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Summary

In this note we provide technical proofs for “Generic Sample Splitting for Refined Community

Recovery in Degree Corrected Stochastic Block Models”. Theorem numbering follows the original

paper.

S1 Proofs for stochastic block models

We first introduce several more notations. For any i € {1,2},k € {1,2,..., K}, we denote

Ik:{vzgvzk},I,Ei):{v:vevi,gff):k},j,(f):{v:UEVi,gff):k}.

Usually the true membership g and estimated membership g agree on most entries up to
a label permutation. For simplicity we will assume, without loss of generality, that the

permutation is identity.

The main theorem for stochastic block models follows from two simple applications of the

accuracy of cross clustering (Lemma 3).



In the proof we will frequently use the assumption that f(na,/2, K)y(K) > CK*?, a, >
CK3logn/(v(K)*n) and Cn > K3 for a sufficiently large C' that depends only on 7 and

V.

Proof of Theorem 2. Without loss of generality, assume that the memberships {g™V),--- , g}

agree under an identity permutation, denoted as o;. Note that

P(Gg=g)>P (6, =01, Vo>2]§" =g® )P (g™ =g, W) .

1

For any v, we have |V,| = &, [V(_,)| = (1 — #)n > 2. By Lemma 8, ¢~ is (%)-proper and

-
g™ is (5 )-proper with high probability. Then by Lemma 3, when a,, > Cf(‘”’;‘;gg for some
constant C, ¢ = ¢g(*) with high probability, which implies that

1%

P (" =g", Vo) 2 1= P(§ #¢") =1-0(n™).

v=1
The final conclusion follows by Lemma 7, the consistency of merge algorithm. |
Proof of Lemma 3. If for all nodes v € V,, for some § > 0,

1o = B(go, Il < dexs . (S1.1)

then we have the following separation conditions

sup ||va — BU/H < 20a,, ,

v,v' €V2,gu =0,/

inf ||y — hy|| > inf  ||B(k,-) — B(K.,")| — 260, > (7(K) — 26)a, .

v,0"'€V2,gu#G, 1<k<k'<K



The distance based clustering subroutine D used in Algorithm 1, such as the minimum
spanning tree, can correctly cluster all nodes, i.e., §® = ¢, if
sup  |lho —ho| < inf  |lhy — Ay
U,’U’GVQ,gv:gvl U,v’EVz,gv?ng/
Therefore, it suffices to show that with high probability, ||k, — B(ge, )| < dev, for all v € Vs,

for

o2 s12

By Lemma 6, the approximation bound (S1.1) and inequality (S1.2) hold with high probability

if v, > C’{f&g%g for some constant C' depending on . ]

Lemma 6. Given Vi, Vs, ¢, and §V satisfying the conditions of Lemma 3, there exists a

constant C' = C(m), such that for a,, > C’f(;’%:,

P (Hﬁv ~ B(go, )| < datm, Vv e vz) >1-0mY),

where § = v(K)/5, and the probability is conditional on Vy, V, and §(!)

Proof. Because

P (I = Blou. )l > das,) < ZP(

gmk)‘ > \%%) ;

it suffices to bound all K coordinates individually. Now, for any k € {1,2,.., K'}, note that



T < 1,7(K) < VK, we have

2
TV (K) f(nan/2, K)
< Wf(nan/Q,K) < 5
Therefore, when n is large enough, we have

. ‘I NTO| < (g £ g0y < AL < . (S1.3)
“ CTI T f(Wilan, K) T flenn/2,K)
7TO (1) _ _ @ _ _ @

‘z (1 (K 1)K) n ((1 7o) + K) n, (S1.4)
(1) M ]~ [T _ 1 > Ton 1
7! ’I Z‘I Nz {K Fa A, K)]n_ . (S1.5)

For any 1 < k < K, we have

Z ’EI(l) Av v’ szez—él) Av,v’
o 1
2 7|

o = Blgw )| < ‘Z”'fo:) Ave = Lyeg(n Aves

1z - 12
= m/(QK) LRIy TGYe)

Z Av,v’

v’EZ,(Cl)

