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Abstract: Structural mean models were developed to estimate average treatment

effects in function of received exposures and baseline covariates. Recent extensions

allow treatment effects to vary additionally with subjects’ potential response to

a treatment-free regime. This makes it possible to investigate in clinical trials,

for instance, how well drug action is predicted by patients’ natural health status

in the absence of treatment. Accommodating this is challenging, however, because

treatment activity and potential treatment-free response are (usually) unobservable

for subjects on treatment.

In this paper, we model and estimate the effect of treatment-free outcomes on

treatment activity in randomized controlled clinical trials with measured compli-

ance. Our purpose is (a) to enhance modelling flexibility over existing approaches;

and (b) to investigate to what extent the identification of such effects relies on

untestable modelling assumptions. We develop new classes of estimators for this

effect that make better use of the information in the data and achieve greater ro-

bustness to model misspecification. The new methods are evaluated by large sample

approximation and a simulation study.
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1. Introduction

The quest for explanations of causal effects has continued through the cen-
turies with ever more sophisticated tools. The randomized experiment, a mile-
stone, was designed to study the impact of interventions when outcomes vary
naturally between units. Its result is often summarized as an average intention-
to-treat effect, even though most interventions have effects which themselves are
likely to vary between units. Explaining such variation in effect has been an
important but difficult goal.

Candidate prognostic factors for structural treatment effects come in at least
three classes: I. the observed level/regime of experimental exposure, II. measur-
able baseline characteristics and III. potential intervention-free outcomes. The
latter represent subjects’ potential response to an intervention-free regime and
are unmeasured for subjects who are exposed to the intervention. In a clinical
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study, they quantify natural health status and form an adequate measure of com-
parison between patients. This is because potential intervention-free outcomes,
like gender, are fixed characteristics of each subject, which are unaffected by
earlier treatment.

Structural mean models (Robins (1994, 1997a, 1999) and Goetghebeur and
Lapp (1997)) were developed and applied to explain causal effects in terms of
Class I and Class II predictors. Class III predictors pose more challenging prob-
lems but remain of interest because, as we explain next, they may well account
for much of the variation in treatment effect.

As a motivating example, we consider a randomized placebo-controlled blood
pressure reduction trial described and analyzed in Goetghebeur and Lapp (1997).
In a reanalysis, Fischer-Lapp and Goetghebeur (2001) observe that the lower
quantiles of the diastolic blood pressure distribution at end-of-study are roughly
the same in the treatment and placebo group, but that the median is lower
in the treatment group. This suggests that treatment is effective but does not
reduce blood pressures below the normal limits when those would be reached
without treatment. Thus treatment is likely less effective for patients whose blood
pressure normalizes in the absence of treatment. Also in general, interventions
may be more effective among those who need it most, suggesting that the effect
of exposure on outcome interacts with treatment-free response.

The difficulty with estimating the effects of treatment-free response on treat-
ment activity stems from the lack of joint observations on observed treatment
levels and potential intervention-free response. Efron and Feldman (1991) and
Fischer-Lapp and Goetghebeur (2001) have tackled this problem in different ways
in the context of randomized controlled trials with noncompliance. The former
assumed observed compliance (i.e., exposure) levels to be exchangeable on a ran-
domized treatment and control arm. The latter avoided this assumption but
relied on a semiparametric compliance selection model in addition to a struc-
tural mean model. The purpose of this paper is (a) to develop new classes of
estimators for these effects that make more efficient use of the information in the
data and enhance robustness to model misspecification; and (b) to investigate
to what extent the identification of such effects relies on untestable modelling
assumptions.

The paper is organized as follows. In Section 2, we introduce the poten-
tial outcomes framework and structural mean models. In Section 3, we discuss
causal models which enable treatment efficacy to depend upon treatment-free
response. We then review the estimation strategy of Fischer-Lapp and Goetghe-
beur (2001) to estimate the parameters indexing those models. Next, we build
on this approach to derive asymptotically efficient estimators for the average
causal effect under more flexible and less restrictive models. In Section 4, we
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show that the effect of treatment-free response on treatment activity cannot be
identified without relying on untestable assumptions and we clarify the nature
of those assumptions. Simulation results in Section 5 illustrate the finite sample
performance of our estimators. We end with a discussion.

