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BOOTSTRAP ADJUSTMENT TO MINIMUM p -VALUE

METHOD FOR PREDICTIVE CLASSIFICATION
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Abstract: In medical studies, the minimum p-value method is often used to deter-

mine a cutpoint of a continuous biomarker for predictive classification and to assess

whether a subset of patients may have a different treatment effect than that of

other patients. However, this method suffers from type-I error inflation when the

estimated cutpoint is treated as known. In this paper, we propose bootstrap-based

procedures to obtain the valid p-value for the minimum p-value test statistic when

the treatment effect is measured by a continuous outcome under both random and

fixed designs, regardless of whether the cutpoint is identifiable. In the fixed design

case, the test statistic is the supremum of a noncentered random process, the mean

function (i.e., bias) of which diverges as the sample size goes to infinity, even under

the null hypothesis. The proposed bootstrap statistic matches the diverging bias

asymptotically, and we apply the high-dimensional Gaussian approximation results

to establish the asymptotic size validity and the power consistency under local al-

ternatives. The proposed method is applied to a data set from a clinical trial on

advanced colorectal cancer.

Key words and phrases: High-dimensional Gaussian approximation, minimum p-

value method, multiplier residual bootstrap, non-centered process.

1. Introduction

In clinical practices, it is common to classify patients into two or more groups

based on a demographic, clinical, or genetic variable, such as age or the expres-

sion level or status of a gene, which we refer to as a biomarker, to make clinical

decisions. There are two types of problems. The first is to classify patients with

respect to a clinical outcome of interest, regardless of the types of treatments, for

risk stratification. The second is to distinguish patients by their degree of benefit

or harm to a particular treatment for guidance on its adoption. In the clinical

literature, the former is referred to as prognostic classification, and the latter

is referred to as predictive classification. The biomarkers used for these classi-

fications are called prognostic and predictive biomarkers, respectively (Ballman
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(2015)).

This study focuses on identifying and assessing predictive biomarkers based

on data from clinical trials that test an experimental treatment against a stan-

dard control. For example, consider the CO.17 trial conducted by the Canadian

Cancer Trials Group (Jonker et al. (2007)), which is a randomized phase III

trial that compares cetuximab plus best supportive care (BSC) with BSC alone

in patients with metastatic epidermal growth factor receptor-positive colorectal

cancer. Investigators identified the K-ras gene as a predictive biomarker with re-

spect to various clinical outcomes, such as the change in the global health status

score from baselines at 8 and 16 weeks after randomization. They found that

patients with wild-type K-ras benefited more from the cetuximab treatment than

did patients with mutated K-ras (Karapetis et al. (2008)). As a result, the ce-

tuximab treatment is now restricted to patients with a tumor bearing wild-type

K-ras.

We consider the problem of predictive classification with respect to a contin-

uous clinical outcome when only the continuous measurements of a biomarker are

available, but a cutpoint is required to classify patients into two groups. Specifi-

cally, let Y be a continuous clinical outcome of interest, U be a binary treatment

indicator, and X be a continuous biomarker. We assume

E(Y ) = α0 + β0U + γ0I(X ≤ c0) + λ0I(X ≤ c0)U, (1.1)

where c0 is an unknown cutpoint in the range [`, u], I(·) is the indicator function,

and α0, β0, γ0, and λ0 are unknown parameters. Then, β0 + λ0 and β0 represent

the treatment effect, that is, the difference in the expected outcome between the

experiment and the standard treatment groups, in the two subsets defined by the

cutpoint c0. Thus, λ0 measures the differential treatment effect between these

two subsets. An important task for predictive classification is to assess whether

the differential treatment effect is significant by testing the null hypothesis H0 :

λ0 = 0. Note that we make no assumption about whether γ0 is nonzero. If

γ0 = λ0 = 0, the cutpoint is not identifiable, in the sense that all values of c0
induce the same distribution on the response Y .

If the value of the cutpoint c0 is known to be c, for example, based on subject

knowledge or from previous studies, we can use classical test statistics such as

the Wald test statistic Mn,c based on a sample of size n to test H0. However,

this is unrealistic for many clinical applications. In practice, the minimum p-

value method is often used to assess both prognostic and predictive biomarkers

when the cutpoint is unknown. The basic idea of this method in the context of
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predictive classification can be described as follows. If c is the true value of c0,

the associated Wald statistic Mn,c has a limiting standard normal distribution

N(0, 1). Thus, 2{1 − Φ(|Mn,c|)} is an asymptotically valid p-value for testing

H0 : λ0 = 0, where Φ(·) is the distribution function of N(0, 1). When the true

value of c0 is unknown, define c̃0 as a value that achieves the minimum p-value

or, equivalently, the maximal absolute Wald statistic,

c̃0 = argmin
c∈[`,u]

2{1− Φ(|Mn,c|)} = argmax
c∈[`,u]

|Mn,c|. (1.2)

Then, the p-value from the minimum p-value method is

pn,mp = 2{1− Φ(Mn)}, where Mn = |Mn,c̃0 | = sup
c∈[`,u]

|Mn,c|. (1.3)

Although this method is simple and appealing to practitioners, its type-I error is

substantially inflated, because the definition in (1.3) does not take into account

that the cutpoint is estimated from the data. Thus, resulting analyses are not, in

general, recognized in the medical literature and, for those eventually published,

for example, Jonker et al. (2014) and Blok et al. (2018), the analyses can only be

considered as exploratory. Therefore, statistical methods to adjust the p-value

calculated from this method are urgently needed.

The main contribution of this study is to propose bootstrap methods to

adjust the p-value defined in (1.3) under both random designs and fixed designs

(see, e.g., Freedman (1981) for a discussion), and to establish the asymptotic

size validity and power consistency. Note that the critical values obtained using

the proposed bootstrap methods lead to proper type-I error control under both

identifiable (γ0 6= 0) and non-identifiable cases (γ0 = 0). These two cases are

both practically important, and usually there is no convincing reason to assume

one over the other. The literature (reviewed below) provides valid tests for each

separate case, but not for both.

Specifically, under the random design, both the biomarker X and the treat-

ment indicator U are viewed as random variables. If U and X are independent,

E(Mn,c)→ 0 as n→∞, for each c ∈ R, under the null H0 : λ0 = 0. Using stan-

dard empirical process arguments (van der Vaart and Wellner (1996)), we show

that {Mn,c : c ∈ [`, u]} converges in distribution to a zero-mean Gaussian process,

and propose a paired bootstrap procedure to approximate the distribution of the

limiting process.

