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Abstract: We say that the signs of association measures among three variables

{X,Y, Z} are transitive if a positive association measure between X and Y and a

positive association measure between Y and Z imply a positive association measure

between X and Z. We introduce four association measures with different stringen-

cies, and discuss conditions for the transitivity of the signs of these association

measures. When the variables follow exponential family distributions, the condi-

tions become simpler and more interpretable. Applying our results to two data sets

from an observational study and a randomized experiment, we demonstrate that

the results can help us draw conclusions about the signs of the association measures

between X and Z based only on separate studies about {X,Y } and {Y, Z}.

Key words and phrases: Association measure, causal inference, Prentice’s criterion,

surrogate endpoint, Yule–Simpson Paradox.

1. Introduction

Reasoning by transitivity is commonly, at least implicitly, applied to statisti-

cal results from different studies. For association measures, however, transitivity

is not guaranteed without conditions. If an epidemiologic study found that irreg-

ular heart beat had a positive association with sudden death, and a clinical trial

found that a certain drug significantly corrected irregular heart beat, might one

conclude that the drug can reduce the rate of sudden death? What conditions

would one need to reason from the known statistical results? Suppose, in a meta-

analysis, some associations between variable pairs are obtained from published

papers, but the original data are not available. What conditions are required to

qualitatively evaluate an association between another pair of variables based on

these known associations? There are a few statistical approaches for such qual-

itative reasonings. Vanderweele and Robins (2010) propose the signed directed

acyclic graph (DAG) to qualitatively reason the sign of association or causal mea-

sure between two variables by the signs of directed edges on the paths between the

two variables. Their approach requires a whole DAG over all variables and the

signs of all edges on each path between the two variables. Vanderweele and Tan

(2012) propose an approach for propagation of bounds within the DAG frame-

work, which requires a known DAG with edge-specific bounds. Rubin (2004)

http://dx.doi.org/10.5705/ss.2013.095
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discusses how to combine the results from two randomized trials of anthrax vac-

cine on human volunteers and macaques, where the outcome of interest, survival

when challenged with lethal doses of anthrax, is available only from macaques.

Pearl and Bareinboim (2011) discuss the transportability of causal effects across

different studies based on the DAG framework. Prentice (1989) proposes a cri-

terion for surrogate endpoints in clinical trials so that a null effect of treatment

on a surrogate implies a null effect of treatment on the endpoint. Chen, Geng,

and Jia (2007) and Ju and Geng (2010) discuss the transitivity of causal effects

between variable pairs of treatment, surrogate and endpoint.

We focus on the transitivity of the signs of association measures. We intro-

duce four association measures with different stringency levels: density, cumula-

tive distribution, expectation, and correlation levels (Cox and Wermuth (2003);

Whittaker (1990)). We say that the signs of association measures are transitive

if a non-negative (or positive) association between X and Y and a non-negative

(or positive) association between Y and Z imply a non-negative (or positive)

association between X and Z. We discuss the transitivity of the signs of asso-

ciation measures, and present conditions and assumptions (or prior knowledge)

required for the transitivity. We show that a more stringent association measure

has stronger transitivity. We focus on the transitivity of the signs of associa-

tion measures among three variables, and these results can be easily extended

to cases with more variables. We discuss conditions for the transitivity of these

association measures separately for two cases, with and without the conditional

independence of X and Z given Y . Conditional independence is one condition

of Prentice’s criterion for evaluating a surrogate Y for the endpoint Z (Prentice

(1989)). The conditions for transitivity proposed here allow for qualitative as-

sessment of the association between two variables X and Z, by the data sampled

from the marginal distributions of (X,Y ) and (Y, Z) or from the conditional

distribution of (X,Z) given Y .

