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Abstract: In several recent papers log-concavity results and related inequalities
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related functions for Beta as well as for central and non-central Chi-square and F

distributions, where hitherto only partial results were available. To this end we

introduce a generalized reproductive property, thereby extending the relationships

between total positivity of order 2, log-concavity and reproductivity developed in

Das Gupta and Sarkar (1984). The key to our results are log-concavity properties

of the non-central Chi-square distribution with zero degrees of freedom introduced

by Siegel (1979). Finally one of the results for the central F distribution is used

to solve a monotonicity problem for a stepwise multiple F-test procedure for all

pairwise comparisons of k means.

Key words and phrases: Beta distribution, Chi-square distribution, convolution

theorem, doubly non-central F distribution, eccentric part of Chi-square, F distri-

bution, log-concave, log-convex, multiple comparisous, pairwise comparisons, Pólya
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1. Introduction

It is often straightforward to show that a cumulative distribution func-
tion (cdf) F (x|ϑ) (say) depending on a parameter ϑ ∈ Θ ⊆ R is increas-
ing or decreasing in ϑ ∈ Θ. Once such a monotonicity is established, e.g.
F (x|ϑ1) ≥ F (x|ϑ2) for all ϑ1 < ϑ2, the next question may be whether these
inequalities can be improved. Similarly, one may ask whether the trivial inequal-
ity F (x1|ϑ) ≤ F (x2|ϑ), x1 < x2, can be sharpened. A method which often leads
to improved inequalities is to show that a cdf is log-concave in x or ϑ. Suppose
for a moment that a cdf F (x|ϑ), depending on a parameter ϑ ∈ N0 = {0, 1, . . .},
is log-concave and non-increasing in ϑ, then we obtain e.g.

∀ϑ ≥ 1 : F (x|ϑ) ≥ d(ϑ)F (x|ϑ + 1) (1.1)
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with d(ϑ) = F (x|ϑ − 1)/F (x|ϑ) ≥ 1, hence in case of d(ϑ) > 1 an improvement
of the monotonicity in ϑ. Moreover, if in addition F (x|0) is the cdf of the point-
mass at 0, then the log-concavity of F implies another type of (somewhat weaker)
inequality, namely

∀ϑ ≥ 1 : F (x|ϑ)1/ϑ ≥ F (x|ϑ + 1)1/(ϑ+1), (1.2)

which is an improvement of the monotonicity in ϑ as well (cf. Finner (1990)).
While log-concavity properties or inequalities of types (1.1) and (1.2) for cdf’s

(or related functions) are certainly of independent interest, they also have some
applications, for instance, in reliability theory (cf. e.g. the monograph by Barlow
and Proschan (1975)) and in multiple hypotheses testing problems (cf. e.g. Hayter
(1986), Finner (1990, 1993)), where the monotonicity of certain critical values in
various stepwise multiple test procedures is closely related to (1.1) and/or (1.2).
An open problem of this type concerning the F distribution will be discussed and
solved in Section 5.

A series of log-concavity results in x and ϑ for cdf’s and related functions is
given in Das Gupta and Sarkar (1984). Moreover, they studied the relationship
between log-concavity, reproductivity (which is a convolution property), and to-
tal positivity of order 2 (TP2). Based on a slight extension of their approach
to discrete distributions Finner and Roters (1993a) studied the most common
univariate distributions with regard to log-concavity. It became evident that
the underlying theory was not general enough to treat certain distributions to a
sufficient extent, namely the important F and Beta distributions. In view of a
negative result for the cdf of the studentized range of n normal random variables
(cf. Finner (1990)) concerning log-concavity in n, which seems to be an effect
of positive dependence of studentized random variables, at first sight a positive
result for the F distribution (which can also be considered as the distribution of a
studentized random variable) cannot be expected. Fortunately, this apprehension
does not prove to be true.

This paper provides a variety of log-concavity results not only for central but
also for non-central Chi-square and F as well as for Beta distributions. These
improve some well-known monotonicity results for the cdf and some related func-
tions available in the literature (cf. e.g. Johnson and Kotz (1970), p. 135, or Ghosh
(1973)).

In Section 2 we first introduce a generalized reproductive property and show
that all relationships between reproductivity, total positivity of order 2 and log-
concavity as considered in Finner and Roters (1993a) remain valid.

Section 3 deals with central and non-central Chi-square distributions. Among
other things we study the eccentric part of a decomposition of the non-central
Chi-square distribution. These considerations finally allow us to extend already
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known log-concavity-results for the cdf and some related functions in connection
with the (non-)central Chi-square distribution to a nearly complete list concern-
ing the ranges of the values of x, the degrees of freedom and the non-centrality
parameter. These results are summarized in Theorems 3.4, 3.8, and Remark 3.6.

In Section 4 we utilize the generalized reproductive property together with
the results for the Chi-square distribution to prove a considerable number of
log-concavity properties for the “unnormed” doubly non-central (including the
central and non-central) F distribution, which carry over to the Beta distribu-
tion by means of the well-known relationship between F and Beta. The main
statements can be found in Theorems 4.1, 4.3, 4.5 and Corollaries 4.4, 4.6.

While the results for the Chi-square distribution in Section 3 are obtained by
using the original reproductive property (without utilizing the so-called mixture
property applied by Das Gupta and Sarkar (1984)) we make essential use of the
generalized reproductive property and the corresponding assertions of Section 2
in order to treat the F and Beta distributions. One of the results in Section 4
concerning the Beta distribution was already obtained by Das Gupta and Sarkar
(1984) with the help of a different method, i.e., the so-called restricted repro-
ductive property, which can be dispensed with in our approach. A further but
fragmentary result based on the original reproductive property and the interre-
lation between the Negative Binomial, the F and the Beta distributions can be
found in Finner and Roters (1993a). So the generalized reproductive property
can be viewed as a key property for obtaining most of the results in a unifying
way.