The adjustment under a fixed design, which assumes (U,X) is determinis-

tic, is nonstandard and statistically more challenging. Specifically, the minimum
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p-value test statistic Mn is the supremum of the absolute values of the random

process, {Mn,c : c ∈ [`, u]}; its mean function may diverge as n → ∞, which

makes the classical functional weak convergence theory (van der Vaart and Well-

ner (1996)) inapplicable. Furthermore, although Chernozhukov, Chetverikov and

Kato (2014, 2016) have developed a Gaussian approximation and bootstrap tools

for noncentered, non-Donsker empirical processes, {Mn,c : c ∈ [`, u]} is not an

empirical process. To address the problem of “diverging bias” under the fixed

design, we propose a multiplier residual bootstrap, for which the bias of the boot-

strap process {M∗n,c : c ∈ [`, u]} asymptotically matches that of {Mn,c : c ∈ [`, u]},
and thus also diverges. To establish the size validity of the proposed test, we ob-

serve that Mn in (1.3) can be viewed as the supremum of the absolute values of

{Mn,c : c ∈ Cn}, with Cn = {X1, . . . , Xn} ∩ [`, u], a noncentered random vector,

the dimension of which grows with n. Then, we use the high-dimensional Gaus-

sian approximation results (Chernozhukov, Chetverikov and Kato (2013, 2017);

Chernozhukov et al. (2019)) to show that its distribution is well approximated by

the bootstrap counterpart {M∗n,c : c ∈ Cn}. Furthermore, because the test statis-

tic Mn possibly diverges under the null, it is questionable whether a test based on

Mn will have any power. We show that the proposed procedure is asymptotically

consistent under local alternatives.

Next, we discuss the relevant statistical literature on the minimum p-value

method. For the prognostic classification, which in the setup of the model in

(1.1) assumes λ0 = 0 and tests the null hypothesis H ′0 : γ0 = 0, there is a

rich body of literature on the adjustment of the minimum p-value method; see,

for example, Miller and Siegmund (1982), Jespersen (1986), and Lausen and

Schumacher (1992) and a comprehensive review by Mazumdar and Glassman

(2000). In addition, Fan, Song and Lu (2017) recently considered testing and

identifying a subgroup with an enhanced treatment effect by testing H0 : λ0 = 0

in a model similar to (1.1), but they assume that γ0 = 0. In both the literature

related to prognostic classification and in the work of Fan, Song and Lu (2017),

the setup is nonstandard in the sense that c0 is not identifiable under the null

(Davies (1977, 1987); Andrews (2001)). Nonetheless, under the random design,

the test statistics converge in distribution under their respective nulls. In this

study, we do not assume the model is identifiable; in particular, we allow c0 to be

nonidentifiable. A further challenge in our setup and analysis is that under the

fixed design, the test statistic Mn is not bounded in probability under the null. In

addition, few studies (Jiang, Freidlin and Simon (2007); He (2014); Gavanji, Chen

and Jiang (2018); Götte, Kirchner and Kieser (2020)) consider adjustments to

the minimum p-value statistics for survival endpoints in the context of predictive
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classification. However, no theoretical justification has been provided for the size

validity of the adjusted tests.

There is also a large body of literature on the change-point or cutpoint es-

timation (Koul, Qian and Surgailis (2003); Seijo and Sen (2011); Mallik et al.

(2011); Yu (2014); Li and Jin (2018); Mukherjee, Banerjee and Ritov (2020)),

which provides a valid test for the null H0 : λ0 = 0 under the assumption that

the model is identifiable. Specifically, denote by ĉ0 the profile least squares es-

timator for c0 in (1.1); see its precise definition in (4.1). If γ0 6= 0, under the

random design, Koul, Qian and Surgailis (2003) show that n(ĉ0 − c0) converges

in distribution to the minimizer of a compound Poisson process. Seijo and Sen

(2011) and Yu (2014) show that conventional bootstrap methods, such as the

paired bootstrap and the residual bootstrap, are inconsistent, and propose valid

smoothed bootstrap methods for constructing confidence intervals for c0. Note,

however, that the failure of conventional bootstrap methods does not contradict

our work, because we study a distinct problem for a similar model; see Section S5

in the Supplementary Material. In this study, we show that the p-value based on

ĉ0, pn,pf = 2{1−Φ(|Mn,ĉ0 |)}, has an asymptotically valid size under the assump-

tion γ0 6= 0. Without this identifiability assumption, the type-I error of pn,pf is

significantly inflated (see Section 5).

The remainder of the paper is organized as follows. In Section 2, we formally

introduce the model and the minimum p-value method. In Sections 3 and 4,

we propose paired and multiplier residual bootstrap methods for random and

fixed designs, respectively. We present our simulation results in Section 5 to

corroborate our theory, and an analysis of an advanced colorectal cancer data set

in Section 6. Section 7 concludes the paper.

2. Problem Formulation

Let (Yi, Ui, Xi), for i ∈ [n] := {1, . . . , n}, be a sample of n observations,

where Yi ∈ R is a continuous outcome, Ui ∈ {0, 1} is a binary treatment indicator,

and Xi ∈ R is a continuous biomarker. For a given c ∈ R, define Xi,c = I(Xi ≤ c),
where I(·) is the indicator function. Next, we expand on the model in (1.1), and

assume the following dependence of the outcome Yi on the covariates Xi and Ui:

Yi = α0 + β0Ui + γ0Xi,c0 + λ0Xi,c0Ui + εi for i ∈ [n], (2.1)

where c0 ∈ R is an unknown cutpoint, θ0 = (α0, β0, γ0, λ0)
T is a vector of un-

known regression parameters, and ε1, . . . , εn denote observation noise, which are

assumed to be independent and identically distributed (i.i.d.) with mean zero
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and unknown variance σ2. If γ0 = λ0 = 0, c0 in (2.1) is not identifiable, in which

case, we assume c0 = −∞, without loss of generality. If either γ0 6= 0 or λ0 6= 0,

we assume that c0 is a priori known to be in an interval [`, u]. Note that we make

no assumption on whether c0 is identifiable, and require a valid test to control

the type-I error properly in both cases.