The remainder of the paper is organized as follows. Section 2 presents the

definitions of four association measures and discusses their stringencies. In Sec-

tion 3, we consider the transitivity of the signs of these association measures

under the conditional independence of X and Z given Y , and give results for

an exponential family distribution. We generalize the results about transitivity

without conditional independence in Section 4. We apply our theoretical results

to two data sets in Section 5 and conclude with a discussion in Section 6. Proofs

of the theorems are in the web-based supporting material.

2. Association Measures and Their Stringencies

We introduce four commonly-used association measures and show their rel-

ative stringencies for depicting associations.



TRANSITIVITY OF ASSOCIATION SIGNS 1067

Definition 1. Association measures between X and Y are

(1) density association: ∂2 ln f(x, y)/∂x∂y (Whittaker (1990));

(2) distribution association: ∂F (y|x)/∂x (Cox and Wermuth (2003));

(3) expectation association: ∂E(Y |x)/∂x;
(4) correlation coefficient: r(X,Y ).

For these measures, X and Y may be continuous, discrete or mixed random
variables. For a discrete variable, one can replace the partial derivative by the
difference between two adjacent levels. For instance, when X and Y are both
binary variables, the density association is the log odds ratio

ln
P (X = 1, Y = 1)P (X = 0, Y = 0)

P (X = 1, Y = 0)P (X = 0, Y = 1)
,

and the distribution association and expectation association are both equal to
the risk difference P (Y = 1|X = 1) − P (Y = 1|X = 0). If we are concerned
only about the signs of the association measures, a non-negative expectation
association implies that the risk difference is greater than or equal to zero.

The density association ∂2 ln f(x, y)/∂x∂y depicts a local dependence be-
tween X and Y around the point (x, y). An important property is that

∂2 ln f(x, y)

∂x∂y
=

∂2 ln f(x|y)
∂x∂y

=
∂2 ln f(y|x)

∂x∂y
,

which can be identified by sampling conditionally on X or Y , such as a prospec-
tive study (conditionally on X) or a retrospective study (conditionally on Y ).
The distribution association ∂F (y|x)/∂x depicts the dependence of a global
Y ≤ y on a local X = x, and ∂F (y|x)/∂x ≤ 0 means that Y given X is
stochastically increasing in X (Cox and Wermuth (2003)). The expectation
association ∂E(Y |x)/∂x depicts the overall dependence of Y on X, and cor-
relation coefficient r(X,Y ) depicts a linear association. We say that X and Y
are non-negatively associated with respect to a measure, say ∂2 ln f(x, y)/∂x∂y,
if ∂2 ln f(x, y)/∂x∂y ≥ 0 for all x and y, and we say that X and Y are positively
associated with respect to a measure if further strict inequality holds for some
x or y. Let A B denote independence between A and B, and let A B|C
denote conditional independence of A and B given C. Generally, a non-negative
association measure at a more stringent level implies a non-negative association
measure at a less stringent level, as summarized in the following properties.

Property 1. The implication relationship (Xie, Ma, and Geng (2008)) holds:

∂2 ln f(x, y)

∂x∂y
≥ 0,∀ x, y,=⇒ ∂F (y|x)

∂x
≤ 0, ∀ x, y,=⇒ ∂E(Y |x)

∂x
≥ 0, ∀ x,

=⇒ r(X,Y ) ≥ 0;
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Property 2. The equivalence relationship among null association measures holds:

∂2 ln f(x, y)

∂x∂y
= 0, ∀ x, y,⇐⇒ ∂F (y|x)

∂x
= 0,∀ x, y,⇐⇒ X Y ;

Property 3. For a bivariate normal vector (X,Y ), the equivalence relationship

holds:

∂2 ln f(x, y)

∂x∂y
≥ 0, ∀ x, y,⇐⇒ ∂F (y|x)

∂x
≤ 0, ∀ x, y,⇐⇒ ∂E(Y |x)

∂x
≥ 0, ∀ x,

⇐⇒ r(X,Y ) ≥ 0;

Property 4. For a binary Y , the equivalence relationship holds:

∂2 ln f(x, y)

∂x∂y
≥ 0, ∀ x, y,⇐⇒ ∂F (y|x)

∂x
≤ 0,∀ x, y,⇐⇒ ∂E(Y |x)

∂x
≥ 0, ∀ x;

Property 5. For a binary X, the equivalence relationship holds:

∂E(Y |x)
∂x

≥ 0, ∀ x,⇐⇒ r(X,Y ) ≥ 0.