Thus

"

Now we only need to bound the three terms individually. First, by inequality (S1.3), we

bk = Blaw k)| 2 ) < ZP( )



know |{v" : gﬁ) # gf})}\ <n/f(a,n/2,K). Then using Bernstein’s inequality, and note that

K32 2 2 f(nan /2, Ky (K) < 28 f(nan /2, K1 (K).,

we have,

) mon )
]P> T > n SP A’U’U -
( L= RVR ) 2 2K 3VK

w5 gD
woy(K)nan ann 2
( 03701(3/2 B f(ann/ZK)) /2
< exp | — anpn moy(K)nan QAnn
flann/2,K) + ( 30K3/2 f(ann/2,K))/3
3 o7 (K)nay ~1d L
Smp(laiﬁ@ﬁ— o

To control Ty, note that if K°/2 < (1/60)m2f(na,/2, K)y(K) and use inequalities (S1.3)-

(S1.4), similarly we have

o man? o
P T2 = (079 S P Z Av,v’ 2 ) ~(1) (679
VK ) 252 ||T1| - 12| 3VE

2
mgonr, f(nay, /2, K)
<P| 2 Awz 6F 5/

’UIEII(:)
w2y (K nan f(nay /2,K
e [ - ( 0 ( )301(5(/2 /2,K) ann)2/2
> ann + (wgy(K)nanf(nan/Q,K) . ann>/3

30K5/2
3 may(K)nay, f(na, /2, K)
< exp (_E 30K75/2

3a,n _ 3ann
<exp| — 3 =n B8lgn




Directly applying Bernstein’s inequality to 73 and using inequality (S1.4), we have

P <T3

0 0
< — > =
) P ' > Ay gv,k)]‘ Z SRR

TR
<2exp | — ( 310{3/52 S/2
ann + (5554°)/3

Y(K)mina, /(450K3)
1+ (K)mo/(45K73/2)

2 2 3 ,m
< 2exp? (E)mgnan/(900K”) _ 91~ "5001ognK3

<2exp (—

where in the last inequality we used the fact that vy(K) < VK and mp < 1, so that

1+ y(K)mo/(45K3/%) < 2. m

Lemma 7 (Consistency of Merge). Let {V,},=1_ v be subsets such that |V,| = n/V and

.....

are (mo/(2V'))-proper. Then under the same assumptions as Theorem 2, and condition on

g = g™ for all v = 1,...,V, Algorithm 3 (Merge) outputs § = g with high probability.

Proof. Without loss of generality, assume that the memberships {g(V),--- , ¢(")} agree under

an identity permutation, denoted as o;. Note that

Vv
P(6, =07, Yo >2|§"=g" W) >1-> P(6, #0s|§" =g, W),
v=2

it suffices to show that for Vo =2,...,V, P (@, £or| g™ =g, ‘v’v) < O(n™1'). Now, if for
allv=1,---,V, for some § > 0,

|BY - Bl <6, (SL6)



then we have the following separation conditions:

IBY — BW| < 26,

min lo(B™) = BY|| 2 ||o(B) — Bl| —26 > awy(K) — 26,

and

where for a permutation o on {1, ..., K}, 0(B) is a short hand for o(B) = (Bg(k)l)Kk <

the second inequality uses the fact that ||o(B®) — o(B)|| = ||B®) — B|| for any o. Therefore,

we only need to show that inequality (S1.6) holds with high probability for

7r0n ‘

VK ~

%{_(K_—l)ﬂo],v1gvgv,1gk§[(, (S1.7)



and use Bernstein inequality, we get

K
. o, Y(K (v o,y (K
P (160 - 51 > 208} < Y p (|8 - | > 220

5K
kl=1
K o 7
< P Ap o — By| > ———= ’I ‘
= Z Z ) = "0k
k=1 eEI,iU) e'ezM
< EK: P S A —Bu|2 any(K)_mgn”
= o T UM=K 4V2K?
k,lzl eez'l(cv),elel'(l)