2.1. Minimum p-value method

For any c ∈ R and θ ∈ R4, denote by RSSc(θ) the associated residual sum of

squares, that is,

RSSc(θ) =

n∑
i=1

(Yi − ZTi,cθ)2, where Zi,c = (1, Ui, Xi,c, Xi,cUi)
T .

Then, for each c ∈ R, the least squares estimator λ̂c of λ0 and its estimated

variance v̂2c/n can be written as

λ̂c = dT θ̂c, and
v̂2c
n

=
(dT Q̂−1n,cd)RSSc(θ̂c)

n(n− 4)
, respectively,

where θ̂c = n−1Q̂−1n,c

n∑
i=1

Zi,cYi, Q̂n,c = n−1
n∑
i=1

Zi,cZ
T
i,c, (2.2)

and d = (0, 0, 0, 1)T . Here, θ̂c is the least squares estimator for θ0 for a fixed c,

in the sense of minimizing RSSc(θ).

Recall that the task of a predictive classification is to test the null hypothesis

H0 : λ0 = 0. If a particular c is treated as the true value for c0, the Wald

test statistic for H0 : λ0 = 0 is Mn,c in (2.3). Recall that c̃0 in (1.2) achieves

the smallest p-value or, equivalently, the largest absolute Wald statistic among

c ∈ [`, u]. Our goal is to develop a valid test by calibrating the distribution

of the following minimum p-value test statistic or maximally selected Wald test

statistic:

Mn = |Mn,c̃0 | = sup
c∈[`,u]

|Mn,c| , where Mn,c =

√
nλ̂c
v̂c

. (2.3)

Remark 1. In computing the test statistic Mn in (2.3), it suffices to take the

supremum over the distinct values of the sample X1, . . . , Xn, that is, those c ∈
Cn = {X1, . . . , Xn} ∩ [`, u].

Remark 2. If c0 is known, under the random design setup, Mn,c0 has a stan-

dard normal limiting distribution only under the homogeneous case, that is,



BOOTSTRAP FOR MINIMUM p-VALUE METHOD 2071

VAR(ε1|X1, U1) = σ2. Nonetheless, our proposed procedure in Section 3 applies

to the heterogeneous case as well.

2.2. Challenges in calibrating the distribution of Mn

Consider the following decomposition of n1/2λ̂c, for each c ∈ [`, u]:

n1/2λ̂c = n−1/2d̃Tc

n∑
i=1

Zi,cZ
T
i,c0θ0 + n−1/2d̃Tc

n∑
i=1

Zi,cεi = In,c + IIn,c, (2.4)

where d̃c = Q̂−1n,cd, and Q̂n,c and d are defined in (2.2). Under both the random

and fixed designs, the second term is centered, that is, E(IIn,c) = 0, for c ∈ [`, u].

As discussed in the Introduction, the main challenge lies in analyzing the fixed

design.

Specifically, under the fixed design, (Ui, Xi), for i ∈ [n], are deterministic

vectors. Thus, In,c is a deterministic sequence that may diverge as n → ∞. In

fact, if (Ui, Xi), for i ∈ [n], is one realization of an i.i.d. sequence (fixed once

generated), then, by the law of the iterated logarithm, for any c 6= c0, |In,c|
diverges at a rate of (log log(n))1/2 almost surely. As a result, {E(Mn,c) : c ∈
[`, u]} possibly diverges as n → ∞, even under the null, and so does the test

statistic Mn.

Next, we develop asymptotically valid bootstrap-based tests under the ran-

dom and fixed designs in Sections 3 and 4, respectively. Note that by a conditional

argument, a test that has a valid size under the fixed design setup also does so

under the random design if ε1 is independent of X1 and U1.

3. Paired Bootstrap for the Random Design

First, we consider the random design setup, which assumes (Yi, Ui, Xi), for i ∈
[n], in (2.1) are i.i.d. random vectors, with E(ε1|U1, X1) = 0. Denote by F the

distribution function of X1, and by p = E(U1) the expected value of the binary

treatment U1. We assume that 0 < F (`) < F (u) < 1 and 0 < p < 1.

Denote by `∞([`, u]) the space of bounded functions on [`, u] equipped with

the `∞-norm. Theorem 1 states that {Mn,c : c ∈ [`, u]}, appearing in the

maximally selected Wald test statistic (2.3), converges weakly in `∞([`, u]) to

a tight, centered Gaussian process. A definition of functional weak convergence

and proofs for Theorems 1 and 2 can be found in Section S1 in the Supplementary

Material.

Theorem 1. Assume that U1 and X1 are independent, and that H0 : λ0 = 0
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holds. There exists a tight, zero-mean Gaussian process, G = {Gc : c ∈ [`, u]},
such that {Mn,c : c ∈ [`, u]} converges weakly in `∞([`, u]) to G.

Because the Gaussian process G has a complicated covariance structure, we

propose the following paired bootstrap method to obtain the asymptotically valid

p-value for the test statistic Mn in (2.3).

Let (Y ∗1 , U
∗
1 , X

∗
1 ), . . . , (Y ∗n , U

∗
n, X

∗
n) be a random sample with replacement

from the data (Y1, U1, X1), . . . , (Yn, Un, Xn). For each c ∈ [`, u], define the boot-

strap least squares estimate λ̂∗c using (2.2), with (Zi,c, Yi) replaced by (Z∗i,c, Y
∗
i ),

where Z∗i,c = (1, U∗i , X
∗
i,c, U

∗
i X
∗
i,c) and X∗i,c = I(X∗i ≤ c). Furthermore, define the

following bootstrap version of the maximally selected Wald test statistic, M∗n:

M∗n = sup
c∈[`,u]

|M∗n,c −Mn,c|, where M∗n,c =

√
nλ̂∗c
v̂c

, for c ∈ [`, u]. (3.1)

Denote by F ∗n,pb the distribution function of the bootstrap test statistic M∗n,

conditional on the data (Yi, Ui, Xi), i ∈ [n]. The adjusted p-value based on the

paired bootstrap is defined as

p∗n,pb = 1− F ∗n,pb(Mn). (3.2)

In practice, F ∗n,pb is approximated by the empirical distribution of realizations of

M∗n based on B bootstrap samples.

Remark 3. In the paired bootstrap literature (Shao and Tu (2012)), for each c,

v̂∗c , which is computed using (2.2), with (Zi,c, Yi) replaced by (Z∗i,c, Y
∗
i ), is often

used in the denominator to standardize λ̂∗c in (3.1). Here, we propose using v̂c
mainly to simplify the proof.

