
Statistica Sinica 34 (2024), 1545-1564
doi:https://doi.org/10.5705/ss.202022.0057

OPTIMAL CLASSIFICATION FOR FUNCTIONAL DATA

Shuoyang Wang, Zuofeng Shang, Guanqun Cao∗ and Jun S. Liu

University of Louisville, New Jersey Institute of Technology,

Michigan State University and Harvard University

Abstract: A central topic in functional data analysis is how to design an optimal

decision rule, based on training samples, to classify a data function. We exploit the

optimal classification problem in which the data functions are Gaussian processes.

We derive sharp convergence rates for the minimax excess misclassification risk

both when the data functions are fully observed and when they are discretely

observed. We explore two easily implementable classifiers, based on a discriminant

analysis and on a deep neural network, respectively, which both achieve optimality

in Gaussian settings. Our deep neural network classifier is new in the literature,

and demonstrates outstanding performance, even when the data functions are

nonGaussian. For discretely observed data, we discover a novel critical sampling

frequency that governs the sharp convergence rates. The proposed classifiers

perform favorably in finite-sample applications, shown in comparisons with other

functional classifiers in simulations and one real-data application.

Key words and phrases: Functional classification, functional deep neural network,

functional quadratic discriminant analysis, Gaussian process, minimax excess

misclassification risk.

1. Introduction

In many applications, data are collected in the form of functions, such as

curves or images. Such data are referred to as functional data. A fundamental

problem in functional data analysis is to classify a data function based on

training samples. For instance, in the speech recognition data extracted from

the TIMIT database (Ferraty and Vieu (2003)), the training samples are

digitized speech curves of American English speakers from different phoneme

groups, and the task is to predict the phoneme of a new speech curve. Classic

multivariate analysis techniques, such as logistic regression or discriminant anal-

ysis, are not directly applicable, because functional data are intrinsically infinite-

dimensional (Wang, Chiou and Müller (2016)). A common strategy is to adapt a

multivariate analysis to functional settings, such as functional logistic regression

(Araki et al. (2009)) and functional discriminant analysis (Shin (2008); Delaigle,

Hall and Bathia (2012); Delaigle and Hall (2012, 2013); Galeano, Joseph and Lillo

(2015); Dai, Müller and Yao (2017); Berrendero, Cuevas and Torrecilla (2018);

*Corresponding author.

https://doi.org/10.5705/ss.202022.0057


1546 WANG ET AL.

Park, Ahn and Jeon (2020)), among others. However, despite their impressive

performance, we may wish to know whether and which of these approaches is

statistically optimal, and, how to construct an optimal functional classifier that

performs even better.

Optimal classification has been investigated in multivariate settings (Mam-

men and Tsybakov (1999); Tsybakov (2004); Lecué (2008); Farnia and Tse (2016);

Cai and Zhang (2019a,b); Mazuelas, Zanoni and Perez (2020)). Here, the term

“optimality” refers to minimizing the excess misclassification risk relative to the

oracle Bayes rule, which provides a theoretical understanding of the nature of

the problem and a benchmark against which to measure the performance of

a classifier. Optimal classification in a functional setting is more challenging,

because the data are infinite-dimensional. Existing works, such as that of Delaigle

and Hall (2012), focus on the special case that the Bayes risk vanishes, referred to

perfect classification. As revealed in Berrendero, Cuevas and Torrecilla (2018),

the Bayes risk vanishes when the probability measures of the populations are

mutually singular. If the two populations have equivalent probability measures,

that is, the singularity fails, then the density functions of the two populations are

finite, and the Bayes risk does not vanish. The latter scenario is more challenging,

because the two populations are much “closer” to each other, in the sense that

the differences between the population means and the covariances are sufficiently

smooth. There is a lack of literature on how to design an optimal functional

classifier in this situation.

In this study, we investigate the optimal classification problem under the

Gaussian setting, that is, the observed data are Gaussian processes. In the

nonvanishing Bayes risk setting, we derive sharp rates for the minimax Excess

misclassification risk (MEMR), which provides a theoretical understanding of how

to approximate the Bayes risk based on training samples. Our results cover both

fully observed data and discretely observed data. We also show that a functional

quadratic discriminant analysis (FQDA) and a functional deep neural network

(FDNN) both achieve sharp rates of MEMR, and hence are minimax optimal.

Although functional discriminant analysis is a popular technique for classi-

fying Gaussian data (Galeano, Joseph and Lillo (2015); Dai, Müller and Yao

(2017)), its optimality remains an open problem. Hence, we provides the

first rigorous analysis to fill this gap. Specifically, we derive an upper bound

for the excess misclassification risk of an FQDA in a Gaussian setting that

matches the sharp rate of MEMR. In conventional settings, such as low- or high-

dimensional data classification, the optimality of the discriminant analysis has

been established by Anderson (2003) and Cai and Zhang (2019a,b). Our work

can be viewed as a nontrivial extension of their results to functional data. In

practice, an FQDA is known to perform poorly when the data are nonGaussian,

so it is desirable to design a classifier that is robust to a violation of the Gaussian

assumption. We propose a novel FDNN classifier based on a deep neural network
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(DNN) to address this issue. FDNNs have been proven to achieve the same

optimality as that of an FQDA in the Gaussian setting, and exhibit better

classification accuracy when the data are nonGaussian. DNNs have been applied

in various nonparametric problems; see Schmidt-Hieber (2020), Bauer and Kohler

(2019), Kim, Ohn and Kim (2021), Liu, Boukai and Shang (2022),Liu, Shang

and Cheng (2021), and Hu, Shang and Cheng (2020). The present work provides

the first application of a DNN to functional data classification with provable

guarantees.

In the setting of discretely observed data, the rate of convergence for MEMR

demonstrates an interesting phase transition phenomenon; jointly characterized

by the number of data curves and the sampling frequency. The discretely observed

data scenario is practically meaningful, because in real-world problems, functional

data can only be observed at discrete sampling points. Our analysis reveals that

when the sampling frequency is relatively small, the number of data curves has

little effect on the rate of MEMR. When the sampling frequency is relatively

large, the rate of MEMR depends more on the number of data curves. In other

words, there exists a critical sampling frequency that governs the performance

of the minimax optimal classifier. Cai and Yuan (2011) show the existence of a

critical sampling frequency that governs the optimal estimation in a functional

regression. The present work has made a relevant and new discovery in functional

classification.