2. Potential Outcomes and Structural Mean Models

One popular definition of causal effects is cast in terms of counterfactual or
potential outcomes (Rubin (1978)). Basically, one complements observed out-
comes Yi for subjects i (i = 1, . . . , n) with potential outcomes Yi0. The latter
indicate a reference response in the absence of exposure under similar experimen-
tal conditions. For instance, let Zi be a vector measuring the observed level of
exposure corresponding to observed outcome Yi, such as treatment compliance
as measured by the total number of pills taken by patient i in the blood pressure
study (Fischer-Lapp and Goetghebeur (2001)). Then, the expected contrast

E(Yi − Yi0|Zi), (1)

defines the average causal effect of exposure level Zi for subjects who were ex-
posed to Zi. This is one possible causal parameter of interest.

Estimation of (1) is complicated by the lack of joint observations on Yi and
Yi0 (except in the absence of exposure). Identification of (1) is therefore not
possible without making a number of untestable modelling assumptions that
we list below. Most of these assumptions are justified by design if we focus on
placebo-controlled double-blind randomized trials with an unexposed control arm
(meaning that no treatment switches occur in that arm). In this setting, we let
Zi measure the level of experimental exposure and use as a reference outcome Yi0

the potential outcome of subject i following assignment to the control arm. For
convenience, this will be denoted Yi0 as before and be called an intervention-free,
treatment-free or exposure-free response. We make the following assumptions.

(A1) Randomization assumption: measurements are available for each subject on
a randomization indicator Ri. This indicator is such that average exposure-
free outcomes are independent of it, within strata of baseline covariates xi,
i.e.,

E(Yi0|xi, Ri) = E(Yi0|xi).

We consider a two-arm study and let Ri = 1 indicate the experimental arm
and Ri = 0 the control arm.

(A2) Exclusion restriction (Angrist, Imbens and Rubin (1996)): randomization
Ri has no direct effect on the outcome (only an indirect effect via the ex-
posure is possible). In double-blind randomized trials of an asymptomatic
disease, one expects this to hold since patients and physicians are unaware
of the assigned treatment (Robins (1994)).
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(A3) Uncontaminated control arm (Cuzick, Edwards and Segnan (1997)): the
control arm is unexposed. Letting Zi = 0 indicate absence of active exposure
without loss of generality, this means that Zi = 0 when Ri = 0.

(A4) Consistency assumption: to link treatment-free outcomes to the observed
data, we assume that Yi = Yi0 when Zi = 0. In that case we observe Yi0 in
the control arm.

Finally, we assume that a model for the randomization probabilities pr(Ri = 1|xi)
is known, as is usually the case in randomized experiments.

For uncensored outcomes, one successful approach to modelling and estimat-
ing the causal effect (1), is based on the semiparametric structural mean model
(SMM) of Robins (1994, 1997a). The simplest instance of such model is

E(Yi − Yi0|Zi, Ri = 1) = ψZi.

Here, ψ expresses the expected change in outcome when subjects who were ex-
posed to Zi = 1 would have their exposure set to zero. It explains randomization
effects in terms of Class I predictors (i.e., received exposure). When also Class
II predictors are important, one may add covariate-exposure interactions to the
linear component of the model, as in

E(Yi − Yi0|Zi, xi, Ri = 1) = ψ1Zi + ψ2Zixi,

for some baseline covariate xi. Here, ψ2 defines the change in the average ef-
fect of unit exposure per one-unit increase in xi. Inference for this and more
general types of structural mean models (sometimes involving time-dependent
covariates), has been considered by Robins (1994, 1997a, 1999), Goetghebeur
and Lapp (1997), Fischer-Lapp and Goetghebeur (1999), Robins and Rotnitzky
(2003) and Vansteelandt and Goetghebeur (2003).