The following theorem establishes the asymptotic validity of the adjusted

p-value in (3.2) obtained using the proposed paired bootstrap method under the

random design setup.

Theorem 2. Assume that U1 and X1 are independent, and that H0 : λ0 =

0 holds. Conditional on (Yi, Ui, Xi) (i = 1, 2, . . .), for almost every sequence

(Yi, Ui, Xi) (i = 1, 2, . . .), the random process {M∗n,c − Mn,c : c ∈ [`, u]} con-

verges weakly in `∞([`, u]) to the same tight, zero-mean Gaussian process G as

in Theorem 1. Consequently, for any significance level ξ ∈ (0, 1),

lim
n→∞

pr
(
p∗n,pb ≤ ξ

)
= ξ. (3.3)



BOOTSTRAP FOR MINIMUM p-VALUE METHOD 2073

4. Multiplier Residual Bootstrap for the Fixed Design

In this section, we consider the fixed design setup, where (Ui, Xi), for i ∈ [n],

are deterministic and the randomness comes only from the observation noise

εi, for i ∈ [n]. As a result, the first term In,c in (2.4) is a deterministic function

of c, viewed as a bias term that needs to be removed. We propose the following

multiplier residual bootstrap (Efron (1979); Wu (1986); Shao and Tu (2012)) to

obtain the asymptotically valid p-value for the test statistic Mn in (2.3). Recall

the definitions of RSSc(θ), θ̂c, and v̂2c/n in Section 2.1.

Step 1. Define the profile least squares estimator ĉ0 for c0 and σ̂2 for σ2 as

follows:

ĉ0 = argmin
c∈[`,u]

RSSc(θ̂c), σ̂2 =
RSSĉ0(θ̂ĉ0)

n− 4
. (4.1)

Thus, (ĉ0, θ̂ĉ0) achieves the smallest residual sum of squares, that is, mini-

mizing RSSc(θ) over all (c, θ) ∈ [`, u]× R4.

Step 2. Let ζ1, . . . , ζn be i.i.d. standard normal random variables that are in-

dependent of the data Yi, for i ∈ [n]. Define the bootstrap sample as

(Zi, Y
∗
i ), for i ∈ [n], with

Y ∗i = α̂0 + β̂0Ui + γ̂0Xi,ĉ0 + σ̂ζi, (4.2)

where α̂0, β̂0, and γ̂0 are the first three components of θ̂ĉ0 .

Step 3. For a fixed c, define the least squares estimator, λ̂∗c , for the bootstrap

sample (Zi, Y
∗
i ), for i ∈ [n], using (2.2), with Yi replaced by Y ∗i . Further-

more, define the bootstrap test statistic, M∗n, as follows:

M∗n = sup
c∈[`,u]

|M∗n,c|, where M∗n,c =

√
nλ̂∗c
v̂c

.

Step 4. Denote by F ∗n,mrb the distribution function of M∗n, conditional on the

data Yi, for i ∈ [n], and define the adjusted p-value as

p∗n,mrb = 1− F ∗n,mrb(Mn). (4.3)

The conditional (on Yi) distribution, F ∗n,mrb, of M∗n can be estimated using

the bootstrap, that is, by repeatedly generating independent realizations of the
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multipliers ζi, for i ∈ [n]. In computing the profile least squares estimator ĉ0 for

c0, as in Remark 1, it suffices to consider c ∈ Cn.

4.1. Asymptotic size validity

Next, we establish the asymptotic validity of the p-value obtained from

the above multiplier residual bootstrap test procedure. We consider the fol-

lowing asymptotic regime. Assume that (Xi, Ui), for i ∈ [n], are deterministic

and may depend on n. That is, we consider the triangle array setup, where

Xi = Xn,i and Ui = Un,i, for i ∈ [n], but for notational simplicity, we omit the

dependence on n. However, the distributions of εi, for i ∈ [n], and (c0, θ0) in (2.1)

do not depend on n, except when we consider the local alternatives in Subsection

4.2.

Denote sn,c =
∑n

i=1Xi,c/n, pn =
∑n

i=1 Ui/n, and qn,c =
∑n

i=1Xi,cUi/n. For

some r ∈ (4,∞], specified later, we impose the following assumptions, with the

convention 1/∞ = 0.

(A.1) If r = ∞, assume the existence of a constant ρ > 0 such that E
(
etε1
)
≤

exp
(
ρ2t2/2

)
, for t ∈ R. If r <∞, assume that E(|ε1|r) <∞.

(A.2) There exist a nondecreasing function F : [`, u] → (0, 1) and constants

η0 ∈ (0, 1/2− 1/r) and 0 < p < 1 such that, as n→∞,

n(1/2)−η0 |pn − p|+ n(1/2)−η0 sup
c∈[`,u]

[|sn,c − F (c)|+ |qn,c − pF (c)|]→ 0.

If γ0 6= 0, c0 is identified in the model (2.1), in which case, we further impose

the following assumption. This is not assumed if γ0 = λ0 = 0.

(A.3) F is differentiable at c0 with a positive derivative, and there exists an

η1 ∈ (1/2, 1− 2/r) such that, for any constant K > 0, as n→∞,

nη1 sup
|c−c0|≤Kn−η1

|sn,c − sn,c0 − {F (c)− F (c0)}| → 0,

nη1 sup
|c−c0|≤Kn−η1

|qn,c − qn,c0 − p {F (c)− F (c0)}| → 0.

Assumption (A.1) requires the noise ε1 to have a sub-Gaussian tail if r =∞,

and a finite rth moment if r < ∞; Remark 4 explains why we consider these

two cases separately. Assumptions (A.2) and (A.3) concern the global and local

(around c0) convergence rates, respectively, of sn,c, qn,c, and pn to F (c), pF (c),

and p, respectively. We provide examples in Subsection 4.3 that satisfy (A.2)

and (A.3).
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Next, we establish that the distribution of the adjusted p-value converges to

the uniform distribution over (0, 1) uniformly at a polynomial rate.