The rest of the paper is organized as follows. Section 2 provides background

on the functional Bayes classifier and optimal functional classification. Section 3

establishes sharp rates for MEMR for both fully observed data and discretely ob-

served data. Sections 4 and 5 propose FQDA and FDNN classifiers, respectively,

both of which are proven optimal. Section 6 compares FQDA and FDNN with

existing functional classification methods using simulations. Section 7 applies

our method to analyze a speech recognition data set. Section 8 concludes the

paper. Major technical details for the proofs of the main results are deferred to

the Supplementary Material.

Notation and Terminology. We introduce some basic notation and definitions

that we use throughout the rest of the paper. Vectors and matrices are denoted

by boldface letters. For a matrix A ∈ Rp×p, |A| is the determinant of A, and

Ip is the p × p identity matrix. For two sequences of positive numbers an and

bn, an ≲ bn means that for some constant c > 0, an ≤ cbn, for all n, an ≍ bn
means an ≲ bn and bn ≲ an, and an ≪ bn means limn→∞ an/bn = 0. We also use

c, c0, c1, . . . , C, C0, C1, . . . to denote absolute constants, the values of which may

change, depending on the context.
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2. Preliminaries

In this section, we provide some background onthe functional Bayes classifier

and an optimal classification in a Gaussian setting.

Let Z(t), t ∈ T := [0, 1] be a random process. We say that Z belongs to class

k if Z ∼ GP(ηk,Ωk), for k = 1, 2, where GP(ηk,Ωk) is a Gaussian process with

unknown mean function ηk and unknown covariance function Ωk. For k = 1, 2,

let πk ∈ (0, 1) be the unknown probability of Z belonging to class k, satistying

π1 + π2 = 1. Suppose that Ωk satisfies the eigen-decomposition

Ωk(s, t) =
∞∑
j=1

λ
(k)
j ψj(s)ψj(t), s, t ∈ T , (2.1)

where ψj, j ≥ 1 is an orthonormal basis of L2(T ) w.r.t. the usual L2 inner

product ⟨·, ·⟩, and λ
(k)
j are positive eigenvalues. Note that (2.1) requires that

the covariance functions possess the same eigenfunctions, which is a common

assumption for technical convenience; see Delaigle and Hall (2012) and Dai,

Müller and Yao (2017). Write ηk(t) =
∑∞

j=1 µkjψj(t) ∈ L2(T ) and Z(t) =∑∞
j=1 zjψj(t), where µkj represent the projection scores of ηk, and zj represent the

projection scores of Z. When Z belongs to class k, zj are pairwise uncorrelated

with the mean µkj and variance λ
(k)
j .

Define θ =
(
π1, π2,µ1,µ2,λ

(1),λ(2)
)
, in which µk = (µk1, µk2, . . .) and

λ(k) = (λ
(k)
1 , λ

(k)
2 , . . .) are infinite sequences of mean and variance projection

scores, respectively. Given θ, it follows from Berrendero, Cuevas and Torrecilla

(2018) and Torrecilla et al. (2020) that the functional Bayes rule for classifying

a new data function Z ∈ L2(T ) has the expression

G∗
θ(Z) =

{
1, Q∗(Z,θ) ≥ 0,

2, Q∗(Z,θ) < 0,
(2.2)

where

Q∗(Z,θ) = −⟨Z − η1, Z − η1⟩Ω1
+ ⟨Z − η2, Z − η2⟩Ω2

− log

(
|Ω2|
|Ω1|

)
+ 2 log

(
π1

π2

)
,

where ⟨Z − ηk, Z − ηk⟩Ωk
=
∑∞

j=1((zj − µkj)
2/λ

(k)
j ), |Ω2|/|Ω1| =

∏∞
j=1 λ

(2)
j /λ

(1)
j .

Berrendero, Cuevas and Torrecilla (2018) and Torrecilla et al. (2020) show that

Q∗(Z,θ) is well defined and almost surely finite when the probability measures

of the two classes are equivalent.

In practice, G∗
θ is unobservable, because θ is unknown. Suppose we observe

a training sample {X(k)
i (t) : 1 ≤ i ≤ nk, k = 1, 2, t ∈ T }, where nk is the

sample size for class k, X
(k)
i ∼ GP(ηk,Ωk), all X

(k)
i are independent, and are

independent of Z to be classified. For a generic classifier Ĝ constructed using

the training samples, its performance is measured by the misclassification risk
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Rθ(Ĝ) = Eθ[I{Ĝ(Z) ̸= Y (Z)}] under the true parameter θ, where Y (Z) denotes

the unknown label of Z.

Following Delaigle and Hall (2012) and Dai, Müller and Yao (2017), if

both
∞∑
j=1

(µ1j − µ2j)
2

λ
(2)
j

and
∞∑
j=1

(
λ
(1)
j

λ
(2)
j

− 1

)2

are convergent, (2.3)

then Rθ(G
∗
θ) > 0. Classification under (2.3) is challenging, because the two

Gaussian measures are asymptotically equivalent; see Berrendero, Cuevas and

Torrecilla (2018) for a special case when λ
(1)
j = λ

(2)
j . Because G∗

θ achieves the

smallest risk, it is impossible to design a classifier with zero risk. Instead, we aim

to construct a classifier Ĝ, based on training samples, that performs similarly to

G∗
θ, which motivates the study of MEMR,

inf
Ĝ

sup
θ∈Θ

E[Rθ(Ĝ)−Rθ(G
∗
θ)],

where the infimum is taken over all functional classifiers constructed using the

training samples, and Θ is a parameter space, described in the following section.

3. Sharp Rates for MEMR

We derive sharp rates for MEMR for fully observed data and for discretely

observed data. To the best of our knowledge, these are the first results exploring

MEMR in a functional setting.

3.1. Parameter space

Our MEMR results rely on an explicit parameter space for θ. We first

introduce the concepts of hyperrectangles and Sobolev balls.