These relationships above also hold if “≥” and “≤” are replaced by “>” and

“<” or “=” and “=”.

By the implication relationship in Property 1, density association is the most

stringent, and correlation coefficient is the least stringent. For the case of two

normal variables or two binary variables, these association measures have the

same sign (non-negative, null, or positive).

3. Transitivity of Association Signs with Conditional Independence

We consider three variables {X,Y, Z}, and discuss the conditions for the

transitivity of association signs among them. Prentice (1989) uses conditional

independence as a criterion for validating a surrogate Y , when evaluating the

effect of treatment X on the endpoint Z. We call X Z|Y the conditional inde-

pendence assumption, where Y breaks the dependence between X and Z. Note

that we can have both X Z|Y and X Z even when both pairs (Y,Z) and

(X,Y ) are associated, and Table 1 is an example of this given in Birch (1963).

This is called a violation of weak transitivity or of singleton transitivity (Lněnička

and Matúš (2007)), in which case we may not infer the transitivity of associations

only under the conditional independence assumption. This may happen because

the associations within different level sets have different signs. In this section, we

discuss the transitivity of the association signs under the conditional indepen-

dence assumption, and we discuss the case without the conditional independence

assumption in Section 4.



TRANSITIVITY OF ASSOCIATION SIGNS 1069

Table 1. Example of violation of weak transitivity.

Y = 0 Y = 1 Y = 2 all Y
Z = 1 Z = 0 Z = 1 Z = 0 Z = 1 Z = 0 Z = 1 Z = 0

X = 1 4 2 2 1 1 4 7 7
X = 0 2 1 4 2 1 4 7 7
all X 6 3 6 3 2 8 14 14

3.1. Transitivity without distributional assumptions

We show that, under the conditional independence assumption, the density
and distribution associations are transitive, but the expectation association and
correlation are not transitive without additional conditions or assistance from
the more stringent measures.

Theorem 1 (Density association). If X Z|Y ,

(1)
∂2 ln f(x, y)

∂x∂y
≥ 0, ∀ x, y, and (2)

∂2 ln f(y, z)

∂y∂z
≥ 0, ∀ y, z,

then ∂2 ln f(x, z)/∂x∂z ≥ 0, ∀ x, z.

We can thus conclude a non-negative (positive) density association between
X and Z from the prior knowledge of a non-negative (positive) density association
between X and Y and a non-negative (positive) density association between Y
and Z. Notice that the transitivity of the signs is also applicable to non-positive
association measures if we define X ′ = −X or Y ′ = −Y .

Even if the conditions in Theorem 1 are satisfied, we may have ∂2 ln f(x, z)
/∂x∂z = 0 for all x and z, i.e., X Z. If strict inequalities hold in (1) and (2) in
Theorem 1 for any (x, y, z) in a set of nonzero measure, then ∂2 ln f(x, z)/∂x∂z >
0 in this set, i.e., the density association measure between X and Z is positive.
If all the variables are discrete, then we have strict inequality unless X Y or
Y Z.

Theorem 2 (Distribution association). If X Z|Y ,

(1)
∂F (y|x)

∂x
≤ 0, ∀ x, y, and (2)

∂F (z|y)
∂y

≤ 0, ∀ y, z,

then ∂F (z|x)/∂x ≤ 0, ∀ x, z.

The expectation associations are not themselves transitive, they require as-
sistance from more stringent measures.