Theorem 3. Let r ∈ (4,∞]. Suppose that the null hypothesis H0 : λ0 = 0 holds,

and that Assumptions (A.1) and (A.2) hold. If γ0 6= 0, suppose that Assumption

(A.3) is satisfied. If γ0 = 0, let η1 = 1. Then,

lim
n→∞

nq sup
ξ∈(0,1)

∣∣pr(p∗n,mrb ≤ ξ)− ξ
∣∣ = 0,

for any q < min{1/6 − 1/(3r), 1/3 − 4/(3r), η1 − 1/2, 1/2 − 1/r − η0} if r < ∞,

and q < min{1/4, η1 − 1/2, 1/2− η0} if r =∞.

Proof. Here, we outline the strategy. The complete proof is deferred to Section

S2.1 in the Supplementary Material. Recall in (4.2) that α̂0, β̂0, and γ̂0 are the

first three components of θ̂ĉ0 associated with ĉ0 in (4.1); let θ̂0 = (α̂0, β̂0, γ̂0, 0)T .

Similarly to (2.4), for each c ∈ [`, u],

√
nλ̂∗c = n−1/2d̃Tc

n∑
i=1

Zi,cZ
T
i,ĉ0 θ̂0 + n−1/2σ̂d̃Tc

n∑
i=1

Zi,cζi = I∗n,c + II∗n,c,

where d̃c = Q̂−1n,cd, and Q̂n,c and d are defined in (2.2).

As in Remark 1, the supremum of Mn,c or M∗n,c over c ∈ [`, u] is equal to that

over c ∈ Cn = {X1, . . . , Xn} ∩ [`, u]. As a result, conditional on Yi, for i ∈ [n], or

equivalently on εi, for i ∈ [n], the distribution function F ∗n,mrb ofM∗n is continuous

and strictly increasing on [0,∞), and we have

sup
ξ∈(0,1)

∣∣pr(p∗n,mrb ≤ ξ)− ξ
∣∣ = sup

ξ∈(0,1)

∣∣pr{Mn ≥ (F ∗n,mrb)
−1(1− ξ)} − ξ

∣∣
= sup

ξ∈(0,1)

∣∣∣pr
{
Mn ≥ (F ∗n,mrb)

−1(1− ξ)
}
− pr|ε

{
M∗n ≥ (F ∗n,mrb)

−1(1− ξ)
}∣∣∣ ,

where pr|ε denotes the conditional probability given εi, for i ∈ [n]. By the triangle

inequality, it is upper bounded by Υ1 + Υ2 + Υ3, where

Υ1 = sup
t>0

∣∣∣∣pr

(
sup
c∈Cn

∣∣∣∣In,c + IIn,c
v̂c

∣∣∣∣ ≤ t)− pr

(
sup
c∈Cn

∣∣∣∣In,c + (σ/σ̂)II∗n,c
v̂c

∣∣∣∣ ≤ t)∣∣∣∣ ,
Υ2 = sup

t>0

∣∣∣∣pr

(
sup
c∈Cn

∣∣∣∣In,c + (σ/σ̂)II∗n,c
v̂c

∣∣∣∣ ≤ t)− pr|ε

(
sup
c∈Cn

∣∣∣∣In,c + II∗n,c
v̂c

∣∣∣∣ ≤ t)∣∣∣∣ ,
Υ3 = sup

t>0

∣∣∣∣pr|ε

(
sup
c∈Cn

∣∣∣∣In,c + II∗n,c
v̂c

∣∣∣∣ ≤ t)− pr|ε

(
sup
c∈Cn

∣∣∣∣I∗n,c + II∗n,c
v̂c

∣∣∣∣ ≤ t)∣∣∣∣ .
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Denote by nc the cardinality of Cn, and define IIn = {IIn,c : c ∈ Cn} and

II∗n = {II∗n,c : c ∈ Cn} as two nc-dimensional random vectors. Furthermore,

denote by Are the collection of all hyper-rectangles in Rnc ; that is, Are consists

of all sets A of the form A = {x ∈ Rnc : ti ≤ xi ≤ si, for all 1 ≤ i ≤ nc}, for

some −∞ ≤ ti ≤ si ≤ ∞, for 1 ≤ i ≤ nc.
First, Υ1 ≤ supA∈Are |pr (IIn ∈ A)− pr ((σ/σ̂)II∗n ∈ A)|, where the random

vector σII∗n/σ̂ is a zero-mean Gaussian vector (of length nc) with the same co-

variance matrix as that of IIn. Thus, we apply the high-dimensional central limit

theorem (Chernozhukov et al. (2019, Thm. 2.1)) if r = ∞, and (Chernozhukov,

Chetverikov and Kato (2017, Prop. 2.1)) if r < ∞ to show that it converges to

zero as n→∞.

Second, Υ2 ≤ supA∈Are |pr|ε (II∗n ∈ A)− pr ((σ/σ̂)II∗n ∈ A) |. Conditional on

εi, for i ∈ [n], II∗n is also a centered Gaussian vector, and we show that the

supremum difference between the conditional covariance matrix of II∗n and the

covariance matrix of σII∗n/σ̂ vanishes at a polynomial rate as n → ∞, almost

surely. Then, we apply the (high-dimensional) Gaussian comparison theorem

(Chernozhukov et al. (2019, Corollary 5.1)) to show that it vanishes almost surely

as n→∞.

The third term Υ3 is clearly bounded by

sup
s1,s2∈Rnc

{pr|ε ([II∗n,−II∗n] ≤ [s1, s2] + ∆n)− pr|ε ([II∗n,−II∗n] ≤ [s1, s2])},

where ∆n = supc∈Cn
∣∣In,c − I∗n,c∣∣, and both the inequalities and the scalar addition

are interpreted component-wise. Under the fixed design setup, In,c and I∗n,c are

deterministic; we show that ∆n decays at a polynomial rate as n→∞. Finally,

we apply Nazarov’s inequality (Nazarov (2003); Chernozhukov, Chetverikov and

Kato (2017)) to the Gaussian vector [II∗n,−II∗n] of length 2nc to establish that

the above term vanishes almost surely as n→∞.

Remark 4. For the examples in Subsection 4.3, (A.2) holds for any η0 ∈
(0, 1/2 − 1/r), and (A.3) holds for any η1 ∈ (1/2, 1 − 2/r). Thus, if r = ∞,

the approximation error for the size of the adjusted p-value vanishes at a faster

rate than n−q as n→∞, for any q < 1/4.