Definition 1. A hyperrectangle of order ω > 0 and length A > 0 is defined as

Hω(A) =

{
a = (a1, a2, . . .) : sup

j≥1
|aj|j1+ω ≤ A

}
. (3.1)

An implication of a ∈ Hω(A) is that |ak| ≤ Ak−(1+ω), for any k ≥ 1, in which

ω governs the decay rate of the coordinates.

Definition 2. An ℓ1-Sobolev ball of order ω > 0 and radius A > 0 is defined as

Sω(A) =

{
a = (a1, a2, . . .) :

∞∑
j=1

|aj|jω ≤ A

}
. (3.2)

An implication of a ∈ Sω(A) is that
∑∞

k=L |ak| ≤ AL−ω, for any L ≥ 1, in

which ω governs the decay rate of the tail sum.
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Hyperrectangles and Sobolev balls depict different perspectives of a real

sequence: the former controls a sequence in an element-wise manner, and the

latter controls its tail sum. Although overlapping, hyperrectangles and Sobolev

balls do not include each other.

In the rest of this article, consider the following two parameter spaces for θ.

For ν1, ν2 > 0,

ΘH(ν1, ν2) := { θ :
{
µ2
1j ∨ µ2

2j

}
j≥1

∈ Hν1 ,
{
λ
(1)
j ∨ λ(2)

j

}
j≥1

∈ Hν1 ,{
(µ1j − µ2j)

2

λ
(2)
j

}
j≥1

∈ Hν2 ,


(
λ
(1)
j

λ
(2)
j

− 1

)2


j≥1

∈ Hν2 ,

C0 ≤ π1, π2 ≤ 1− C0 } , (3.3)

and

ΘS(ν1, ν2) := { θ :
{
µ2
1j ∨ µ2

2j

}
j≥1

∈ Sν1 ,
{
λ
(1)
j ∨ λ(2)

j

}
j≥1

∈ Sν1 ,{
(µ1j − µ2j)

2

λ
(2)
j

}
j≥1

∈ Sν2 ,


(
λ
(1)
j

λ
(2)
j

− 1

)2


j≥1

∈ Sν2 ,

C0 ≤ π1, π2 ≤ 1− C0 } , (3.4)

where C0 ∈ (0, 1/2) is a constant, Hω = Hω(A), and Sω = Sω(A). For notational

simplicity, A is omitted. Specifically, θ ∈ ΘH(ν1, ν2) implies that µ2
kj and λ

(k)
j

belong to Hν1 , and that (µ1j − µ2j)
2/λ

(2)
j and (λ

(1)
j /λ

(2)
j − 1)2 belong to Hν2 . ν1

governs the smoothness of the mean functions and the covariance functions, and

ν2 governs the smoothness of the separation of the two populations. Moreover,

the series
∑∞

j=1 (µ1j − µ2j)
2
/λ

(2)
j and

∑∞
j=1(λ

(1)
j /λ

(2)
j − 1)2 are both convergent,

which implies that the Bayes risk is nonvanishing; see (2.3). One can interpret

θ ∈ ΘS(ν1, ν2) similarly. In the subsequent subsections, we derive the rate of

MEMR under parameter spaces (3.3) and (3.4) for fully observed data and for

discretely observed data.

3.2. Sharp rate of MEMR under fully observed data

Suppose that the data functions X
(k)
i (t), for i = 1, . . . , nk, k = 1, 2, are fully

observed, for arbitrary t ∈ T . Throughout, let n = n1 ∧ n2.

Theorem 1. For both Θ = ΘH(ν1, ν2) and Θ = ΘS(ν1, ν2), the following holds:

inf
Ĝ

sup
θ∈Θ

E
[
Rθ(Ĝ)−Rθ(G

∗
θ)
]
≍
(
log n

n

)ν2/(1+ν2)

,

where the infimum is taken over all functional classifiers.
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Theorem 1 provides a sharp rate for MEMR under parameter spaces (3.3)

and (3.4). Interestingly, the rate relies on ν2 rather than ν1, implying that

the smoothness of the population mean and covariance differences plays a more

crucial role than the smoothness of the mean and covariance functions in terms of

the performance of the optimal functional classifier. Specifically, the sharp rate

for MEMR becomes faster when ν2 increases, which may be because of the fully

observed data. In fact, as discussed in Section 3.3, when the data are observed

discretely , this phenomenon may not hold. Moreover, the optimal rate appears

to depend only on the smoothness, rather than the size, of the difference between

the two populations. This means that the optimal rate does not change if the

size of the population difference changes and its smoothness remains the same.

3.3. Sharp rate of MEMR under discretely observed data

Suppose we observe X
(k)
i (t1), . . . , X

(k)
i (tM),for i = 1, . . . , nk, k = 1, 2, on

evenly spaced t1, . . . , tM ∈ T ; that is, the data functions are observed over M

evenly spaced sampling points. For technical convenience, we make an additional

assumption that ψj in (2.1) are Fourier bases of L2(T ), that is, ψ1(t) = 1, ψ2j(t) =√
2 cos (2jπt), and ψ2j+1(t) =

√
2 sin (2jπt), for j ≥ 1, t ∈ T .

Theorem 2. Let ν1, ν2 > 0 with ν1 ≤ 1 + ν2. For both Θ = ΘH(ν1, ν2) and

Θ = ΘS(ν1, ν2), the following holds:

inf
Ĝ

sup
θ∈Θ

E
[
Rθ(Ĝ)−Rθ(G

∗
θ)
]
≍
(
log n

n
+

1

Mν1

)ν2/(1+ν2)

,

where the infimum is taken over all functional classifiers.

Theorem 2 reveals thatM∗ = (n/log n)
1/ν1 is a critical sampling frequency for

the rate of MEMR over the parameter space ΘH(ν1, ν2) and ΘS(ν1, ν2). When

M ≥ M∗, the MEMR is of rate (log n/n)
ν2/(1+ν2), which is free of M and is

consistent with the rate derived in Theorem 1. In other words, when M ≥ M∗,

the optimal classifier performs as well as the one based on fully observed data.

When M < M∗, the MEMR is of rate M−ν1ν2/(1+ν2), which relies solely on M .

