. Clearly, the normal test is the best for normal predictors.

Table 1. Example 1. The 2nd and 3rd columns are sample powers while the
last is sample significance level.

d = 0 vs d ≥ 1 d = 1 vs d ≥ 2 d = 2 vs d ≥ 3

General Normal General Normal General Normal

n = 100 0.668 0.633 0.163 0.112 0.100 0.006

n = 500 1.000 1.000 0.936 0.956 0.099 0.053

n = 1, 000 1.000 1.000 1.000 1.000 0.099 0.050

Example 4.2. This model is the same as Example 4.2 in Bentler and Xie (2000).

Let x1, x2, x3, x4 be i.i.d. t(5) random variables, and ε be a standard normal. The

model is

Y = cos(2x2) + 0.5ε.

Thus d = 1. Table 2 lists the rejection rates at α = 0.05 when replicated with

1,000 repeated simulation runs. Since Y is continuous, H = 3 and H = 6 are

chosen for discretization. In Table 2, the numbers shown are for the general test

with H = 6, the normal test with H = 3, and the general test with H = 3. With

a large sample size, power is high. However, sample significance levels are very

bad for either of these methods for non-normal predictors, again anitconservative.

Generally, with a large number of slices, results are worse. This makes sense since

the sample size in each slice becomes small as the number of slices increases.

Table 2. Example 2. The 2nd column is sample power while the last column
is sample significance level.

d = 0 vs d ≥ 1 d = 1 vs d ≥ 2

General General Normal General General Normal

H = 3 H = 6 H = 3 H = 3 H = 6 H = 3

n = 100 0.467 0.436 0.556 0.172 0.198 0.127

n = 500 0.949 0.962 0.965 0.387 0.476 0.363

n = 1, 000 0.997 0.998 0.998 0.451 0.680 0.455

Example 4.3. This model is the same as Example 4.2, except now i.i.d. standard

normal random variables are used for the predictors. Table 3 lists the rejection

rates at α = 0.05 when replicated with 1,000 repeated simulation runs by the

general test with H = 3. These simulations showed that powers are very high
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with large sample sizes, while sample α levels compare well to the theoretical

one.

Table 3. Example 3. The 2nd column is sample power while the last column
is sample significance level.

d = 0 vs d ≥ 1 d = 1 vs d ≥ 2

n = 100 0.731 0.067

n = 500 1.000 0.037

n = 1, 000 1.000 0.037

From this simulation, it is clear that one should always try to transform

predictors to approximate normality, which is desirable under (A) and (B); the

normal test in Section 3.2 performs best when sampling from Ω̂ empirically; the

number of slices should not be too big; and if there is uncertainty in deciding d

using a numerical test, graphical methods such as those developed by Cook and

Weisberg (1999) should be helpful.
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Appendix. Proofs

We sketch proofs, details can be found in tech report # 2004-15, in the

Department of Statistics at the University of Georgia.

Proof of Lemma 1. Define Σx|i = Var (X|s = i) for the (i + 1)th slice of Y

in the population; the corresponding sample version is Σ̂x|i, for i = 0, . . . ,H.

Let Cn = (Σ̂x|1 − Σ̂x|0, . . . , Σ̂x|H − Σ̂x|0). Also, define pH × pH matrices Ĝ =

diag(
√

f1Ip, . . . ,
√

fHIp), and Ŝ = diag(Σ̂
−1/2
x , . . . , Σ̂

−1/2
x ). Let C,G and S be

the population versions of Cn, Ĝ and Ŝ, respectively. Let Â = Σ̂
−1/2
x Σ

1/2
x . Then

√
nUn =

√
nΓT

0 (Â−Ip+Ip)Σ
−1/2
x (Cn−C+C)(IH⊗(Â−Ip+Ip))S(Ĝ−G+G)Ψ0.

Collecting the terms of order o(n−1/2), and using ΓT
0 K = 0 and KΨ0 = 0,

the limiting distribution for
√

nUn is the same as that for
√

nΓT
0 Σ

−1/2
x (Cn −

C)SGΨ0. Thus the distribution of Wn =
√

n(Cn − C) must be investigated.

Note that vec(Wn) = (a1, . . . ,as, . . . ,aH)′ is a p2H × 1 vector, where as =√
n(vec(Σ̂x|s) − vec(Σx|s) − vec(Σ̂x|0) + vec(Σx|0)). Let µx|s = E(X|Ỹ = s)

and µx = E(X). By the Multivariate Central Limit Theorem, the multivariate

version of Slutsky’s Theorem, and the delta method, vec(Wn) → N(0,∆x), where
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∆x = (∆x
st) and ∆x

st = Bx(0) + Bx(s)δst with Bx(s) = (1/ps)Var ((X − µx|s) ⊗
(X− µx|s)|s), δii = 1 and δij = 0 for i 6= j. Finally the result follows from some

algebraic work.

Proof of Theorem 2. Under condition (a) Z|(Y = s) ∼ N(µs,Σs), so that

Var ((Z − µs) ⊗ (Z − µs)|s) = 2Np(Σs ⊗ Σs) (Mangus (1988)), where 2Np =

Ip2 +Kpp. Thus ∆s = (2Np/ps)(Σs ⊗Σs). Let Ψ0 = (Ψ01, . . . ,Ψ0H)T . Simplify

∆u to be

∆u =

H
∑

s,t=1

(Ψ0s ⊗ ΓT
0 )

√
pspt∆0(Ψ

T
0t ⊗ Γ0) +

H
∑

s=1

(Ψ0s ⊗ ΓT
0 )ps∆s(Ψ

T
0s ⊗ Γ0).

The result follows from the basic properties of Kpp, and the facts that ΓT
0 µs = 0,

ΓT
0 = ΓT

0 Σs and
∑H

s=1
√

psΨ0s =
∑H

s=1
√

psΣsΨ0s.

Under condition (b) Z|PZ ∼ N(PZ, Q), where P is the orthogonal projection

onto S(M) and Q = I −P . Using the form (Yin and Cook (2003)) M(3)(Z|Y ) =

E ((Z−E (Z|Y ))⊗(Z−E (Z|Y ))(Z−E (Z|Y ))T ), the result follows from a similar

argument as in condition (a) above.
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