Note that the rate for the r =∞ case cannot be recovered from the finite r re-

sult by letting r →∞. This is because of the availability of improved rates in the

high-dimensional central limit theorem (Chernozhukov et al. (2019, Thm. 2.1))

if the noise ε1 has a sub-Gaussian tail.
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4.2. Consistency under alternatives

In practice, if the null hypothesis is rejected, the minimum p-value estimator

c̃0 is commonly used as an estimator for the cutpoint c0. Because the minimizer

of the p-values of the Wald test statistics is not unique, we define

c̃0 = argmax
c∈Cn

|Mn,c| , (4.4)

where if there are multiple c ∈ Cn achieving the maximum, we define c̃0 to be the

smallest one.

In Lemma 1, we show that if the alternative holds, that is, λ0 6= 0, and c0 is

between the first and third “quantiles” of F , then c̃0 is consistent for c0. A more

general discussion and the proofs for Lemma 1 and Theorem 4 can be found in

Section S3 of the Supplementary Material.

Lemma 1. Assume the alternative holds, that is, λ0 6= 0. Suppose that Assump-

tions (A.1) and (A.2) hold for some r ∈ (4,∞), and that F is differentiable at

c0, with F ′(c0) > 0. If F (c0) ∈ [1/4, 3/4], c̃0 converges to c0 in probability as

n→∞.

Next, we establish the power consistency of the proposed test under the local

alternatives:

H1,n : λ0 = λ0,n, with lim inf
n→∞

n1/2−η0 |λ0,n| > 0, lim sup
n→∞

|λ0,n| <∞, (4.5)

where η0 appears in (A.2). For simplicity, assume α0, β0, and γ0 do not vary

with n. Thus, the local alternatives approach the null at a rate of n−1/2+η0 .

Theorem 4. Suppose that Assumptions (A.1) and (A.2) hold for some r ∈
(4,∞], and that the local alternatives in (4.5) hold. For any significance level

ξ ∈ (0, 1), we have limn→∞ pr(p∗n,mrb ≤ ξ) = 1.

Theorem 4 shows that the proposed test is consistent under the local alter-

natives in (4.5), despite the fact that the test statistic Mn may not be bounded

in probability under the null. For the examples in Subsection 4.3, Assumption

(A.2) holds for any η0 ∈ (0, 1/2 − 1/r). Thus, if r = ∞, the local alternatives

are allowed to approach the null H0 : λ0 = 0 at a faster rate than n−q as n→∞,

for any q < 1/2.

4.3. Discussion of the assumptions

In this subsection, we discuss examples for which Assumptions (A.2)–(A.3)

are satisfied for any r ∈ (4,∞].
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Example 1 (Almost all realizations from an i.i.d. sequence). Assume

(Xi, Ui) (i = 1, 2, . . .) are independently and identically generated from some

distribution. Once generated, they are fixed; therefore, the design is considered

as fixed. Denote by F0 the distribution function of X1. In Lemma S2.6 in

the Supplementary Material, we show that if X1 and U1 are independent, 0 <

E(U1) < 1, 0 < F0(`) < F0(u) < 1, and F0 is differentiable at c0 with F ′0(c0) > 0,

Assumptions (A.2)–(A.3) hold almost surely with F = F0, p = E(U1), for any

η0 ∈ (0, 1/2− 1/r), and η1 ∈ (1/2, 1− 2/r).

Example 2 (Regular design). Let F0 be a distribution function such that

0 < F0(`) < F0(u) < 1 and F0 is differentable at c0, with F ′0(c0) > 0. Denote by

F−10 its quantile function, that is, F−10 (q) = inf{x : F (x) ≥ q}. Furthermore, let

Π = (Π0, . . . ,ΠL−1) ∈ {0, 1}L be a deterministic binary vector of length L ≥ 2

such that
∑L−1

k=0 Πk ∈ (0, L). Denote by mod(i, L) the remainder of dividing i by

L. If

Xi = F−10

(
i

n

)
, Ui = Πmod(i,L), i ∈ [n],

then Assumptions (A.2)–(A.3) hold with F = F0, p = L−1
∑L−1

k=0 Πk, for any

η0 ∈ (0, 1/2− 1/r), and η1 ∈ (1/2, 1− 2/r).

Example 3 (Combinations). Assumptions (A.2)–(A.3) hold almost surely for

any η0 ∈ (0, 1/2 − 1/r) and η1 ∈ (1/2, 1 − 2/r), if Xi, for i ∈ [n] (resp. {Ui})
is generated as a realization of an i.i.d. sequence and Ui, i ∈ [n] (resp. {Xi})
is generated according to the deterministic binary pattern (resp. F−10 ) described

above.

4.4. Profile least squares estimation-based test

Given the profile least squares estimator ĉ0 in (4.1), an alternative approach

to test H0 : λ0 = 0 is to use the p-value associated with the Wald statistic at ĉ0,

that is,

pn,pf = 2 {1− Φ(|Mn,ĉ0 |)} . (4.6)

Lemma 2 establishes the asymptotic size validity of the profile least squares

estimation-based test, pn,pf , under the assumption that c0 is identified in (2.1).

The proof of the lemma can be found in Section S4 of the Supplementary Mate-

rial.

Lemma 2. Suppose that Assumptions (A.1), (A.2), and (A.3) hold for some

r ∈ (4,∞), and that γ0 6= 0. Under the null H0 : λ0 = 0, Mn,ĉ0 converges in

distribution to the standard normal distribution as n→∞.
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Despite its simplicity, the size validity of pn,pf requires that γ0 6= 0, because

c0 is not identified when γ0 = λ0 = 0. Furthermore, even if γ0 6= 0, the type-I

error of pn,pf is poorly controlled with a moderate sample size (see Table 1 in

Section 5) if the effect of I(Xi ≤ c0) is small. In comparison, the validity of the

p-value p∗n,mrb in (4.3), based on the proposed multiplier residual bootstrap, does

not require c0 to be identified. As such, when γ0 = λ0 = 0, the estimator γ̂0 and

σ̂2 in (4.2) are still consistent for γ0 = 0 and σ2, and thus regardless of the value

of ĉ0, the effect of γ̂0Xi,ĉ0 on Y ∗i in (4.2) is asymptotically negligible.

Remark 5. The size validity of pn,pf is because of the property that nη1 |ĉ0− c0|
converges to zero almost surely (η1 appears in Assumption (A.3)), which is not

enjoyed by c̃0 in (4.4). As a result, the p-value based on the minimum p-value

estimator c̃0, pn,mp in (1.3) is not valid. Furthermore, as discussed in Subsection

2.2, because the term In,c in (2.4) is a sequence of deterministic numbers that

may diverge, pn,mp may be arbitrarily small under the null.