Another interesting finding is that, when M < M∗, the rate of MEMR relies on

both ν1 and ν2, that is, the smoothness of the mean and covariance functions, as

well as the separation between the populations. This differs from estimation or

testing problems in which the minimax optimal rate relies only on the smoothness

of the mean function (see Cai and Yuan (2011, 2012); Hilgert, Mas and Verzelen

(2013); Shang and Cheng (2015)).

4. Functional Quadratic Discriminant Analysis

In this section, we establish an optimal functional classifier based on FQDA

that requires accurately estimating the functional Bayes classifier by estimating
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the principle mean projection scores and principle eigenvalues. FQDA is a popular

technique in the functional classification literature (See Galeano, Joseph and

Lillo (2015); Dai, Müller and Yao (2017)). The basic idea is to first project the

data functions onto an orthonormal basis and extract the principle projection

scores, and then to perform a conventional QDA over the extracted scores. FQDA

performs well when the data are Gaussian processes, but there is a lack of rigorous

proof on the optimality of FQDA. Here, we construct a FQDA classifier and prove

its optimality in both fully observed data and discretely observed data.

4.1. FQDA for fully observed data

Consider the ideal case that the data functions are fully observed, as in

Section 3.2. Write X
(k)
i (t) =

∑∞
j=1 ξ

(k)
ij ψj(t), for i = 1, . . . , nk, k = 1, 2, where ξ

(k)
ij

are the observed projection scores. For J ≥ 1, let

µ̂k = (ξ̄
(k)
·1 , . . . , ξ̄

(k)
·J )⊤, D̂ = Σ̂−1

2 − Σ̂−1
1 , β̂ = Σ̂−1

2 (µ̂2 − µ̂1), (4.1)

where ξ̄
(k)
·j = nk

−1
∑nk

i=1 ξ
(k)
ij is the estimation of the mean projection score,

λ̂
(k)
j = n−1

k

∑nk

i=1(ξ
(k)
ij − ξ̄

(k)
·j )2 is the estimation of the eigenvalue, and Σ̂k =

diag(λ̂
(k)
1 , . . . , λ̂

(k)
J ) is the estimation of the covariance operator. The FQDA

classifier is designed as follows:

ĜFQDA
J (Z) =

{
1, Q̂(z) ≥ 0,

2, Q̂(z) < 0,
(4.2)

where

Q̂(z) := (z − µ̂1)
⊤D̂(z − µ̂1)− 2β̂⊤(z − ̂̄µ)− log

(
|D̂Σ̂1 + IJ |

)
+ 2 log

(
π̂1

π̂2

)
,

z = (z1, . . . , zJ)
⊤ includes the first J projection scores of Z (see Section 2),̂̄µ = (µ̂1 + µ̂2)/2, and π̂k = nk/(n1 + n2) is the sample proportion of class k.

Heuristically, when J is suitably large, (4.2) performs similarly to the functional

Bayes classifier (2.2).

Theorem 3. For both Θ = ΘH(ν1, ν2) and Θ = ΘS(ν1, ν2), the proposed FQDA

classifier (4.2) satisfies

sup
θ∈Θ

E
[
Rθ(Ĝ

FQDA
J∗ )−Rθ(G

∗
θ)
]
≲

(
log n

n

)ν2/(1+ν2)

,

where J∗ ≍ (n/ log n)1/(1+ν2).

Theorem 3 provides an upper bound for the excess misclassification risk of

(4.2) with J = J∗. Because the upper bound matches Theorem 1, we claim that

FQDA attains minimax optimality if the leading J∗ basis functions are used to

construct the classifier.
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4.2. FQDA for discretely observed data

Consider the more realistic case in which the data functions are observed

discretely, as in Section 3.3. For 1 ≤ J ≤M , define

B =


ψ1(t1) ψ2(t1) · · · ψJ(t1)

ψ1(t2) ψ2(t2) · · · ψJ(t2)
...

...
...

ψ1(tM) ψ2(tM) · · · ψJ(tM)

 .

Heuristically, when J is suitably large, the data vector X
(k)
i = (X

(k)
i (t1), . . . ,

X
(k)
i (tM))⊤ has an approximate expression n−1

k

∑nk

i=1 X
(k)
i ≈ Bµk, for i = 1, . . . ,

nk, where µk = (µk1, . . . , µkJ)
⊤ is the vector of J principle mean projection scores.

When ψj are a Fourier basis, it holds that B⊤B =MIJ , which leads to

µk ≈ 1

nk

nk∑
i=1

ζ
(k)
i , (4.3)

where ζ
(k)
i =M−1B⊤X

(k)
i . For k = 1, 2, let

µ̂sk =
1

nk

nk∑
i=1

ζ
(k)
i , D̂s = Σ̂−1

s2 − Σ̂−1
s1 , β̂s = Σ̂−1

s2 (µ̂s2 − µ̂s1) , (4.4)

where Σ̂sk = diag(λ̂
(k)
s1 , . . . , λ̂

(k)
sJ ) with λ̂

(k)
sj = n−1

k

∑nk

i=1(ζ
(k)
ij − ζ̄

(k)
·j )2, ζ̄

(k)
·j =

n−1
k

∑nk

i=1 ζ
(k)
ij , and ζ

(k)
ij are components of ζ

(k)
i . We then propose the following

classification rule, called sampling FQDA (sFQDA):

ĜsFQDA
J (Z) =

{
1, Q̂s(z) ≥ 0,

2, Q̂s(z) < 0,
(4.5)

where

Q̂s(z) := (z−µ̂s1)
⊤D̂s(z−µ̂s1)−2β̂⊤

s (z− ̂̄µs)− log
(
|D̂sΣ̂s1 + IJ |

)
+2 log

(
π̂1

π̂2

)
,

with ̂̄µs = (µ̂s1 + µ̂s2)/2.

Theorem 4. Let ν1, ν2 > 0 with ν1 ≤ 1 + ν2. For both Θ = ΘH(ν1, ν2) and

Θ = ΘS(ν1, ν2), the sFQDA in (4.5) satisfies

sup
θ∈Θ

E
[
Rθ(Ĝ

sFQDA
J∗ )−Rθ(G

∗
θ)
]
≲

(
log n

n
+

1

Mν1

)ν2/(1+ν2)

,

where J∗ ≍ Mν1/(1+ν2)I(M < M∗) + (n/log n)
1/(1+ν2) I(M ≥ M∗), M∗ =

(n/log n)
1/ν1 and I(·) is the indicator function.
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Theorem 4 provides an upper bound for the excess misclassification risk of

(4.5) with J = J∗, which matches Theorem 2. Therefore, we claim that sFQDA

attains minimax optimality if the leading J∗ basis functions are used to construct

the classifier.