Finally, in Section 5 we apply one of the results for the unnormed central
F distribution to a monotonicity problem occurring in a widely used stepwise
multiple F-test procedure for all pairwise comparisons of k means.

2. A Generalized Reproductive Property

In this section we present a definition of reproductivity which is slightly more
general than that given in Das Gupta and Sarkar (1984) but has, as will be seen
especially in Section 4, a considerably wider range of applications.

To set notation, let (X,A, µ) denote a measure space which in general is
assumed (unless specified otherwise) to be equal to (R,B, λ) or (Z,P(Z), κ),
where λ denotes the Lebesgue measure on the Borel-σ-field B of the set of real
numbers R and κ denotes the counting measure on the power set P(Z) of the
set of integers Z. Let Θ ⊆ R denote a parameter space and let f(x|ϑ), ϑ ∈ Θ,
be probability density functions (pdf’s) with respect to µ. Furthermore, let
F (x|ϑ) denote the corresponding cdf and set F (x|ϑ) = 1−F (x|ϑ) and Jc(x|ϑ) =
F (x + c|ϑ) − F (x|ϑ), c > 0.
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A function g : A → [0,∞), A ⊆ Rm, is said to be log-concave (log-convex)
in x ∈ A (short: g is lcc(x) (lcx(x))), if for all x1, x2 ∈ A and all α ∈ [0, 1] such
that αx1 + (1 − α)x2 ∈ A we have

g(αx1 + (1 − α)x2) ≥ (≤) g(x1)αg(x2)1−α.

Setting log 0 = −∞, these inequalities mean that log g is concave (convex) in
x ∈ A (short: log g is cc(x) (cx(x))).

For a collection of some basic and fundamental results concerning log-
concavity we refer to Eaton (1987), Chapter 4.

A well-known method to derive log-concavity results, which does not only
apply for the Lebesgue measure, is based on the concept of total positivity of order
2 (cf. Karlin (1968)). A function g : A → [0,∞), A ⊆ R2, is said to be totally
positive of order 2 (short: g(x, y) is TP2(x, y)) if for all (xi, yj) ∈ A, i, j = 1, 2,
with x1 < x2, y1 < y2, we have

g(x1, y2)g(x2, y1) ≤ g(x1, y1)g(x2, y2).

Furthermore, f : X → [0,∞) is called a Pólya frequency function of order 2 (PF2)
if K(x, y) = f(x − y), x, y ∈ X, is TP2(x, y). We note that a location family
generated by a pdf f has monotone likelihood ratio iff f is PF2. For X = Z a
PF2 function f is also said to be a Pólya frequency sequence of order 2.

The following result which can be found e.g. in Marshall and Olkin (1979),
Chapter 18, may be considered as a basic tool to derive log-concavity results.

Proposition 2.1. (i) A measurable function g : X → [0,∞) is PF2 if and only
if g is lcc(x). (ii) Let g, h : X → [0,∞) be measurable PF2 functions. Then the
convolution k(x) =

∫
X g(x − y)h(y)dµ(y) is PF2.

The following approach to reproductivity generalizes the one given in Das
Gupta and Sarkar (1984) insofar as it is also applicable for certain families of
distributions the members of which are not necessarily concentrated on the
non-negative real line. Denote by N the set of positive integers, and let Θ ∈
{(0,∞), [0,∞),N,N0} and g : X × Θ → [0,∞) be measurable in the first com-
ponent.

Definition 2.2. The function g(x|ϑ) is said to have the reproductive property
in ϑ ∈ Θ (short: g(x|ϑ) has RP(ϑ)) if for every η ∈ Θ there exists a probability
measure Pη on (X,A) with Pη([0,∞) ∩ X) = 1 such that for all ϑ ∈ Θ and
µ-almost all x ∈ X ∫

X
g(x − y|ϑ)dPη(y) = g(x|ϑ + η). (2.1)
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Now let f(x|ϑ), x ∈ X ∈ {R,Z}, be probability density functions with the
same properties as g(x|ϑ) defined above. In this case the reproductive property
for pdf’s f(x|ϑ) is just a convolution property of the corresponding probability
measures.

Remark 2.3. In terms of random variables, the reproductive property of the
corresponding pdf’s f(x|ϑ) can be characterized as follows: f(x|ϑ) has RP(ϑ)
iff there exists a stochastic process (Yϑ)ϑ∈Θ with stationary, independent and
non-negative increments such that Yϑ has the pdf f(x|ϑ), ϑ ∈ Θ. In the special
case Θ = N0 (or similarly for Θ = N with obvious modifications) the random
variable Yϑ can be expressed as Yϑ = Y0 +

∑ϑ
i=1 Xi, ϑ ∈ N, where the Xi, i ∈ N,

are non-negative independent, identically distributed (i.i.d.) random variables
independent of Y0.

The following two propositions generalize the results obtained for X = R in
Das Gupta and Sarkar (1984) and Finner and Roters (1993a).

Proposition 2.4. (i) If f(x|ϑ) has RP(ϑ), then F (x|ϑ), F (x|ϑ), and Jc(x|ϑ)
have RP(ϑ). (ii) If f(x|ϑ) is TP2(x, ϑ), so are F (x|ϑ), F (x|ϑ), and Jc(x|ϑ).

Proposition 2.5. Suppose G(x|ϑ) ∈ {F (x|ϑ), F (x|ϑ), Jc(x|ϑ)} is Borel-
measurable in ϑ ∈ Θ and has RP(ϑ). (i) If G(x|ϑ) is lcc(x), then G(x|ϑ) is
TP2(x, ϑ). (ii) If G(x|ϑ) is TP2(x, ϑ), then G(x|ϑ) is lcc(ϑ).