Theorem 3 (Expectation association). If X Z|Y ,

(1)
∂F (y|x)

∂x
≤ 0, ∀ x, y, and (2)

∂E(Z|y)
∂y

≥ 0, ∀ y,

then ∂E(Z|x)/∂x ≥ 0, ∀ x.



1070 ZHICHAO JIANG, PENG DING AND ZHI GENG

Table 2. Transitivity of association signs under conditional independence.

Association Association between Y and Z

between X and Y ∂2 ln f(y,z)
∂y∂z ≥ 0, ∀ y, z ⇒ ∂F (z|y)

∂y ≤ 0, ∀ y, z ⇒ ∂E(Z|y)
∂y ≥ 0, ∀ y

∂2 ln f(x,y)
∂x∂y ≥ 0, ∀ x, y ∂2 ln f(x,z)

∂x∂z ≥ 0, ∀ x, z ∂F (z|x)
∂x ≤ 0, ∀ x, z ∂E(Z|x)

∂x ≥ 0,∀ x

⇓
∂F (y|x)

∂x ≤ 0,∀ x, y ∂F (z|x)
∂x ≤ 0, ∀ x, z ∂F (z|x)

∂x ≤ 0, ∀ x, z ∂E(Z|x)
∂x ≥ 0,∀ x

⇓
∂E(Y |x)

∂x ≥ 0, ∀ x Under E(Z|y) = α+ βy, ∂E(Z|x)
∂x = β ∂E(Y |x)

∂x ≥ 0, ∀ x.

For Theorems 2 and 3, if there exists a set of nonzero measure in which strict

inequalities hold in (1) and (2), then the corresponding association measures

between X and Z are positive.

If the conditions in Theorems 1 to 3 are conditional on another variable

vector V , then we can obtain the association signs of X and Z conditional on V .

This is useful for models with a covariate vector V .

In Theorems 1 to 3, if we have either X Y or Y Z, we obtain X Z.

Condition (1) of Theorem 3 is a distribution association but not an expectation

association of Y on X. The expectation E(Y |x) cannot replace F (y|x) in (1) of

Theorem 3; a counterexample is given in the web-based online material.

For a linear model of Z given Y , the expectation association measures are

transitive, and the transitivity can be represented by an equation of expectation

associations as follows.

Corollary 1. Under the assumption X Z|Y , if E(Z|y) = α + βy, then

∂E(Z|x)/∂x = β∂E(Y |x)/∂x.

We summarize the transitivity of association signs in Table 2. We exhibit the

transitivity of non-negative association measures between X and Y and between

Y and Z to a non-negative association measure between X and Z. Here we see

that a non-negative association measure between X and Z requires the same or

more stringent non-negative association measures between X and Y and between

Y and Z. Table 2 is not symmetric, and the expectation association of Y on X

does not have any implication for the sign of an association measure between X

and Z, with an exception when Z follows a linear model.

A non-negative expectation association of Y on X and even the most strin-

gent non-negative density association between Y and Z do not imply a non-

negative expectation association of Z on X. Similarly, a non-negative correla-

tion between X and Y (Y and Z) and another non-negative association measure
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between Y and Z (X and Y ) do not imply a non-negative correlation between

X and Z. We give counterexamples in the web-based online material.

3.2. Transitivity in the exponential family

The sufficient conditions for non-negative and positive association measures

between X and Z, may not be necessary. We show the equivalence relationship

between the sign of association measure between X and Y and that between X

and Z, under the assumptions that Y follows an exponential family distribution

and the association between Y and Z is non-negative.

Definition 2. We say that Y given X follows an exponential family distribution

if its density (or its probability mass function for a discrete Y ) has the form

f(y|x; θ, ϕ) = exp

{
yθx − b(θx)

a(ϕ)
+ c(y, ϕ)

}
,

where θx is a function of x and a(ϕ) > 0.