Although FQDA is optimal in a Gaussian setting, in general, it performs

poorly when the data are nonGaussian. Hence, it is desirable to design a more

accurate classifier for nonGaussian data that preserves the same optimality in the

Gaussian case. In the next section, we propose a novel approach to do so, based

on a DNN.

5. FDNN

DNNs are used in nonparametric regression and classification problems; see

Schmidt-Hieber (2020), Bauer and Kohler (2019), Kim, Ohn and Kim (2021), Liu,

Boukai and Shang (2022), Liu, Shang and Cheng (2021), Wang, Cao and Shang

(2021), andHu, Shang and Cheng (2020). To the best of our knowledge, this is the

first application of a DNN to functional data classification. The basic idea is to

train a DNN classifier using the observed principle projection scores. Intuitively,

when the network architectures are well selected, the DNN should have high

expressive power, so that the functional Bayes classifier can be well approximated,

even when its explicit form is not known. Hence, FDNN is expected to be more

resistant than FQDA for nonGaussian data. We first define a sparse DNN, and

then construct FDNN classifiers for fully observed data and for discretely observed

data, and prove their optimality.

5.1. Sparse DNN

A DNN tends to overfit the training data, owing to too much capacity of the

network class. A common practice is to sparsify the network parameters, using

methods such as dropout (Ian, Yoshua and Aaron (2016)). Our approach is to

train a functional classifier using a sparse DNN that addresses the overfitting

issue problem effectively.

Let σ denote the rectifier linear unit (ReLU) activation function, that is,

σ(x) = (x)+ for x ∈ R. For any real vectors V = (v1, . . . , vr)
⊤ and y =

(y1, . . . , yr)
⊤, define the shift activation function σV (y) = (σ(y1 − v1), . . . , σ(yr −

vr))
⊤. For L, J ≥ 1 and p = (p0, p1, . . . , pL, pL+1) ∈ NL+2, let F(L, J,p) denote

the class of DNNs over J inputs, with L hidden layers and pl nodes in the hidden

layer l, for l = 1, . . . , L. Let p0 = J and pL+1 = 1. Any f ∈ F(L, J,p) has an

expression

f(x) = WLσVL
WL−1σVL−1

· · ·W1σV1
W0x, x ∈ RJ , (5.1)

where Wl ∈ Rpl+1×pl , for l = 0, . . . , L, are weight matrices, and Vl ∈ Rpl , for
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l = 1, . . . , L, are shift vectors. The sparse DNN class is defined as

F(L, J,p, s, B) (5.2)

=

{
f ∈ F(L, J,p) : max

l=0,...,L
∥Wl∥∞ + ∥vl∥∞ ≤ B,

L∑
l=0

∥Wl∥0 + ∥vl∥0 ≤ s,

∥f∥∞ ≤ 1

}
,

where ∥ · ∥∞ denotes the maximum-entry norm of a matrix/vector or supnorm

of a function, ∥ · ∥0 denotes the number of nonzero entries of a matrix or vector,

s > 0 controls the number of nonzero weights and shifts, and B > 0 controls

the largest weights and shifts. For notational convenience, we assume that the

supnorm of f has a unit upper bound, which can be replaced by an arbitrary

positive constant.

5.2. FDNN classifier for fully observed data

Let ϕ : R → [0,∞) denote a surrogate loss such as the hinge loss ϕ(x) =

(1 − x)+. For k = 1, 2 and i = 1, . . . , nk, recall X
(k)
i (t) =

∑∞
j=1 ξ

(k)
ij ψj(t) (see

Section 4.1), and for J ≥ 1, let ξ
(k)
i = (ξ

(k)
i1 , ξ

(k)
i2 , . . . , ξ

(k)
iJ ) be the vector of J

principle projection scores corresponding to X
(k)
i . Define the decision function

f̂ϕ(·) = argmin
f∈F(L,J,p,s,B)

2∑
k=1

nk∑
i=1

ϕ((2k − 3)f(ξ
(k)
i )).

Specifically, f̂ϕ is the best network in F(L, J,p, s, B) minimizing the empirical

surrogate loss. In practice, we suggest using the R package “Keras” to find f̂ϕ.

We then propose the following FDNN classifier:

ĜFDNN(Z) =

{
1, f̂ϕ(z) ≥ 0,

2, f̂ϕ(z) < 0.
(5.3)

Theorem 5. Suppose the network class F(L, J,p, s, B) satisfies

(i) L ≍ log n;

(ii) J ≍ n
1

1+ν2 (log n)
−4/(1+ν2);

(iii) max0≤ℓ≤L pℓ ≍ n1/(1+ν2)(log n)(ν2−3)/(1+ν2);

(iv) s ≍ n
1

1+ν2 (log n)(2ν2−2)/(1+ν2);

(v) B ≍ nν2/(2+2ν2)(log n)(2−2ν2)/(1+ν2).
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For both Θ = ΘH(ν1, ν2) and Θ = ΘS(ν1, ν2), the FDNN classifier (5.3) satisfies

sup
θ∈Θ

E
[
Rθ(Ĝ

FDNN)−Rθ(G
∗
θ)
]
≲

(
log4 n

n

)ν2/(1+ν2)

.

Theorem 5 provides an upper bound for the excess misclassification risk of

(5.3). When the neural network architectures (L, J,p, s, B) are properly selected,

the upper bound matches Theorem 1 up to a log factor. Therefore, the FDNN is

proven to be minimax optimal.

5.3. FDNN classifier for discretely observed data

For i = 1, . . . , nk, k = 1, 2, let ζ
(k)
i be given in (4.3). Define the decision

function

f̂
(s)
ϕ (·) = argmin

f∈F(L,J,p,s,B)

2∑
k=1

nk∑
i=1

ϕ((2k − 3)f(ζ
(k)
i )).