5. Simulation Studies for the Fixed Design

In this section, we conduct simulation studies to evaluate the performance

of the proposed multiplier residual bootstrap with the p-value p∗n,mrb in (4.3).

We then compare this performance with that of competing tests, including the

unadjusted minimum p-value test with the p-value pn,mp in (1.3) and the test

based on the profile least squares estimation with the p-value pn,pf in (4.6), in

terms of their empirical size and power under the fixed design setup. In the

following tables, “MRB”, “PF”, and “MP” represent the tests based on p∗n,mrb,

pn,pf , and pn,mp, respectively; the bootstrap repetition for p∗n,mrb is B = 2000.

The results for the random design are qualitatively similar, and are presented in

Section S6.1 of the Supplementary Material.

We generate X1, . . . , Xn independently from a uniform distribution on (0, 1),

and U1, . . . , Un from a Bernoulli distribution with success probability 0.5. Under

the fixed design, once one realization is generated, it is shared in all repetitions.

For each repetition, the responses Y1, . . . , Yn are generated using (2.1), where

ε1, . . . , εn are generated independently from some distribution Fε. We vary the

sample size n, parameters θ0 = (α0, β0, γ0, λ0)
T and c0, and consider the following

noise distributions: F
(1)
ε = N(0, 22), F

(2)
ε = 21/2t(4), and F

(3)
ε = 0.5×N(0.5, 12)+

0.5×N(−0.5, 2.552), whereN(a, b) denotes a normal distribution with mean a and

variance b, and t(4) is a t-distribution with four degrees of freedom. The empirical

size and power of the three tests, defined as the proportion of rejections under

H0 and H1, respectively, are calculated with 2,000 repetitions at the 5% level.
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Table 1 is for the identifiable cases, and Table 2 shows the non-identifiable cases.

Note that in Section S6.2 of the Supplementary Material, we consider additional

choices for Fε that have heavy tails as the t-distribution.

Table 1 presents the empirical size and power of the three tests under the

identifiable cases. The table clearly shows that the empirical sizes of the tests

based on the bootstrap adjustment, p∗n,mrb, are close to the nominal 5% level,

whereas there is an almost seven times inflation if we use the unadjusted version,

pn,mp. In addition, if the effect of I(Xi ≤ c0) (i.e., γ0 in (2.1)) is small, the profile

least squares estimation-based tests, pn,pf , control the type-I error (cf., θ(2) in

Table 1) poorly, whereas they do not affect the approach based on p∗n,mrb. In

addition, the tests based on the bootstrap adjustment, p∗n,mrb, perform reasonably

well even, when the noise distribution Fε has a heavy tail or is nonsymmetric such

as the t-distribution F
(2)
ε and the mixture distribution F

(3)
ε .

As expected, the empirical power of the tests based on the bootstrap adjust-

ments, p∗n,mrb, is not as large as that of the minimum p-value approach, pn,mp, or

that of the profile least squares estimation approach, pn,pf , both of which fail to

control the type-I error properly. When the sample size is moderate (say ∼ 300),

the gap is mild.

Table 2 presents the empirical size and power of the three tests under the

non-identifiable cases. From the table, the tests based on pn,pf and pn,mp lose

control of the empirical size, whereas the test based on the bootstrap adjustments

p∗n,mrb behaves satisfactorily, as in the identifiable cases. The empirical power is

close for the three tests.

6. Application to a Colorectal Cancer Data Set

In this section, we apply the multiplier residual bootstrap test to data from

the CO.17 trial mentioned in the Introduction, which randomized 572 patients

with advanced colorectal cancers to receive cetuximab plus BSC or BSC alone.

Quality of life (QoL) is an important outcome in cancer clinical trials, used to as-

sess the effect of a treatment on the palliation of symptoms and the minimization

of toxicity from the perspective of the patients. In CO.17, QoL is assessed us-

ing the European Organization for Research and Treatment of Cancer (EORTC)

Quality of Life Questionnaire (QLQ)-C30. The prespecified primary objectives of

the QoL analysis were to compare two treatment groups in terms of the change

scores of the Physical Function Scale (PFS) and Global Health Status (GHS), two

important subscales of EORTC QlQ-C30, from baselines at eight and 16 weeks

after the randomization. In our analyses, we are interested in identifying a subset
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Table 1. The empirical size and power (in percentage) when testing H0 : λ0 = 0 at the
5% level under the identifiable case. Here, θ(1) = (0, 1, 3, 0)T and θ(2) = (2, 1.5, 1, 0)T

denote the size, and θ(3) = (0, 1, 3, 2)T and θ(4) = (2, 1.5, 1, 2)T denote the power.

F
(1)
ε F

(2)
ε F

(3)
ε

n θ0 c0 MRB PF MP MRB PF MP MRB PF MP

100 θ(1) 0.3 6.4 4.7 34.8 7.1 6.4 30.6 7.1 7.1 32.4

0.5 7.1 6.1 31.3 6.2 5.6 28.1 7.7 6.4 35.8

θ(2) 0.3 5.2 21.2 30.9 6.5 19.3 36.3 6.0 17.5 30.7

0.5 6.7 16.6 33.9 6.7 17.1 33.1 7.4 14.7 33.5

300 θ(1) 0.3 5.1 4.5 34.5 5.6 5.1 31.6 5.2 5.6 35.8

0.5 5.4 4.7 34.6 5.9 5.5 29.9 4.9 5.6 25.3

θ(2) 0.3 5.3 10.0 37.0 5.7 8.5 36.4 5.1 10.6 38.9

0.5 5.2 10.4 31.9 4.3 8.2 37.3 5.2 9.1 37.2

100 θ(3) 0.3 39.4 66.3 71.5 43.1 62.2 68.9 66.7 64.2 82.9

0.5 58.7 69.7 85.5 64.1 68.7 79.6 60.4 69.6 78.5

θ(4) 0.3 53.2 66.7 80.9 59.1 62.9 82.1 51.1 59.4 79.3

0.5 59.6 69.1 89.9 63.1 67.3 84.3 60.4 67.4 83.6

300 θ(3) 0.3 94.3 96.2 99.0 94.1 98.1 98.8 96.5 96.3 99.5

0.5 97.8 98.6 99.5 96.4 98.9 99.7 97.9 99.0 99.8

θ(4) 0.3 93.2 95.8 98.9 92.3 96.3 98.5 95.4 96.7 99.1

0.5 97.1 99.1 99.8 97.6 98.7 99.6 97.2 98.8 99.7

Table 2. The empirical size and power (in percentage) when testing H0 : λ0 = 0 at the
5% level under the non-identifiable case. Here, θ(5) = (0, 1, 0, 0)T and θ(6) = (2, 1.5, 0, 0)T

denote the size, and θ(7) = (0, 1, 0, 2)T and θ(8) = (2, 1.5, 0, 2)T denote the power.