Theorem 4. If Y given X follows an exponential family distribution, then

∂2 ln f(x, y)

∂x∂y
≥ 0, ∀ x, y ⇐⇒ ∂F (y|x)

∂x
≤ 0, ∀ x, y ⇐⇒ ∂E(Y |x)

∂x
≥ 0, ∀ x.

Equivalence relationship also holds if (“≥”, “≤”) in the inequalities are changed

to (“>”, “<”) or (“=”, “=”).

Suppose below that we have prior knowledge of the sign of association be-

tween Y and Z, and we discuss the equivalence relationships between the signs

of associations between X and Y and between X and Z.

Corollary 2. Suppose X Z|Y and that Y given X follows an exponential

family distribution.

(1) If ∂E(Z|y)/∂y ≥ 0, ∀ y, and strict inequality holds for a nonzero measure set,

then
∂E(Y |x)

∂x
≥ 0, ∀ x ⇐⇒ ∂E(Z|x)

∂x
≥ 0, ∀ x.

(2) If ∂F (z|y)/∂y ≤ 0,∀ y, z, and strict inequality holds for a nonzero measure

set, then
∂F (y|x)

∂x
≤ 0, ∀ x, y ⇐⇒ ∂F (z|x)

∂x
≤ 0, ∀ x, z.

(3) If ∂2 ln f(y, z)/∂y∂z ≥ 0, ∀ y, z, and strict inequality holds for a nonzero

measure set, then

∂2 ln f(x, y)

∂x∂y
≥ 0, ∀ x, y ⇐⇒ ∂2 ln f(x, z)

∂x∂z
≥ 0, ∀ x, z.
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Figure 1. Two DAGs for (X,Y, Z).

Equivalence relationships also hold if the inequalities (“≥”, “≤”) above are

changed to strict inequalities (“>”, “<”) or equalities (“=”, “=”).
Our results can be extended to transitivity of causal measures. If X is

randomized or is conditionally independent of all potential outcomes given some

covariates, then the associations between X and Y and between X and Z are also
the causal effects of X on Y and X on Z, respectively. If we have prior knowledge
that the conditional independence assumption holds and the association between

Y and Z is non-negative before then, according to Corollary 2, the sign of the
treatment effect of X on Z is the same as the sign of the treatment effect of X

on Y .

4. Transitivity of Association Signs without Conditional Independence

In many applications, the conditional independence assumption X Z|Y
does not hold. In this section, we remove the conditional independence assump-

tion, and discuss conditions for the transitivity of these association signs.

4.1. Motivating examples

We consider two cases: in the first case, as shown in Figure 1(a), Y is a

confounder between X and Z; in the second case, as shown in Figure 1(b), X
has a direct path to Z and an indirect path to Z through an intermediate variable
Y .

Figure 1(a) can be tied to the Yule–Simpson Paradox, since we can evaluate
whether the conditional association sign is the same as the marginal association
sign between X and Z. Appleton, French, and Vanderpump (1996) give an

example of the Yule–Simpson Paradox with a condensed form shown in Table 3.
As seen there, the association between X and Z is positive conditional on Y but

negative marginally, thus the Yule–Simpson Paradox occurs.
With Figure 1(b), we can draw conclusions about the effect of X on Z based

on some assumptions about the pairs (X,Y ) and (Y, Z). As shown in Table 4,

using results in Section 4 which generalize the results in Section 3 to allow a
directed arrow from X to Z, we have that E(Z|Y = 1) − E(Z|Y = 0) = 0.08
and E(Y |X = 1)−E(Y |X = 0) = 0.2, but E(Z|X = 1)−E(Z|X = 0) = −0.08.

Without the conditional independence assumption, even if the pairs (X,Y ) and
(Y,Z) are both positively associated, X and Z may be negatively associated.
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Table 3. Numbers of women smokers and nonsmokers in different age groups.