Remark 2.6. In contrast to Theorem 3.2 (i) in Finner and Roters (1993a)
Proposition 2.4 (i) states that not only F (x|ϑ) but also F (x|ϑ) and Jc(x|ϑ) have
RP(ϑ) whenever f(x|ϑ) has this property. This is a direct consequence of the
new definition of RP(ϑ).

Part (i) of Proposition 2.4 follows by integrating (2.1) for f(x|ϑ) and ap-
plying Fubini’s theorem, whereas part (ii) follows by integration of f(x|ϑ) and
application of the basic composition formula (Karlin (1968), p. 17). Part (i) of
Proposition 2.5 can be proved in the same way as in Theorem 3 of Das Gupta
and Sarkar (1984), whereas the proof of (ii) is similar to the one of Theorem 1 (ii)
in the same paper. However, it should be noted that the integrations occurring
in the proofs have to be carried out over the set X to obtain the results. At this
point it is essential that the probability measures Pη, η ∈ Θ, are concentrated
on X ∩ [0,∞). For rigorous proofs we refer to a technical report (cf. Finner and
Roters (1996)).

3. Properties of the Non-Central Chi-Square Distribution

This section provides some contributions concerning distributional properties
of the non-central Chi-square distribution, especially, log-concavity properties
and TP2-properties of the cdf and some related functions. A part of these results
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is well-known if the degrees of freedom n (say) are greater than or equal to 2. It
will be shown that many of these properties carry over for n < 2. Moreover, in
almost all cases the methods used here for proving such results apply for all real
n > 0. The main reason for the problems occurring for n < 2 is based on the
fact that the pdf of the Chi-square distribution is no longer log-concave as it is
for n ≥ 2. The reader interested in further analytical properties of these pdf’s is
referred to a recent doctoral thesis by Stader (1992).

We begin with some notation. The central Chi-square distribution with
degrees of freedom n > 0 will be denoted by χ2

n, its density is given by

h(x|n) = (exp(−x/2)xn/2−1/(2n/2Γ(n/2)))I(0,∞)(x), (3.1)

where IA denotes the indicator function of a set A.
The non-central Chi-square distribution with degrees of freedom n > 0 and

non-centrality parameter ξ ≥ 0 with density

h(x|n, ξ) =
∞∑

j=0

exp(−ξ/2)
j!

(
ξ

2
)jh(x|n + 2j) (3.2)

will be denoted by χ2
n,ξ. For ξ = 0 we obtain h(x|n, 0) = h(x|n). The corre-

sponding cdf’s will be denoted by H(x|n) and H(x|n, ξ), respectively. With cj =
[exp(−ξ/2)](ξ/2)j/j! formula (3.2) can be written as h(x|n, ξ) =

∑∞
j=0 cjh(x|n +

2j). A random variable having a χ2
n distribution will be denoted by Xn (short:

Xn ∼ χ2
n) or by Yn. In the non-central case we adopt the notation Xn,ξ ∼ χ2

n,ξ or
Yn,ξ ∼ χ2

n,ξ. According to Siegel (1979), p. 382, a χ2
n,ξ-variable Xn,ξ can be de-

composed as Xn,ξ = Xn + X0,ξ, where Xn,ξ and X0,ξ are independent, Xn ∼ χ2
n,

and X0,ξ can be considered as a Chi-square variable with non-centrality param-
eter ξ ≥ 0 and zero degrees of freedom. The distribution of X0,ξ (called the
eccentric part by Hjort (1988)) has the point-mass c0 = exp(−ξ/2) at 0 and, if
ξ > 0, a continuous part concentrated on (0,∞) characterized by the Lebesgue
density g(x|ξ) =

∑∞
j=1 cjh(x|2j). The next lemma is the basis for all that follows.

Lemma 3.1. For all ξ ≥ 0, the density g(x|ξ) of the continuous part of the
distribution of X0,ξ is lcc(x).

Proof. For α, ξ > 0 we consider the auxiliary function

g(x|α, ξ) = u(x)
∞∑

j=0

dj
xα+j

Γ(α + j + 1)
I(0,∞)(x) = u(x)w(x) (say),

where u(x) = c0 exp(−x/2) and dj = (ξ/4)j+1/Γ(j + 2) for j ∈ N0. Noting
that dr−s is TP2(r, s) and that 0 <

∑∞
j=0 dj < ∞, we obtain from Theorem

2.1 in Karlin (1968), p. 107, that w(x − y) is TP2(x, y) and hence that w(x) is
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lcc(x). But u(x) is also lcc(x), thus g(x|α, ξ) is lcc(x). Letting α → 0 continuity
arguments yield that g(x|ξ) is lcc(x) for all ξ > 0.

It is well-known that the log-concavity of a density implies that the cor-
responding cdf F (x) and the related functions F (x) = 1 − F (x) and Jc(x) =
F (x+ c)−F (x) are lcc(x). We now discuss log-concavity properties of the corre-
sponding functions with respect to the distribution of X0,ξ. As this distribution
is a mixture of a discrete and an absolutely continuous distribution the usual
methods for proving log-concavity results fail and a more refined technique is
required.

Lemma 3.2. Let G(x|ξ) denote the cdf of X0,ξ. Then G(x|ξ) is lcc(x) on R,
and G(x|ξ) = 1 − G(x|ξ), Jc(x|ξ) = G(x + c|ξ) − G(x|ξ) are lcc(x) for x ≥ 0.