2 m2y(K)n2am,
ann 0
+ ( 40V2K3

1o A 3200 )
< 2K?exp (- 14 w2y (K)/(120K3) >

4.2 2 2
5 oy (K)n*ay, Cmgnlogn
= 2R exp (—W) = 2o (‘W”l()gf( ’

bis (Knan
<2K2exp< (OZOWKS )/2 )
)/3

where the last two inequalities use the fact that y(K) < vK so 1+ m3v(K)/(120K3) < 2,

and a,, > CK?logn/(~(K)*n). The final result follows by K? < Cn for C large enough. =

Lemma 8 (Probability of having proper split subsets). If the true membership vector
g on {1,...,n} is my proper, and {1,...,n} is randomly split into two subsets Vi, Vs, with
corresponding gV, ¢® where [V;| > cn for some constant ¢ € (0,1). Then gV is (emo/2)-

proper with high probability when n > K3.

Proof. The claimed result follows easily from an exponential tail probability bound for

hypergeometric random variables (see, e.g., Skala, 2013),

P (IZ0"] < cron/(2K) ) < P (1T~ BIZ{| < —emon/ (2K)) < e/ 2K



for all 1 < k < K. The claimed results follow by union bound on k =1 VK.

S2 Proofs for degree corrected block models

In the following proofs, we denote B as the K x K weighted connectivity matrix, where

~ L, ZU’EZJ(.D l/Jvl ..
B(i, j) = WB(Z,J)- (52.8)
j

Proof of Theorem 4. Without loss of generality, assume that the memberships {g -, gW}
agree under an identity permutation, denoted as o;. Note that

P(§g=g)>P (6, =07, Yv>2]§"

= g™, Yo)P (3 = ¢, W) .

For any v, we have [V,| =2, [V_,| = (1 — 1)n > 2. By Lemma 8, g% is (Z)-proper and
g™ is (£2)-proper with high probability. Then by Lemma 5, when a,, > Cx K3 logn

PL(Kn for
some constant C, §(*)

= ¢) with high probability, which implies that

v
P (g(v) _ g(v)’ VU) >1-— Z]PJ (g(’u) 7§ g(v)) >1— O(n_l).
v=1

The final conclusion follows by Lemma 11, the consistency of spherical merge algorithm

Proof of Lemma 5. If for all nodes v € V,, for some § > 0

~

hy _ Blg. (52.9)
lholl 11B(g, || .




then we have the following separation conditions

By P
sup — — — <20,
v, EV2,gv =g, “th ||hv’||
iLv iLfU/ B k, - B
lnf = —_— = 2 lIlf ~( ’ ) ~
swevasotas |l (R ]||  =ssks | [BG I 1B H
We know from Lemma 9 that
B(k, - B(k
inf (k) - > o (K).
1<k<k'<K || || B(F, )H | B(k H

Thus the distance based clustering subroutine D used in Algorithm 1’, such as the minimum

spanning tree, can correctly cluster all nodes, i.e., §® = ¢, if
h h h h
sup v < inf s
voevnan=ay || Wl Tl ™ v |[[Rl  Ilhol

Therefore, we only need to show that with high probability, H h i Hgg” T H 0 for all
nodes v € Vs, where
(K
5 = %75( ) (S2.10)

By Lemma 10, the approximation bound (52.9) and inequality (S2.10) hold with high

probability if «,, > C' %2+w for some constant C' depending on (7, 1p). [ |

Lemma 9 (Lower bound of the distances between normalized rows of B). If a degree

corrected block model satisfies Assumptions A1’ and A4, and B is defined as in equation

10



(52.8), then
B(k,")
|Bk,

min
1<k<k/'<K

B

Proof. For simplicity let 4 = 4(K). Define matrix

. ZU’GIF) 1/)1/ Z’U’EIS) ¢U’
U = diag 0 e ) .
Z; | x|

We only need to prove that H |I$g0 z ;;H ||$§2 ‘ > o7, for any k #£ K.
Now we define
By(k, )" Bo(k', )"

=Bk, T Uy, 1~

_ _Bo(k)T" _ _Bo(¥',)" _ ¥Bo(k,)T [WBo (k)| :
where u = m, v = W, S = W, and t = W By Assumptlon A4,
we have