Y : age group 18-34 35-54 55-64 65+ all ages
Z/X: smoker yes no yes no yes no yes no yes no

dead 5 6 41 19 51 40 42 105 139 230
alive 174 213 198 180 64 81 7 28 443 502

odds ratio 1.02 1.96 1.61 1.02 0.68

Table 4. Distribution P (x, y, z) for violation of transitivity.

Y = 1 Y = 0
X = 1 X = 0 X = 1 X = 0

Z = 1 0.15 0.12 0.08 0.15
Z = 0 0.15 0.08 0.12 0.15

4.2. Transitivity without distributional assumptions

Here we give conditions for the transitivity of density, distribution, and ex-

pectation association signs.

Theorem 5 (Density association). Suppose ∂2 ln f(x, z|y)/∂x∂z≥0, ∀ x, y, z. If

(1)
∂2 ln f(x, y)

∂x∂y
≥ 0, ∀ x, y,

(2)
∂2 ln f(y, z|x)

∂y∂z
≥ 0, ∀ x, y, z, and

(3)
∂2 ln f(z|x, y)

∂x∂y
≥ 0, ∀ x, y, z,

then ∂2 ln f(x, z)/∂x∂z ≥ 0, ∀ x, z.

If we have prior knowledge that the association between X and Z given Y is

non-positive, we can replace Z by Z ′ = −Z in the assumptions. In Theorem 5,

(1) requires a nonnegative density association between X and Y , and (2) requires

a non-negative density association between Y and Z conditional on X. However,

(3) is quite different and can be interpreted as a non-negative interaction of

(X,Y ) on Z.

Theorem 6 (Distribution association). Suppose ∂F (z|y, x)/∂x ≤ 0,∀ x, y, z. If

(1)
∂F (y|x)

∂x
≤ 0, ∀ x, y, and (2)

∂F (z|y, x)
∂y

≤ 0, ∀ x, y, z,

then ∂F (z|x)/∂x ≤ 0, ∀ x, z.
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Theorem 7 (Expectation association). Suppose ∂E(Z|y, x)/∂x ≥ 0, ∀ x, y. If

(1)
∂F (y|x)

∂x
≤ 0, ∀ x, y, and (2)

∂E(Z|y, x)
∂y

≥ 0, ∀ x, y,

then ∂E(Z|x)/∂x ≥ 0, ∀ x.

Comparing (2) in Theorems 5 to 7 with those in Theorems 1 to 3, we see

that without the conditional independence assumption, the association between

Y and Z is required to be conditional on X.

Corollary 3. The conditions in Theorem 5 to 7 can be evaluated by f(x, z|y).

Thus we can assess the sign of the marginal association measure between

X and Z by the conditional distribution f(z, x|y), but we do not require the

marginal distribution of Y .

By relaxing the conditional independence assumption to the assumption of

non-negative association measure between X and Z given Y , the marginal asso-

ciations between Y and Z are replaced by the conditional associations given X.

This condition can be weakened if the models of Z and Y are linear.

Corollary 4. Suppose E(Z|x, y) = β0 + β1x+ β2y, E(Y |x) = β3 + β4x, β1 ≥ 0,

and β4 ≥ 0. If β2 ≥ 0 or ∂E(Z|y)/∂y ≥ 0,∀ y, then ∂E(Z|x)/∂x = β1+β2β4 ≥ 0

for all x.

Here if β2 ≥ 0, Corollary 4 is in Cochran (1938). If we have only the non-

negative association between Y and Z marginally, we can still conclude that X

and Z are non-negatively associated based on the linear models in Corollary 4.

Thus, we do not need to observe X to judge (2) in Corollary 4. Provided X

and Z are positively associated conditional on Y , if we have two populations,

one with (X,Y ) observed and the other with (Y, Z) observed, we can draw the

conclusion about the association sign between X and Z.

When there is a randomized intervention on Y , we have X Y , and Theo-

rems 5 and 7 can be simplified.

Corollary 5. Suppose X Y .