Proof. Let u(x|ξ) = (ξ/4) exp(ξx/4−ξ/2)I(−∞,0](x) and define v(x|ξ) = u(x|ξ)+
g(x|ξ), x ∈ R. Then v(x|ξ) is a pdf with respect to Lebesgue measure, which is
lcc(x) on R. This follows easily by verifying that
(i)

∫
R u(x|ξ)dλ(x) = exp(−ξ/2) = c0,

(ii) u(x|ξ) is lcc(x),
(iii) u(0|ξ) = limx↓0 g(x|ξ) = (ξ/4) exp(−ξ/2),
(iv) limx↑0 u′(x|ξ)=(ξ/4)2 exp(−ξ/2)>(ξ/8)(ξ/4 − 1) exp(−ξ/2)=limx↓0 g′(x|ξ).

Noting that G(x|ξ), G(x|ξ), and Jc(x|ξ) coincide for x ≥ 0 with the corre-
sponding functions belonging to the pdf v(x|ξ), the assertion follows.

Now we consider the cdf H(x|n, ξ) of the non-central Chi-square distribution
as a function of x. To prove that H(x|n, ξ) is lcc(x) we need the following result
which can easily be proved by using the definition of log-concavity.

Lemma 3.3. Let u(x, y) be lcc(x, y) and non-decreasing in y for each x, and let
v(z) be concave. Then w(x, z) = u(x, v(z)) is lcc(x, z).

Theorem 3.4. For all n, ξ ≥ 0, H(x|n, ξ) is lcc(x).

Proof. For n = 0 we refer to Lemma 3.2, so let n > 0 and let X0,ξ and Xn be
defined as before. Then

H(x|n, ξ) = P (X0,ξ + Xn ≤ x)

=
∫
R

P (X0,ξ ≤ x − y)h(y|n)dλ(y)

=
∫
R

G(x − y|ξ)h(y|n)dλ(y)

=
∫
R

G(x − exp(y)|ξ) exp(y)h(exp(y)|n)dλ(y).

From Lemma 3.2 we obtain that G(x|ξ) is lcc(x), which implies that G(x +
y|ξ) is lcc(x, y). With Lemma 3.3 it follows that G(x − exp(y)|ξ) is lcc(x, y).
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Furthermore, h(exp(y)|n) and exp(y) are lcc(y), and the product of all these
functions is lcc(x, y). So Prekopa’s theorem (Prekopa (1973), cf. Eaton (1987),
p. 79) yields that H(x|n, ξ) is lcc(x).

Remark 3.5. If 0 < n ≤ 2, 0 ≤ ξ ≤ 2, then it can be shown by calculating
derivatives that h(x|n, ξ) is non-increasing in x. This implies that H(x|n, ξ) is
even concave for x ≥ 0 and consequently log-concave in x ∈ R.

Remark 3.6. For n ≥ 2, ξ ≥ 0, h(x|n, ξ) is lcc(x), hence, e.g. by virtue of
Proposition 2.1, H(x|n, ξ) = 1 − H(x|n, ξ) and Jc(x|n, ξ) = H(x + c|n, ξ) −
H(x|n, ξ) are lcc(x) as well. For n < 2, neither log-concavity nor log-convexity
properties in x hold for H(x|n, ξ) and Jc(x|n, ξ) in general. An exception is the
case 0 < n < 2, ξ = 0, where h(x|n, ξ) is log-convex in x > 0 so that H(x|n, ξ)
is log-convex in x ≥ 0 (cf. Finner and Roters (1993a)).

Remark 3.7. Apparently only parts of the assertions of Theorem 3.4 have been
known hitherto, namely that H(x, |n, ξ) is lcc(x) for n ≥ 2, ξ ≥ 0 or n > 0, ξ = 0,
and that H(x, |n, ξ) is lcc(x) for n ≥ 2, ξ ≥ 0 (cf. Das Gupta and Sarkar (1984),
p. 57).

Before we state the log-concavity results in n and ξ, some preliminary remarks
are helpful. First, note that the well-known convolution property χ2

n1+n2, ξ1+ξ2 =
χ2

n1,ξ1
∗ χ2

n2,ξ2
(cf. e.g. Johnson and Kotz (1970), p. 135) which was stated there

only for ni > 0, ξi ≥ 0, i = 1, 2 is even valid for ni, ξi ≥ 0, i = 1, 2 (cf. Siegel
(1979), p. 382). Special cases are

χ2
n1+n2,ξ = χ2

n1,ξ ∗ χ2
n2

for all n1, n2 ≥ 0, (3.3)

and
χ2

n,ξ1+ξ2 = χ2
n,ξ1 ∗ χ2

0,ξ2 for all n, ξ1, ξ2 ≥ 0. (3.4)

In the terminology of Section 2, (3.3) states that H(x|n, ξ) has the reproductive
property in n ≥ 0, while (3.4) means that H(x|n, ξ) has RP(ξ).

The following proposition states some valuable facts concerning the non-
central Chi-square density h(x|n, ξ).

Proposition 3.8. For all x ∈ R, the pdf h(x|n, ξ) is
(i) lcc(x) for all n ≥ 2, ξ ≥ 0,
(ii) TP2(x, n) for all n > 0, ξ = 0 or n ≥ 1, ξ > 0,
(iii) TP2(x, ξ) for all n > 0, ξ ≥ 0.

Proof. (i) is stated in Das Gupta and Sarkar (1984), the first part of (ii) is easily
established, whereas the second part of (ii) is implicitly proved in Ghosh (1973),
p. 490, (we note that it is easy to find numerical examples revealing that the TP2-
property of h(x|n, ξ) in x and n no longer obtains for x ∈ R, 0 < n < 1, ξ ≥ 0),
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and (iii) is essentially proved in Witting (1985), pp. 218-219. The proof given
there for integer values of n is also valid for arbitrary n > 0.