We then propose the following sampling FDNN (sFDNN) classifier:

ĜsFDNN(Z) =

{
1, f̂

(s)
ϕ (z) ≥ 0,

2, f̂
(s)
ϕ (z) < 0.

(5.4)

Theorem 6. Suppose the network class F(L, J,p, s, B) satisfies

(i) L ≍ (logM)I(M ≤M∗) + (log n)I(M ≥M∗);

(ii) J ≍Mν1/(1+ν2)I(M ≤M∗) + n1/(1+ν2) (log n)
−4/(1+ν2) I(M ≥M∗);

(iii) max0≤ℓ≤L pℓ ≍ Mν1/(1+ν2)(logM)I(M ≤ M∗) + n1/(1+ν2)(log n)(ν2−3)/(1+ν2)

I(M ≥M∗);

(iv) s ≍ Mν1/(1+ν2)(log2M)I(M ≤ M∗) + n1/(1+ν2)(log n)(2ν2−2)/(1+ν2)I(M ≥
M∗);

(v) B ≍Mν1ν2/(2+2ν2)I(M ≤M∗) + nν2/(2+2ν2)(log n)(2−2ν2)/(1+ν2)I(M ≥M∗),

where M∗ =
(
n/log4 n

)1/ν1
. Let ν1, ν2 > 0, with ν1 ≤ 1 + ν2. For both Θ =

ΘH(ν1, ν2) and Θ = ΘS(ν1, ν2), the sFDNN classifier in (5.4) satisfies

sup
θ∈Θ

E
[
Rθ(Ĝ

sFDNN)−Rθ(G
∗
θ)
]
≲

(
log4 n

n
+

1

Mν1

)ν2/(1+ν2)

.

Theorem 6 provides an upper bound for the excess misclassification risk of

(5.3). When the architectures (L, J,p, s, B) are properly selected, the upper

bound matches the result in Theorem 2 up to a log factor. Therefore, the sFDNN

is able to attain minimax optimality. The critical sampling frequency M∗ =(
n/log4 n

)1/ν1
differs from the one in Theorem 2 by a log factor as well.
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6. Simulation

Here, we examine the performances of FQDA and FDNN using simulations.

6.1. Gaussian setting

In this section, we provide numerical evidence to demonstrate the superior

performance of FQDA and FDNN compared with two popular functional

classifiers: the quadratic discriminant method (QD) proposed by Delaigle and

Hall (2013), and the nonparametric Bayes classifier (NB) proposed by Dai, Müller

and Yao (2017). We do not include the functional logistic regression because

it performs worse than NB when covariance differences in the populations are

present (Dai, Müller and Yao (2017)). The difference between FQDA and QD lies

in how they estimate principle projection scores. Specifically, FQDA estimates

the projection scores by projecting the functional data onto a Fourier basis, and

QD applies a functional principal component analysis to estimate the principle

projection scores in which the eigenfunctions are data-driven. We evaluated

all methods using four synthetic data sets. In all simulations, we generated

n = n1 = n2 = 50, 100 training samples for each class, and thus π1 = π2 = 0.5.

We generated functional data X
(k)
i (t) =

∑J
j=1 ξ

(k)
ij ψj(t), where ξ

(k)
ij ∼ N(µkj, λ

(k)
j ),

for i = 1, . . . , nk, k = 1, 2. In the following, µk = (µk1, . . . , µkJ)
⊤, Σk =

diag(λ
(k)
1 , . . . , λ

(k)
J ), and ψj(t) are specified in different models for t ∈ [0, 1].

Model 1 : Let J = 3, µ1 = (−1, 2,−3)
⊤
, Σ

1/2
1 = diag (3/5, 2/5, 1/5), µ2 =

(−1/2, 5/2,−5/2)
⊤
, Σ

1/2
2 = diag (9/10, 1/2, 3/10), ψ1(t) = log(t + 2), ψ2(t)

= t, and ψ3(t) = t3.

Model 2 : Let J = 3, µ1 = (−6, 12,−18)
⊤
, Σ

1/2
1 = diag (3, 2, 1), µ2 = (−3, 9,

−15)⊤, Σ
1/2
2 = diag (9/2, 5/2, 3/2), ψ1(t) = log(t+2), ψ2(t) = t, and ψ3(t) =

t3.

Model 3 : Let J = 4, µ1 = (1,−1, 2,−3)
⊤
, Σ

1/2
1 = diag (4/5, 3/5, 2/5, 1/5),

µ2 = (1/2,−1/2, 5/2,−5/2)
⊤
, Σ

1/2
2 = diag (1, 1, 1/2, 3/10), ψ1(t) = sin 2πt,

ψ2(t) = log(t+ 2), ψ3(t) = t, and ψ4(t) = t3.

Model 4 : Let J = 4, µ1 = (6,−6, 12,−18)
⊤
, Σ

1/2
1 = diag (4, 3, 2, 1), µ2 =

(3,−3, 9,−15)
⊤
, Σ

1/2
2 = diag (5, 5, 5/2, 3/2), ψ1(t) = sin 2πt, ψ2(t) =

log(t+ 2), ψ3(t) = t, and ψ4(t) = t3.

Note that the setting J ≤ 4 indicates that the two classes have fewer than

four different terms in the density functions. Therefore, the two populations

are much “closer” to each other, which leads to relatively larger misclassification

errors. This setting is more challenging than those with a relatively larger value

J and many different terms. In each model above, the parameter θ belongs

to ΘH(1, 1) or ΘS(1, 1), that is, ν1 = ν2 = 1 in (3.3) or (3.4). The random
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functions are sampled atM equally spaced sampling points from zero to one. We

choseM from {10, 20, 30, 40, 50} to detect how the sampling frequency affects the

classification error, where we regarded M = 50 as the full observation. In each

scenario, the number of repetitions is set to 100, and the classification errors are

evaluated using 500 samples.

To select the tuning parameter for FQDA, we selected J using cross-

validation, as proposed by Delaigle and Hall (2012) and Delaigle and Hall (2013),

and for FDNN, we chose L = ⌈logM⌉∨⌈log n⌉, J = c⌈M1/2⌉∨⌈n1/2⌉ for 1 ≤ c ≤ 4,

depending on different settings, pℓ = 20⌈M1/2⌉ ∨ ⌈n1/2⌉, B = 5⌈M1/4⌉ ∨ ⌈n1/4⌉,
and s = 20⌈M1/2⌉ ∨ ⌈n1/2⌉. Note that the above selection of the architecture

parameters is based on Theorem 6.