(1) If X or Z is binary, then ∂2 ln f(x, z|y)/∂x∂z≥0, ∀ x, y, z implies ∂2 ln f(x, z)

/∂x∂z ≥ 0,∀ x, z;

(2) If ∂F (z|y, x)/∂x ≤ 0, ∀ x, y, then ∂F (z|x)/∂x ≤ 0, ∀ x;

(3) If ∂E(Z|y, x)/∂x ≤ 0, ∀ x, y, then ∂E(Z|x)/∂x ≤ 0, ∀ x.

Theorems 5 to 7 can also be useful for cases with more than three variables.

In addition, we can combine X and V into a vector that plays the same role as

the original X.
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4.3. Transitivity in the exponential family

Theorem 8. Assume that Z given X follows an exponential family distribution,

and that ∂E(Z|y, x)/∂x ≥ 0, ∀ x, y. If

(1)
∂F (y|x)

∂x
≤ 0, ∀ x, y, and (2)

∂E(Z|y, x)
∂y

≥ 0, ∀ x, y,

then ∂2 ln f(x, z)/∂x∂z ≥ 0, ∀ x, z.

Due to the symmetry of the density association measure, we have:

Corollary 6. If X or Z is binary, (3) in Theorem 5 is redundant.

In many randomized experiments, X is binary, and we need not evaluate (3)

in Theorem 5.

5. Illustrations

5.1. An observational study: the national longitudinal surveys

The National Longitudinal Surveys are a set of surveys designed to gather

information at multiple time points on labor market activities and other signif-

icant life events of several groups of men and women (Toomet and Henningsen

(2008)). Let X = 1 if a subject graduated from college, and X = 0 otherwise.

Let Y = 1 if a subject belonged to a union, and Y = 0 otherwise. Let Z be the

log wage.

Suppose data are collected on the union group and the non-union group.

From the data set, we have mean(Z|X = 1, Y = 1)−mean(Z|X = 0, Y = 1) =

0.4351 (p < 0.001) and mean(Z|X = 1, Y = 0)−mean(Z|X = 0, Y = 0) = 0.3328

(p < 0.001). Thus the college indicator X has a positive expectation association

on the log wage for both groups. Since there is no information on the distribution

of Y from the conditional sampling given Y , we cannot determine whether the

college indicator X also has a positive association on the log wage Z marginally.

To do so, we check the conditions in Theorem 7 as follows. For (1), we have the

difference of observed frequencies: P̂ (X = 1|Y = 1)− P̂ (X = 1|Y = 0) = 0.0626

(p < 0.001), thus we have ∂F (y|x)/x ≤ 0 since X and Y are binary; for (2), we

have mean(Z|X = 1, Y = 1)−mean(Z|X = 1, Y = 0) = 0.1196 (p < 0.001) and

mean(Z|X = 0, Y = 1)−mean(Z|X = 0, Y = 0) = 0.2218 (p < 0.001). Thus

we can conclude that there is a positive expectation association of the college

indicator X on the log wage Z in the population.

Using the data set containing the joint distribution of (X,Y, Z), we obtain

mean(Z|X = 1)−mean(Z|X = 0) = 0.4211, which confirms our conclusion.

If we would like to assume that Z follows an exponential family distribution
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conditional on X, then we can deduce from Corollary 2 that the density and

distribution associations between X and Z are positive.

5.2. A randomized experiment: the job search intervention study

The Job Search Intervention Study is a randomized field experiment that

investigates the efficacy of a job training intervention on unemployed workers

(Vinokur and Schul (1997); Tingley et al. (2012)). The program is designed

not only to increase reemployment among the unemployed, but also to enhance

the mental health of the job seekers. In the JOBS II field experiment, 1,801

unemployed workers are randomly assigned to a treatment group (X = 1) and

a control group (X = 0). Those in the treatment group participate in job-

skills workshops; in the workshops, respondents learned job-searching skills and

coping strategies for dealing with setbacks in the job-search process. Those in

the control group receive a booklet describing job-searching tips. In the follow-

up interviews, two key outcome variables are measured: a continuous variable

Y denoting the job-search self-efficacy, and a continuous variable Z denoting

depressive symptoms based on the Hopkins Symptom Checklist.