As a consequence we now easily obtain, by applying the results of Section 2,
the following

Theorem 3.9. For all x ∈ R the cdf H(x|n, ξ) of the non-central Chi-square
distribution is
(i) lcc(n) for all n, ξ ≥ 0,
(ii) lcc(ξ) for all n, ξ ≥ 0.
Furthermore, the corresponding functions H(x|n, ξ) and Jc(x|n, ξ) are
(iii) lcc(n) for all n ≥ 1, ξ ≥ 0, or n ≥ 0, ξ = 0,
(iv) lcc(ξ) for all n, ξ ≥ 0.

Remark 3.10. Main parts of Theorem 3.9 are available in Das Gupta and
Sarkar (1984) who utilized a so-called mixture property in order to obtain the log-
concavity results in n, ξ for H(x|n, ξ) and H(x|n, ξ). However, the reproductive
properties (3.3) and (3.4) allow a simple and efficient proof without making use
of the mixture property. The extension to values n ≤ 2 in (i) and 1 ≤ n < 2
in (iii) as well as the assertions for Jc(x|n, ξ) supplement the results obtained
by Das Gupta and Sarkar (1984). It is also worth noting that the proofs in this
section only require the use of the original reproductive property, whereas the
generalized reproductive property will substantially be exploited in Section 4.

It follows from Theorem 3.4, Proposition 2.5 and the reproductive properties
of H(x|n, ξ) in n and ξ, respectively, that H(x|n, ξ) is TP2(x, n) and TP2(x, ξ)
for x ∈ R, n, ξ ≥ 0. As a consequence, H(x|n, ξ) is non-increasing in n ≥ 0 for
fixed ξ ≥ 0, x ∈ R, and likewise non-increasing in ξ ≥ 0 for fixed n ≥ 0, x ∈ R.
Obviously, H(x|n, ξ) is non-decreasing in these cases. The result for n is due
to Ghosh (1973), while the result for ξ is a consequence of the fact that the
pdf h(x|n, ξ) is TP2(x, ξ) for x ∈ R, ξ ≥ 0, n > 0, i.e., the family of non-
central Chi-square distributions possesses a monotone likelihood ratio and is
hence stochastically increasing. It should be noted that the proofs of these two
monotonicity results are based on properties of the pdf h(x|n, ξ). However, these
results can be obtained merely from the corresponding TP2-properties of the
cdf H(x|n, ξ), which is of course the weaker assumption in comparison with the
TP2-properties of the pdf h(x|n, ξ).

For, if F (x|ϑ) is TP2(x, ϑ), i.e., F (x + h|ϑ2)F (x|ϑ1) ≥ F (x|ϑ2)F (x + h|ϑ1)
for all x ∈ R, h > 0 and ϑ1 < ϑ2, then, by letting h → ∞, it follows with
limh→∞ F (x + h|ϑ) = 1 for all ϑ, that F (x|ϑ1) ≥ F (x|ϑ2).

If Jc(x|n, ξ) is log-concave in n or ξ, it is unimodal (and non-monotonic)
or monotonic in these variables, respectively. There exist numerical examples
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for either shape behaviour. However, in case of ξ = 0 and x > 0, Jc(x|n, ξ) is
strictly unimodal in n since the family of central Chi-square distributions con-
stitutes a one-parameter exponential family with open natural parameter space
and Jc(x|n, ξ) as a function of n > 0 can be considered as the power function of
a two-sided test (cf. Finner and Roters (1993b)).

4. Results for F and Beta Distributions

In this section we intend to study properties of F (x|ϑ), F (x|ϑ), and Jc(x|ϑ)
for Beta and F distributions by considering in more generality the behaviour
of the corresponding functions belonging to the ratio of two independent non-
central Chi-square variables both with non-negative and real degrees of freedom
and non-centrality parameters.

We start this section with a log-concavity result for the cdf of the central
Fn,m distribution. Though not needed in the sequel it is of independent interest.

Theorem 4.1. The cdf F (x|n,m) (say) of the central Fn,m distribution with
n,m > 0 is lcc(x).

Proof. Since for n,m > 0 the pdf f(x|n,m) of Fn,m is given by

f(x|n,m) =
Γ((n + m)/2)
Γ(n/2)Γ(m/2)

(
n

m
)n/2 xn/2−1

(1 + nx/m)(n+m)/2
, x ≥ 0,

it obviously has the property that f(exp(y)|n,m), y ∈ R, is lcc(y). Hence the
desired assertion follows directly from Lemma 2.5 in Finner and Roters (1993a).

Remark 4.2. The assertion of Theorem 4.1 obviously continues to hold for
the cdf F u(x|n,m) (say) of the unnormed central F distribution Fu

n,m (say) of
Xn/Ym for Xn, Ym independent and (centrally) Chi-square distributed. This is
true because the cdf of Fu

n,m is given by F (mx/n|n,m), where F (x|n,m) is the
cdf of the central Fn,m distribution as defined above.

In the sequel we concentrate on the investigation of parameter log-concavity
and log-convexity properties of the unnormed doubly non-central F distribution,
which shall be defined as the distribution of the ratio Xn,ξ/Ym,δ and be denoted
by Fu

n,m,ξ,δ, where Xn,ξ and Ym,δ are independent non-central Chi-square vari-
ables. Let, further, F u(x|n,m, ξ, δ) denote the cdf of Fu

n,m,ξ,δ and set F
u(x|n,m,

ξ, δ) = 1 − F u(x|n,m, ξ, δ). Then we can prove the following

Theorem 4.3. The cdf F u(x|n,m, ξ, δ) of the unnormed doubly non-central F
distribution is
(i) lcc(n) for all n ≥ 0, m ≥ 2, ξ = 0, δ ≥ 0 or all n ≥ 1, m ≥ 2, ξ > 0, δ ≥ 0,
(ii) lcc(ξ) for all n ≥ 0, m ≥ 2, ξ, δ ≥ 0,
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(iii) lcc(m) for all n ≥ 0, m > 0, ξ ≥ 0, δ = 0 or all n ≥ 0, m ≥ 1, ξ ≥ 0, δ > 0,
(iv) lcc(δ) for all n ≥ 0, m ≥ 1, ξ, δ ≥ 0.