Tables 1 to 4 summarize the misclassification rates for four classifiers, given

combinations of different mean and covariance models. Given the explicit

definition of X
(k)
i , it is not surprising that of FQDA and FDNN significantly

outperformQD and NB, which require that the two series in (2.3) are divergent.

The discrepancy increases with the number of observations per subject. In

particular, under the fully observed cases, the classification risks of our FQDA and

FDNN classifiers are less than half of the risks generated by QD and NB. When

the data are sparsely sampled (M = 10), all classifiers have larger misclassification

risks, because there is less available information. However, the proposed FQDA

and FDNN still outperform their two counterparts.

6.2. NonGaussian setting

To evaluate the performance of the proposed classifiers under nonGaussian

process situations, we consider the following two models:

Model 5 : Let X
(k)
i (t) =

∑3
j=1 ξ

(k)
ij ψj(t), where ξ

(1)
ij ∼ N(µ1j, λ

(1)
j ), for i =

1, . . . , n1, ξ
(2)
ij ∼ t7−2j, i = 1, . . . , n2, µ1 = (−1, 2,−3)

⊤
, Σ

1/2
1 = diag (3, 2, 1),

ψ1(t) = log(t+ 2), ψ2(t) = t, and ψ3(t) = t3.

Model 6 :Let X
(k)
i (t) =

∑3
j=1 ξ

(k)
ij ψj(t), where ξ

(1)
ij ∼ Exp(rj), for i = 1, . . . , n1,

r = (r1, r2, r3)
⊺ = (0.3, 0.8, 1.5)⊺, ξ

(2)
ij ∼ t7−2j, for i = 1, . . . , n2, ψ1(t) =

log(t+ 2), ψ2(t) = t, and ψ3(t) = t3.

It is easy to see that θ in Models 5 and 6 also belong to ΘH(1, 1) or ΘS(1, 1).

We select the tuning parameters for FQDA and FDNN in the same way as in

Section 6.1. Tables 5 and 6 report the misclassification rates for the four classifiers

when the functional data of one of the classes are nonGaussian. Because the

three competitors are designed only for the Gaussian process, FDNN dominates

in terms of performance for both sparsely and densely sampled functional data

cases. In most scenarios, the misclassification rates of FDNN are approximately

one-third of those of QD and NB. FQDA incurred larger risks than FDNN in

both cases, but is still superior to QD and NB.
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Table 1. Misclassification rates (%), with standard errors in parentheses, for Model 1.

M n FQDA FDNN QD NB

50 50 18.75(0.02) 19.46(0.08) 39.15(0.02) 42.09(0.02)

100 18.54(0.01) 16.86(0.09) 38.53(0.02) 40.96(0.02)

40 50 19.97(0.02) 19.91(0.08) 39.12(0.02) 42.10(0.02)

100 19.85(0.02) 18.58(0.10) 38.49(0.02) 40.91(0.02)

30 50 22.17(0.02) 24.82(0.12) 39.14(0.02) 42.04(0.02)

100 22.00(0.02) 18.70(0.10) 38.48(0.02) 40.87(0.02)

20 50 25.99(0.02) 26.04(0.12) 39.00(0.02) 41.97(0.02)

100 26.04(0.02) 24.27(0.01) 38.47(0.02) 40.75(0.05)

10 50 32.10(0.02) 28.59(0.10) 38.98(0.02) 41.79(0.02)

100 31.91(0.02) 25.24(0.09) 38.28(0.02) 40.70(0.02)

Table 2. Misclassification rates (%), with standard errors in parentheses, for Model 2.

M n FQDA FDNN QD NB

50 50 14.77(0.02) 18.82(0.10) 37.91(0.02) 41.03(0.02)

100 14.58(0.01) 13.19(0.10) 37.35(0.02) 39.92(0.02)

40 50 15.99(0.02) 18.52(0.10) 37.85(0.02) 40.99(0.02)

100 15.92(0.01) 12.92(0.02) 37.32(0.02) 40.07(0.02)

30 50 18.29(0.02) 21.71(0.12) 37.86(0.02) 40.89(0.02)

100 18.37(0.02) 12.95(0.09) 37.33(0.02) 39.91(0.02)

20 50 22.27(0.02) 24.01(0.14) 37.83(0.02) 40.90(0.02)

100 22.39(0.02) 21.70(0.11) 37.28(0.02) 39.81(0.02)

10 50 29.12(0.02) 27.74(0.13) 37.66(0.02) 40.72 (0.02)

100 29.16(0.02) 27.33(0.12) 37.18(0.02) 39.57(0.02)

Table 3. Misclassification rates (%), with standard errors in parentheses, for Model 3.

M n FQDA FDNN QD NB

50 50 18.63(0.02) 20.02(0.04) 34.95(0.03) 40.26(0.03)

100 18.06(0.02) 19.96(0.06) 34.69(0.02) 38.89(0.02)

40 50 19.85(0.02) 22.46(0.07) 34.96(0.03) 40.41(0.03)

100 19.31(0.02) 19.34(0.09) 34.67(0.02) 38.95(0.02)

30 50 21.79(0.02) 24.35(0.07) 34.96(0.03) 40.42(0.03)

100 21.33(0.02) 20.05(0.08) 34.70(0.02) 39.05(0.02)

20 50 25.36(0.02) 26.07(0.09) 34.92(0.03) 40.42(0.03)

100 24.16(0.02) 21.22(0.08) 34.60(0.02) 38.98(0.03)

10 50 30.25(0.02) 26.03(0.08) 34.72(0.03) 40.35(0.03)

100 30.00(0.02) 24.13(0.08) 34.15(0.03) 38.83(0.09)

7. Real-Data Illustrations

This benchmark data example was extracted from the TIMIT database

(TIMIT Acoustic-Phonetic Continuous Speech Corpus, NTIS, US Dept of
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Table 4. Misclassification rates (%), with standard errors in parentheses, for Model 4.