19 Bo(k, )"l
do < L2 gy
| Bo (k. )"l
Thus,
|w|| > min .
Po<s,t<1lll s t

Because u and v are two unit vectors with u’v > 0, it is straightforward to check that the

function

v)2 1 1 2 5
:t_2+3_2_gu v, YP<t,s<1

11



reaches its minimum ||u — v||?, when ¢ = s = 1. Therefore

ka BO(k‘Ja')T
loll > flu— ol H ,
1Bl T|| ~ TBok, )7

EXE

Using the fact that smallest eigenvalue of W satisfies Ay (V) > 1), we have

H U By(k, -) U By(k', )T
[WBy(k,)T|| [ WBo(K', )]

‘ _ ]l = dollw] > oi

Lemma 10. Given V;, Vs, ¢V, and ¢V satisfying the conditions of Lemma 5, then there

exists a constant C' = C(m, 1), such that if oy, > CK3logn/(7(K)*L(K)

dl

where & = ¢0J(K)/5, and the probability is conditional on Vi, V, and §

277/),

~

he
1ol

D:Jz/th

9o ) <4, VUEV2> >1-0(n),
(go: )l

Proof. First, by the definition of B in equation (S2.8), we have

max { o, 100 Blgor ) } = 160 Blg0, )| = v L(K).

Therefore,

~

hv . B(Qva') _
B

~

hy  ¥uB(gv,") H
o]l 11B(go, )l [ ||¢J(gv,-)||
17 — o B(go, )|

max{H/%vH,va (g0, )1}

2 ~ ~
< m”hu — 1y B(gu, )| -

12



So we only need to bound

- ¢UB(gv7 k) 2

K
P (I - 0Bl = BEE) < 37 ([

k=1

and the rest of the proof follows by adapting that of Lemma 6. The details are given below.

Since inequalities (S1.3)-(S1.5) in Lemma 6 still hold, for any k, we have

bt [t~ D e Do o
v ] = 2] 2l 7|
Z EI (1) Av R Z re7® 7%
v . v k
| FEI
1 £ (1
‘ZU eI(l) AU v T Z I}(Cl) Av,v’ n ‘|Ili )| - |Il(~c )| Z A
R R 2
veLy

Z'u eI (1) A” v’ Zv’ez(l) b

- Ii ¢UB(gv7 k)

7]
=T+ Ty +1T3.

Now we only need to bound the three terms individually. First by (S1.3) we know |{v’ :
A(l + gf}l)}| <n/f(a,n/2,K). Then using Bernstein’s inequality and noticing that

K3% < wo (O‘nn/zuK):V(K)L( )

< 0 Do (@2, K)I(K)L(K).

- 120

13



we have for n large enough,

2L(K)da > ﬂ0n¢2L(K)5a
PlTy> 22— ) <P Ay > 0 z
( N 2 ~ 2K  6VEK

o1:g DD
o [ /2
et + (TR )
< oxp (-5 AL ) _

To control Ty, note that K°/2 < (1/120)m34¢ f(c,n/2, K)5(K)L(K). Similarly we have, for

n large enough, using Bernstein’s inequality,

2 2,,2 2
P (T2 > M) <P Z Ay > 7r0n i Yy L(K)da,
6vVK ox2 |20 — 70| 6VEK

2
<P Z Ay > 7r0 cL(K)oannf(ann/2, K)

12K5/2
v GI,(CI)
w24h3 9 anpnf(ann/2, T 2

< ( BRLEN K aunf(0un/2K) _ o, (1 — mg) + ?o)> /2
<exp| — =

nn((1 — m) + ™) + (w%wSL(K)v(gg;?ST;Zf(ann/M) — nan((1 —m) + %)> /3

3 S L(K)Y(K)a,nf(a,n/2, K) 3a,n _3.ayn
= P (_E 60K 5/2 Sexp | megm f = s
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Directly applying Bernstein’s inequality to 73 and using inequality (S1.4), we have