Proof. For every x > 0 fixed, the cdf of Fu
n,m,ξ,δ is given by

F u(x|n,m, ξ, δ) = P (Xn,ξ/Ym,δ ≤ x) = P (Xn,ξ − xYm,δ ≤ 0).

Now, for all z ∈ R we consider the cdf of Xn,ξ − xYm,δ, which can be written as

P (Xn,ξ − xYm,δ ≤ z) =
∫
R

P (y − xYm,δ ≤ z)dPXn,ξ (y)

=
∫
R

P (Ym,δ≥(y − z)/x)h(y|n, ξ)dλ(y)

=
∫
R

H((y − z)/x|m, δ)h(y|n, ξ)dλ(y). (4.1)

(i) Since, due to Remark 3.6, H(t|m, δ) is lcc(t) for all m ≥ 2, δ ≥ 0, it follows
that H((y−z)/x|m, δ) is TP2(y, z), and as h(y|n, ξ) is TP2(y, n) for n > 0, ξ = 0
or n ≥ 1, ξ > 0 by virtue of Proposition 3.8 (ii), the basic composition formula
and a continuity argument for n = 0 yield that P (Xn,ξ −xYm,δ ≤ z) is TP2(z, n)
for z ∈ R and n ≥ 0, ξ = 0 or n ≥ 1, ξ > 0.

Defining Θ = [0,∞) and the probability measures Pη, η ∈ Θ, as the central
Chi-square distribution with η degrees of freedom it is obvious that for all ϑ, η ∈ Θ
and z ∈ R

P (Xϑ+η,ξ − xYm,δ ≤ z) =
∫
R

P (Xϑ,ξ − xYm,δ ≤ z − y)dPη(y)

holds, i.e., both P (Xϑ,ξ − xYm,δ ≤ z) and P (Xϑ+1,ξ − xYm,δ ≤ z) have RP(ϑ).
Since, in addition, P (Xϑ+k,ξ − xYm,δ ≤ z), k ∈ {0, 1}, is non-increasing,

hence Borel-measurable in ϑ ∈ Θ, Proposition 2.5 (ii) implies that P (Xn,ξ −
xYm,δ ≤ z) is lcc(n) for n ≥ 0, ξ = 0 or n ≥ 1, ξ > 0, and all z ∈ R. Setting
z = 0 we finally obtain that F u(x|n,m, ξ, δ) = P (Xn,ξ/Ym,δ ≤ x) is lcc(n) for all
x ∈ R and the parameter configuration specified in (i).

(ii) Using as in (i) the log-concavity of H(t|m, δ) in t ∈ R for m ≥ 2, δ ≥ 0,
and the TP2-property of h(y|n, ξ) in (y, ξ) for y ∈ R, ξ ≥ 0 and n > 0, we obtain
from (4.1) and a continuity argument for n = 0 that P (Xn,ξ − xYm,δ ≤ z) is
TP2(z, ξ) for z ∈ R, ξ ≥ 0, n ≥ 0, and n ≥ 0, and by defining Pη as the Chi-
square distribution with 0 degrees of freedom and non-centrality parameter η ≥ 0
we may conclude as in (i) that P (Xn,ξ −xYm,δ ≤ z) has RP(ξ), is non-increasing
in ξ ≥ 0 and hence lcc(ξ) for all z ∈ R and n ≥ 0, m ≥ 2, ξ, δ ≥ 0. Setting again
z = 0 yields the assertion of (ii).
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(iii) + (iv) We consider again the expression

P (Xn,ξ − xYm,δ ≤ z) =
∫
R

P (Xn,ξ ≤ z + xy)dP Ym,δ (y)

=
∫
R

H(xy − (−z)|n, ξ)h(y|m, δ)dξ(y)

for all z ∈ R. Theorem 3.4 implies that H(xy − (−z)|n, ξ) is TP2(y,−z) for all
y, z ∈ R and n, ξ ≥ 0, so that by using the same argumentation as before the
above expression P (xYm,δ − Xn,ξ ≥ −z) = P (Xn,ξ − xYm,δ ≤ z) is seen to be
TP2(−z,m) for the parameter configuration specified in (iii) and TP2(−z, δ) for
the configuration in (iv).

Analogously as in (i) and (ii) we may conclude that P (xYm,δ − Xn,ξ ≥ −z)
has RP(m) in (iii) and RP(δ) in (iv), so that finally the assertions of (iii) and
(iv) follow.

Due to the special structure of the F distribution it is possible to formulate a
result for F

u(x|n,m, ξ, δ) = 1−F u(x|n,m, ξ, δ) as a corollary to the last theorem.

Corollary 4.4. The function F
u(x|n,m, ξ, δ) is

(i) lcc(n) for all n ≥ 0, m > 0, ξ = 0, δ ≥ 0 or all n ≥ 1, m, ξ > 0, δ ≥ 0,
(ii) lcc(ξ) for all n ≥ 1, m > 0, ξ, δ ≥ 0,
(iii) lcc(m) for all n≥2, m>0, ξ≥0, δ=0 or all n ≥ 2, m ≥ 1, ξ ≥ 0, δ > 0,
(iv) lcc(δ) for all n ≥ 2, m > 0, ξ, δ ≥ 0.

Proof. Everything follows from the relation

F
u(x|n,m, ξ, δ)=P (Xn,ξ/Ym,δ ≥ x) = P (Ym,δ/Xn,ξ ≥ 1/x) = F u(1/x|m,n, δ, ξ)

for x > 0, n,m > 0, ξ, δ ≥ 0 and from continuity arguments.