M n FQDA FDNN QD NB

50 50 14.56(0.02) 21.16(0.10) 32.76(0.02) 38.76(0.03)

100 14.26(0.02) 16.85(0.10) 32.64(0.02) 36.77(0.03)

40 50 15.89(0.02) 20.42(0.10) 32.78(0.02) 38.65(0.03)

100 19.31(0.02) 20.18(0.09) 34.67(0.02) 38.95(0.02)

30 50 18.26(0.02) 22.75(0.10) 32.72(0.02) 38.58(0.03)

100 17.81(0.02) 16.29(0.10) 32.60(0.02) 36.74(0.03)

20 50 21.93(0.02) 22.76(0.11) 32.72(0.03) 38.36(0.03)

100 21.54(0.02) 21.29(0.09) 32.59(0.02) 36.88(0.03)

10 50 27.46(0.02) 27.73(0.10) 32.52(0.02) 38.78(0.03)

100 27.08(0.02) 24.85(0.10) 32.34(0.02) 37.00(0.02)

Table 5. Misclassification rates (%), with standard errors in parentheses, for Model 5.

M n FQDA FDNN QD NB

50 50 18.11(0.04) 13.20(0.01) 42.63(0.02) 40.27(0.03)

100 17.11(0.04) 12.29(0.01) 38.42(0.09) 39.84(0.04)

40 50 19.47(0.04) 13.40(0.02) 42.61(0.10) 40.38(0.04)

100 18.62(0.04) 12.35(0.01) 38.38(0.09) 39.79(0.04)

30 50 22.14(0.05) 12.89(0.01) 42.73(0.01) 40.50(0.03)

100 24.19(0.05) 12.21(0.01) 38.30(0.09) 40.11(0.04)

20 50 27.00(0.08) 13.00(0.01) 42.77(0.10) 40.69(0.04)

100 22.75(0.07) 12.21(0.01) 38.17(0.09) 40.26(0.04)

10 50 36.75(0.08) 23.01(0.16) 43.16(0.04) 41.38(0.04)

100 32.14(0.09) 19.52(0.15) 37.87(0.09) 40.90(0.04)

Commerce), which is a widely used resource for research in speech recognition

and functional data classification (Ferraty and Vieu (2003)). Our data set is

constructed by selecting five phonemes for classification based on digitized speech

from this database. From each speech frame, a log-periodogram transformation is

applied to cast the speech data in a form suitable for speech recognition. The five

phonemes in this data set are as follows: “sh,” as in “she,” “dcl,” as in “dark,”

“iy,” as the vowel in “she,” “aa,” as the vowel in “dark,” and “ao,” as the first

vowel in “water.” For illustration purposes, we focus on the “aa,” “ao,” “iy,” and

“dcl” phoneme classes. Each speech frame is represented by n = 400 samples

at a 16 kHz sampling rate; the first M = 150 frequencies from each subject are

retained. Figure 1 displays 10 log-periodograms for each class phoneme.

We randomly select training sample size n1 = n2 = 100 to train the classifiers

of the three methods, and the rest of the 300 samples remain as test samples.

The tuning parameter selections for FQDA and FDNN are the same as those in

Section 6.1. Table 7 reports the mean percentage (averaged over 100 repetitions)

of misclassified test curves. Both FQDA and FDNN outperform QD and NB in
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Table 6. Misclassification rates (%), with standard errors in parentheses, for Model 6.

M n FQDA FDNN QD NB

50 50 13.38(0.08) 8.98(0.01) 20.54(0.09) 19.81(0.08)

100 10.11(0.02) 8.31(0.01) 15.86(0.03) 17.07(0.06)

40 50 13.72(0.08) 9.45(0.01) 19.36(0.08) 19.25(0.08)

100 12.12(0.06) 8.54(0.01) 16.98(0.05) 16.13(0.06)

30 50 13.94(0.08) 10.57(0.07) 19.35(0.08) 19.78(0.09)

100 12.82(0.06) 8.92(0.04) 17.00(0.05) 16.69(0.04)

20 50 15.33(0.09) 10.52(0.04) 19.93(0.09) 20.32(0.10)

100 13.91(0.06) 8.97(0.04) 17.00(0.06) 17.72(0.08)

10 50 15.58(0.07) 12.07(0.08) 19.33(0.08) 23.04(0.12)

100 15.04(0.05) 8.90(0.01) 17.16(0.06) 20.71(0.10)

Figure 1. A sample of 10 log-periodograms per class.

all three classification tasks. For “ao” versus “iy,” the misclassification rates of

FQDA and FDNN are less than one-third of that of QD; for “ao” versus “dcl,”

the misclassification rates of FQDA and FDNN are around half that of NB. The

most difficult task is to distinguish between “aa” and “ao” and all three classifiers

have much larger risks. However, the proposed FQDA and FDNN classifiers still

provide smaller risks and smaller standard errors compared with those of QD and

NB classifiers.
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Table 7. Misclassification rates (%), with standard errors in parentheses, for the speech
recognition data.

Classes FQDA FDNN QD NB

“aa” vs “ao” 20.278(0.014) 20.744(0.016) 25.402(0.026) 25.378(0.021)

“aa” vs “iy” 0.196(0.001) 0.193(0.002) 0.288(0.005) 0.273(0.006)

“ao” vs “iy” 0.153(0.004) 0.183(0.004) 0.578(0.005) 0.232(0.005)

“ao” vs “dcl” 0.270(0.003) 0.229(0.002) 0.391(0.005) 0.472(0.006)

8. Conclusion

We present a new minimax optimality viewpoint for solving functional

classification problems. In comparison with methods in the existing literature,

our results deal with the more practical scenarios where the two populations are

relatively “close,” so that the optimal Bayes risk is asymptotically nonvanishing.

Our contributions are threefold. First, we provide sharp convergence rates for

MEMR when the data are either fully or discretely observed, as well as a critical

sampling frequency that governs the rate in the latter case. Second, we propose

novel classifiers based on FQDA and FDNN that we prove to achieve minimax

optimality. Third, we use simulations and real-data examples to show that

the proposed FDNN classifier exhibits outstanding performance, even when the

Gaussian assumption is invalid.

Supplementary Material

Technical lemmas and proofs of Theorems 1 to 6 are provided in the online

Supplementary Material.
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