We randomly split the data set into two subsets with the same number of

observations, and suppose that only X and Y were observed in the first subset

and only Y and Z were observed in the second subset. The goal is to qualitatively

evaluate the effect of the treatment X on the depressive symptoms Z. We assume

the linear regression model: E(Z ′|x, y) = β0 + β1x + β2y and β1 > 0, where

Z ′ = −Z. This is confirmed by the full data set (β̂1 = 0.0408 with p-value=0.36).

For (1) of Corollary 4, the linear model E(Y |x) = β3 + β4x is saturated

because X is binary, and we obtaine β̂4 = 0.1416 with p-value=0.023 from the

first subset containing X and Y .

To check (2) of Corollary 4, we use both parametric and nonparametric ap-

proaches. First, we use the linear model E(Z ′|y) = β5 + β6y and obtain the

estimate of ∂E(Z ′|y)/∂y = β6: β̂6 = 0.2882 (p-value <0.001) from the second

data subset of observed variables Y and Z ′. Next we use local polynomial regres-

sion to get the nonparametric estimations of E(Z ′|y) and ∂E(Z ′|y)/∂y, shown
in Figure 2. The scatterplot of Y and Z ′ is also shown on the left side of Figure

2. We can see that ∂E(Z ′|y)/∂y ≥ 0 for any y. Both approaches confirm (2) of

Corollary 4, and we conclude that X has a non-negative association with Z ′.

From the full data set, we find that mean(Z|X = 1)− mean(Z|X = 0) =

0.06335 (p-value =0.17), thus confirming our conclusion. Although the p-value

for β1 is not significant, this example is useful for illustrating Corollary 4, be-

cause Corollary 4 is about only the signs of parameters and does not require the

significance of the parameters.
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Figure 2. The curves of E(Z ′|y) and ∂E(Z ′|y)/∂y estimated by the local
polynomial regression with the Gaussian kernel and bandwidth 0.4.

6. Discussion and Extensions

We have discussed the transitivity of the signs of four association measures

with and without the conditional independence assumption. These four have

different stringencies, and more stringent association measures have stronger

transitivity. The signs or directions of stringent association measures are more

easily kept for transitivity under the conditional independence assumption. We

proposed conditions for the transitivity of association measures, and showed that

these conditions are necessary and sufficient if the intermediate variable Y is from

an exponential family given X. The conditions can be checked by data based on

marginal distributions or conditional distributions from different studies.

The problem of transportability (Frangakis and Rubin (2002); Rubin (2004);

Pearl and Bareinboim (2011)) is related to the transitivity discussed in this pa-

per. Transportability refers to two populations sharing some features in common,

but transitivity refers to variables in a single population which are not observed

jointly. If we treat these variables as from different populations, then transitiv-

ity can be viewed as transportability. Pearl and Bareinboim’s approaches for

transportability are for quantitative inference, and they require more restrictive

conditions for the similarity between different populations. These conditions may

not be satisfied in practice.

As pointed out by a referee, several applications and generalizations beyond

our paper are possible. The density association is used mostly for binary vari-

ables, and, among continuous distribution, it has been defined explicitly only for

the multivariate normal distribution. Therefore, it may be of interest to find

other continuous distributions which have nice properties for the density associ-

ation. In this paper, the results do not require a particular DAG, and we discuss
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two DAGs related to our results. There are four different types of decompos-

able chain graphs discussed by Drton (2009), and it is worthwhile to discuss

applications to these chain graphs. It may also be interesting to simplify these

conditions for transitivity using the distributional results of Roverato (2013) and

the conditions for traceability of paths in regression graphs in Wermuth (2012).
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