For the next result the following relationship between the cdf of the Beta
distribution B(x|α, β) (say) and the cdf F u(x|n,m) of the unnormed central F
distribution Fu

n,m is important. For all x ≥ 0, n,m > 0,

F u(x|n,m) = B(
x

1 + x
|n
2
,
m

2
). (4.2)

This equation can be found for instance in Patel, Kapadia and Owen (1976), p.
217. Since B(x|α, β) is also known as the incomplete Beta function ratio (denoted
by Ix(α, β)) a well-known series representation of Ix(α, β) can be used to express
B(x|α, β) and by (4.2) also F u(x|n,m) (cf. Patel, Kapadia and Owen (1976), p.
247).

For 0 ≤ x < 1, α, β > 0 we have

Ix(α, β) = (xα(1 − x)β/Γ(β))
∞∑

n=0

Γ(α + β + n)
Γ(α + 1 + n)

xn. (4.3)
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Theorem 4.5. For every x ∈ R the following assertions concerning the un-
normed non-central F distribution F u

n,m,ξ hold:
(i) F u(x|n,m, ξ) (= F u(x|n,m, ξ, 0) (say)) is lcx(n) for n, ξ ≥ 0, 0 < m ≤ 2.
(ii) F

u(x|n,m, 0, δ) is lcx(m) for 0 ≤ n ≤ 2, m > 0, δ ≥ 0.
(iii) F

u(x|n,m, ξ) = 1−F u(x|n,m, ξ) is cc(n) and hence lcc(n) for n, ξ ≥ 0, 0 <

m ≤ 2.

Proof. (i) Let x ≥ 0, 0 < m ≤ 2 and ξ ≥ 0 be fixed. Then by (4.2) and (4.3) it
follows for n ≥ 0

F u(x|n,m, ξ) = P (Xn,ξ/Ym ≤ x) =
∞∑

j=0

(
ξ

2
)j

exp(−ξ/2)
j!

P (Xn+2j/Ym ≤ x)

=
∞∑

j=0

(
ξ

2
)j

exp(−ξ/2)
j!

F u(x|n + 2j,m),

where F u(x|n + 2j,m) is equal to

(
(

x

1 + x
)n/2+j(

1
1 + x

)m/2/Γ(
m

2
)
) ∞∑

k=0

Γ(n/2 + j + m/2 + k)
Γ(n/2 + j + 1 + k)

(
x

1 + x
)k.

Now, since f(n) = yn (say), y > 0 fixed, is lcx(n) (even log-linear in n) and

g(n) = Γ(n + c1)/Γ(n + c2) =
∫ 1

0
tn+c1−1(1 − t)c2−c1−1dt/Γ(c2 − c1),

c2 > c1 > 0, is lcx(n) due to Artin’s theorem (cf. Marshall and Olkin (1979),
Chapter 16), since, furthermore, series and products of log-convex functions are
again log-convex, the above series expansion of F u(x|n,m, ξ) reveals that it is
lcx(n) for n ≥ 0, as was to be shown in (i).
(ii) This can be proved by using the same argument as in Corollary 4.4.
(iii) From (i) we know that F u(x|n,m, ξ) is lcx(n) and hence cx(n). So F

u(x|n,m,
ξ) = 1 − F u(x|n,m, ξ) is cc(n) and hence lcc(n) for n ≥ 0, 0 < m ≤ 2, ξ ≥ 0.

As a corollary of all that is proved above we are now able to conclude a
result for the Beta distribution which seems to be very hard to obtain by usual
analytical methods.

Corollary 4.6. For every 0 ≤ x ≤ 1 we obtain that
(i) B(x|α, β) is lcc(α) for all α > 0, β ≥ 1,
(ii) B(x|α, β) is lcx(α) for all α > 0, 0 < β ≤ 1,
(iii) B(x|α, β) is lcc(β) for α, β > 0 and even cc(β) for 0 < α ≤ 1, β > 0,
(iv) B(x|α, β) (= 1 − B(x|α, β) (say)) is lcc(β) for all α ≥ 1, β > 0,
(v) B(x|α, β) is lcx(β) for all 0 < α ≤ 1, β > 0,
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(vi) B(x|α, β) is lcc(α) for α, β > 0 and even cc(α) for α > 0, 0 < β ≤ 1.

Proof. Invoking the relation (4.2), part (i) can be concluded from Theorem 4.3
(i). Part (ii) follows from Theorem 4.5 (i), and the log-concavity part of (iii) is
a consequence of Theorem 4.3 (iii). Moreover, (iv), (v) and the log-concavity
part of (vi) result from what has just been shown in this proof and the relation
B(x|α, β) = B(1 − x|β, α) for all 0 ≤ x ≤ 1, α, β > 0 (cf. Patel, Kapadia and
Owen (1976), p. 246). It only remains to prove the concavity parts of (iii) and
(vi). However, the corresponding assertion in (iii) follows directly from (v), and
the concavity assertion in (vi) results from (ii) by using the definition of B(x|α, β)
(cf. (iv)). Now the proof is complete.

Remark 4.7. The log-concavity part of (iii) was proved by Das Gupta and
Sarkar (1984) by studying a so-called restricted reproductive property. The as-
sertion of (i) was proved in Finner and Roters (1993a) only for integer-valued
β ≥ 1, but conjectured to the extent proved in this paper. In addition, the result
of (ii) was mentioned there without proof.

Remark 4.8. The parameter log-concavity results for the unnormed doubly
non-central F distribution carry over immediately to the doubly non-central Beta
distribution, which is defined as the distribution of the ratio Xn,ξ/(Xn,ξ + Ym,δ),
where Xn,ξ and Ym,δ are independent non-central Chi-square variables.