G L(K)day, 2L(K)do, mon
P (T3 > W) <P Z [Av,v’ - %%/B(Qv,k’)]‘ > 6\/? I

”U’GI](CU
mo2 L )oanm 9
< 2ex — <0%_.K3/—2> /2
- p o o2 L(K)Sann
na,((1—m) + )+ a5 /3

p( TS LK) (K)? nan/(18OOK3))
1+ mogg L(K)7(K)/(90K3/2)

m¥g (2L 2 nan

< 2exp (—mug L(K)*3(K)*nan, / (3600K?)) = 2n” 3000 = e

where the last inequality uses the fact that L(K) < vK,#(K) < vK and m, 1 < 1, so that

1+ w3 L(K)7(K)/(90K3/%) < 2. n

Lemma 11 (Consistency of MergeSphere). Let {V,},—1__v be disjoint subsets such that

V| =n/V and are (my/(2V))-proper. Then under the same assumptions as in Theorem 4,

and condition on ) = ¢ for all v = 1, ..., V, Algorithm 3’ (MergeSphere) outputs § = g

with high probability.

Proof of Lemma 11. Without loss of generality, assume that the memberships {gV),--- , ¢V}

agree under an identity permutation, denoted as o;. Note that

1%
P(6, =07, Vo>2|g" =g" Vo) >1-) P(6,#0s | 5% =g"), W),
v=2

it suffices to show that for Vo =2,....V, P (@, £or| g™ =g, VU) < O(n™1). We define

QZ,(:) to be the average node activeness in I,Ev):

) 2 ezt Ve
Iz,

15



and B® and its row-normalized version Bil) as follows:

BOk,1) = gV B(k, 1), BO(k,-) =

If forallv=1,---,V, for some § > 0,

1BY — BO| <6, (S2.11)

then use Lemma 9, we have the following separation conditions:

1B — BV|| < 26,

min [lo(B") = B > [lo(BY) = B - 20 > Yo7 (K) - 2,
OF0g1

where for a permutation o on {1, ..., K}, o(B,) is a short hand for o(B.) = (B.(0(k), 1)), <1 1<
and the second inequality uses the fact that ||0(E£v)) - O’(pr)” = ||§£v) - Bil)H for any o.

Therefore, we only need to show that inequality (S2.11) holds with high probability for

Note that by assumption, for V1 <v <V, 1 <k < K, we have f,gv) = I,SU) and

Ton

08 <7
2VK —‘ K

< -5

max{|| B (k, )|, |41 BY (k, [} > [0y BO (k, )| > ¢3anL(K) .

16



The second inequality further implies that

BO(k, ) “)B(l)(k,-) H
1BOE, ) ([0 B(U(k,')\l
||B(“3(k;,) G BO (k)|
max{|| BO) (k, )|, |48 BO(k, )|
2
= PZan L(K)

*

B (k) = BO(k, || = ‘

B (k,-) — o BO(k, )]

Then using Bernstein inequality, we get

(160 - 5 > 2 < i( - a0, of | > WI)
r (|2 5 5o i () g LK)
S;P( BY(k,-) — <>(/€,.>H_ 53/_ : )
< 3 B (|00 - 750 | > Bl

i ZEEL@,@/GIQ et — Yeper B(k, 1) - UBE) LK),
Izl) - 10K

K ~
Yoy () LK) o, ( mon )2
< / / >
k=1 ez, e/eIl(l)

327 (K)L(K)n?an,
< 2K2exp< (= 0740v2K3 )?/2 )
)/3

ann2 OWQ'Y( L(K)n2an
+ ( 40V2K3

woﬂov (K)L*(K)n?a,/(3200V2K°)
1+ gy (K) LK)/ (120K3) )
Pomey (K) L* (K)n*ay,
6400V 2K 6 )
CypSmanlogn
6400V2K3

< 2K?exp <—

< 2K%exp (—

§2exp(— +210gK)
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where the last two inequalities use the fact that y(K) < VK, L(K) < VK so

1+ 4hpmey(K)L(K)/(120K7) < 2,

and o, > C I?);% The final result follows by K3 < Cn for C large enough.
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