F
(1)
ε F

(2)
ε F

(3)
ε

n θ0 c0 MRB PF MP MRB PF MP MRB PF MP

300 θ(5) 0.3 5.7 31.8 37.5 5.5 29.6 39.7 5.6 32.1 36.4

0.5 5.7 31.1 38.0 5.4 29.4 39.2 5.4 29.4 38.1

θ(6) 0.3 5.5 31.8 37.7 5.8 31.2 37.6 6.0 29.9 39.0

0.5 6.1 29.6 39.3 5.2 30.3 37.4 6.1 29.1 37.7

θ(7) 0.3 93.6 96.6 99.4 93.3 97.0 99.5 92.9 97.4 99.5

0.5 95.8 99.1 99.6 97.3 99.0 99.7 97.0 98.8 99.9

θ(8) 0.3 95.1 96.7 99.5 94.2 97.1 99.1 93.9 94.9 99.5

0.5 97.1 98.8 99.9 95.9 98.9 99.7 97.0 98.7 99.6

of patients who may have a better QoL, as measured by the change scores in the

PFS and GHS, based on biomarkers other than the Kras gene studied previously.

In addition to the mRNA expression of the gene epiregulin (EREG), as studied

in (Jonker et al. (2014)) with respect to a survival outcome, the levels of lactate

dehydrogenase (LDH) and alkaline phosphatase (ALKPH) in the blood are also
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considered as potential predictive biomarkers. To conserve space, we present only

the results based on the PFS at 16 weeks after the randomization.

We first apply the minimum p-value method to estimate the cutpoints for

each of the candidate biomarkers, which are 6.07 for EREG, 229 for LDH, and

108 for ALKPH. Table 3 presents the mean of the changes in the PFS scores

from the baseline at 16 weeks after the randomization for the patients treated

by cetuximab plus BSC and BSC alone, as well as the difference between the

two treatment groups and the associated p-value from the Wilcoxon test in the

two subgroups defined by the estimated cutpoints for each biomarker. The table

shows that patients with a higher expression level of Epiregulin (smaller EREG

value) and treated by cetuximab plus BSC had a highly significant better physical

function (PF) at the 0.05 level compared with those who were treated by BSC

only. However, the PF was comparable between the two treatment groups for

patients with a lower expression of Epiregulin (greater value of EREG). The p-

value for the interaction between the treatment and the EREG expression status

from the minimum p-value method is 0.024, indicating that cetuximab should

not be offered to patients with a lower Epiregulin expression level. The p-value

of the interaction test from the multiplier residual bootstrap method, shown in

Table 4, is 0.219, which suggests that the differential treatment effects in the two

EREG groups may be overstated by the unadjusted minimum p-value method,

and there is insufficient evidence to support the conclusion that the treatment

effects in terms of the change in the PF are different between patients with lower

and higher EREG levels after the bootstrap adjustment is applied.

Similar conclusions can be drawn from the results of the analyses for LDH.

The test of the interaction between the treatment and the ALKPH level is not sta-

tistically significant when using either the unadjusted minimum p-values method

or the multiplier residual bootstrap method, but the p-value from the latter

method is more than four times that of the former method.

7. Conclusion

In this work, we consider the problem of testing the significance of the inter-

action term in a linear model with two binary covariates: a treatment variable U

and a group indicator I(X ≤ c0), where X is a continuous biomarker and c0 is

an unknown cutpoint. We propose bootstrap methods to obtain the valid p-value

for the minimum p-value test statistic under both random and fixed designs. The

extension to a linear model with additional covariates is straightforward, as long

as they are independent of X and U . We choose to focus on the simple model
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Table 3. Subgroup analysis of EREG, LDH, and ALKPH based on c̃0 with respect to
the change score in the PF scale at 16 weeks.

Cetuximab+BSC BSC

Factor Value n Mean n Mean Difference p-value

EREG ≤ 6.07 47 -0.35 28 -15.53 15.18 0.002

> 6.07 39 -9.74 24 -10.06 0.32 0.947

LDH ≤ 229 61 -3.55 40 -14.92 11.36 0.003

> 229 21 -11.74 9 -11.11 -0.63 0.941

ALKPH ≤ 108 44 -4.69 28 -17.73 13.04 0.007

> 108 42 -4.21 22 -7.88 3.67 0.480

Table 4. The estimated cutpoint c̃0 and corresponding p-values from the multiplier
residual bootstrap and unadjusted minimum p-value method based on the change score
in the PF scale at 16 weeks.

c̃0 pn,mp p∗n,mrb
EREG 6.07 0.024 0.219

LDH 229 0.080 0.474

ALKPH 108 0.164 0.724

in (2.1) for clarity of presentation, and also because it demonstrates two salient

features of the minimum p-value method and its adjustment for linear models.

First, without assuming the cutpoint is identifiable, the proposed adjustment

leads to a valid size control in both cases. Second, under the fixed design, the

test statistic is not bounded in probability under the null.

In future research, we will study predictive classification problems based on

other types of clinical outcomes, such as binary and time-to-event outcomes.

Nonlinear models, such as generalized linear models for binary outcomes and

Cox proportional hazards models for time-to-event outcomes, will be required to

formalize the problems. From a preliminary investigation, for these nonlinear

models, the maximally selected Wald test statistic diverges at a rate
√
n, even

under the random design. Thus, it is not clear how to obtain its critical values

or whether the associated test is power consistent against a fixed alternative.

One possible remedy is to use the profile maximum likelihood estimator ĉ0 for

the cutpoint, and plug it into the usual score test statistic. With an appropriate

bootstrap calibration, the resulting test has a valid size control, regardless of the

identifiability of the cutpoint.
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Supplementary Material

The proofs and additional simulation results are presented in the online Sup-

plementary Material.
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