5. Solution of a Monotonicity Problem for a Step-Down Multiple F-
Test Procedure

The last part of this work treats an application of one of the results for
the central F distribution to a monotonicity problem occurring in a step-down
multiple F-test procedure for all pairwise comparisons between k means in an
ANOVA-setup (cf. Finner (1993)). For the sake of simplicity we consider a one-
way ANOVA-model with possibly unequal sample sizes given by

Xij ∼ N(ϑi, σ
2), j = 1, . . . , ni, i ∈ I = {1, . . . , k}, k ≥ 3,

where the Xij are assumed to be independent random variables, and let ν =
n. − k ≥ 2 with n. =

∑
i∈I ni. Suppose that we are mainly interested in testing

all so-called pair hypotheses

Hij : ϑi = ϑj vs. Kij : ϑi �= ϑj , 1 ≤ i < j ≤ k.

Besides range test procedures a popular choice of a test procedure for this prob-
lem is a stepwise multiple F-test procedure based on the family of all so-called
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homogeneity hypotheses HQ : ϑi = ϑj for all i, j ∈ Q, i �= j, with Q ⊆ I, |Q| ≥ 2,
by using the unnormed F-statistics

TQ(X) =
∑
i∈Q

ni(X i· − X
Q
·· )

2/W 2, (5.1)

where X i· =
∑ni

j=1 Xij/ni, X
Q
·· =

∑
i∈Q

∑ni
j=1 Xij/n

Q· with nQ· =
∑

i∈Q ni, and
W 2 =

∑k
i=1

∑ni
j=1 (Xij − X i·)2. Then, under HQ, TQ(X) has an unnormed F

distribution with degrees of freedom m = |Q| − 1 and ν. The statistics defined
in (5.1) possess the desirable monotonicity property TQ ≥ TR if HQ ⊂ HR. This
follows immediately from the fact that TQ is a likelihood ratio statistic for testing
HQ, or alternatively, by verifying that

∑
i∈Q

ni(xi· − xQ
·· )

2 =
∑
i∈R

ni(xi· − xR
·· )

2 + nq
nR·
nQ·

(xq· − xR
·· )

2,

where R ⊂ Q ⊆ I with 2 ≤ |R| = |Q| − 1 and q is the unique element of Q \ R

(say).
The critical values for the stepwise F-test procedure are based on so-called

adjusted significance levels which ensure that the test controls a multiple level
α (also known as familywise error rate (FWE) α), α ∈ (0, 1). A popular choice
of significance levels is given by αp = 1 − (1 − α)p/k for p = 2, . . . , k − 2, k, and
αk−1 = α. The critical values are chosen as upper α-points of the corresponding
unnormed F distribution with degrees of freedom p−1 and ν, i.e., F u(cp(αp)|p−
1, ν) = 1 − αp, p = 2, . . . , k. Then a hypothesis Hij : ϑi = ϑj is rejected if
TQ > c|Q|(α|Q|) for all Q with {i, j} ⊆ Q ⊆ I. Moreover, a hypothesis HR can
be rejected if TQ > c|Q|(α|Q|) for all Q with R ⊆ Q ⊆ I.

In view of the structure of the test procedure a desirable property which
also facilitates the determination of the test results for the pair hypotheses is the
monotonicity of the critical values (cf. e.g. Finner (1990, 1993)), i.e., ck(αk) ≥
· · · ≥ c2(α2). This is clearly fulfilled in case k = 3 for the choice α3 = α2 = α.
Therefore, take k ≥ 4 in the sequel. If αk−1 = α is replaced by αk−1 = 1 −
(1−α)(k−1)/k , the monotonicity of the corresponding critical values can then be
proved by noting that F u(x|p, ν) is lcc( p) for ν ≥ 2. First, this log-concavity
property implies, as noted in the introduction, the inequalities

∀ 0 < p < q : ∀ ν ≥ 2 : ∀ c ≥ 0 : F u(c|p, ν)1/p ≥ F u(c|q, ν)1/q . (5.2)

But then we also obtain

∀ p∈{2, . . . , k − 1} : ∀ ν ≥ 2 : ∀ c ≥ 0 : F u(c|p − 1, ν)1/p ≥ F u(c|p, ν)1/(p+1),

(5.3)
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which implies for αp = 1 − (1 − α)p/k, p = 2, . . . , k, by using the definition of
cp(αp), that

(1 − α)(p+1)/k = F u(cp(αp)|p − 1, ν)(p+1)/p ≥ F u(cp(αp)|p, ν).

Thus, the desired monotonicity cp+1(αp+1) ≥ cp(αp) for p = 2, . . . , k−1 is proved.
One can easily find (numerical) examples, where the choice αk−1 = α destroys
the monotonicity of the corresponding critical values. However, in practice, one
can use without loss,

c′q =

{
cq(αq), q = 2, . . . , k − 2, k,

max{ck−2(αk−2), ck−1(α)}, q = k − 1,

which are monotonic and lead to the same test results for all pair hypotheses
as the cq. If one is interested in the test results for all intersection hypothe-
ses one should use the original (possibly non-monotonic) critical values.

We note that for ν = 2 we have equality in (5.2), and the inequality sign is
reversed for ν = 1, since F u(x|n,m) is lcx(n) for all n ≥ 0 and 0 < m ≤ 2 (cf.
Theorem 4.5 (i)). However, (5.3) can be valid for some values ν slightly smaller
than 2. But the case ν = 1 seems of less practical interest so that we relinquish
a detailed discussion of the monotonicity of the critical values in this case.

Finally, we point out that an inequality of the type (5.2) does not hold
in general for the cdf of the studentizedz range distribution if ν > 2. As a
consequence (cf. Finner (1990, 1993)) the corresponding multiple range test
procedure may have non-monotonic critical values.
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