3. Strong Structural Mean Models

3.1. Review

Goetghebeur and Lapp (1998) and Fischer-Lapp and Goetghebeur (2001)
argue that intervention-free response may be an important predictor of treat-
ment activity. They incorporate interactions between univariate exposure mea-
surements Zi and intervention-free outcomes Yi0 via the strong structural mean
model (SSMM)

E(Yi − Yi0|Yi0, Zi,xi, Ri = 1) = ψ1Zi + ψ2ZiYi0. (2)

In this model, ψ1+ψ2Yi0 expresses how the observed outcome is expected to have
changed from the latent treatment-free outcome for subjects with unit exposure,
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treatment-free outcome Yi0 and covariate value xi. Within the same subgroup, ψ1

measures the average causal effect of an observed unit dose when treatment-free
outcome equals zero, and ψ2 measures the difference in effect between subpopu-
lations that differ one unit in treatment-free outcome.

To cope with the lack of joint observations on Yi and Yi0, Fischer-Lapp and
Goetghebeur supplement the SSMM with a semiparametric compliance selection
model. This model expresses how treatment-free outcomes have been ‘selected’
to receive certain exposure or compliance levels. In particular, they parameterize
the residual association between treatment-free outcomes and observed exposure
linearly, after adjusting for baseline covariates. That is,

E(Yi0|Zi,xi, Ri = 1) − E(Yi0|xi) = β{Zi − E(Zi|xi, Ri = 1)}, (3)

for some unknown scalar β. Setting β = 0 is tantamount to assuming that xi

contains all risk factors for the outcome which also predict exposure (formally,
this means that Yi0 and Zi are conditionally mean independent given xi and
Ri = 1). In the blood pressure study, where Y measures blood pressure and Zi

the total dose taken, positive values of β indicate that for patients with the same
baseline covariates, higher exposures are more likely seen among patients who
would have high blood pressure in the absence of treatment.

Model (3) enables us to restate the righthand side of (2) in terms of observ-
ables:

E(Yi −Yi0|Zi,xi, Ri = 1) = ψ1Zi +ψ2ZiE(Yi0|xi)+ψ3Zi{Zi −E(Zi|xi, Ri = 1)},
(4)

where ψ3 = ψ2β. To estimate the mean components ψ = (ψ1, ψ2, ψ3)′, pseudo
exposure-free outcomes are now defined for each subject:

Hi(ψ) = Yi −Ri [ψ1Zi + ψ2ZiE(Yi0|xi) + ψ3Zi{Zi − E(Zi|xi, Ri = 1)}] . (5)

These coincide with the observed exposure-free outcomes in the control arm (by
(A4)). In the experimental arm, they represent conditionally unbiased predictors
(given xi) for the exposure-free outcomes when ψ equals the true value ψ0 (by
(4)). This is because outcomes Hi(ψ) have equal conditional means in both
randomized arms, given xi and ψ = ψ0, by (A1). Contrasting them between
arms therefore leads to an unbiased estimating equation for ψ = ψ0, i.e.,

n∑
i=1

{d1(xi)Hi(ψ) + d2(xi)}{Ri − pr(Ri = 1|xi)} = 0 (6)

with d1(xi),d2(xi) arbitrary vectors of dimension three.
The above approach has made it possible to estimate interactions between

exposure and treatment-free response in causal models, but relies on some as-
sumptions which can be avoided.
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1. The estimating functions defined in (6) involve unknown nuisance parame-
ters E(Yi0|xi) and E(Zi|xi, Ri = 1). When these are replaced by consistent
estimates, Slutsky’s theorem shows that the solution ψ̂ to (6) is a consistent
estimator of ψ. When xi is high-dimensional with many continuous compo-
nents, it is however not possible to obtain globally consistent estimators with
good moderate sample size performance for these expectations, due to the
curse of dimensionality. Hence, smooth working models must be chosen for
E(Yi0|xi) and E(Zi|xi, Ri = 1) which can then be fitted in the usual way in
the control arm and the experimental arm, respectively (e.g., via least squares
regression). There are however many instances where such models can be hard
to specify, especially when the received dose is highly skewed, involves excess
zeroes, or when the exposure measurement is itself high-dimensional. In the
next sections, we avoid smooth models for E(Yi0|xi) and E(Zi|xi, Ri = 1) in
the strong structural mean frame.

2. Combining (3) and (4) yields a model for expected outcomes in the experi-
mental arm, as a function of observed exposure and covariates

E(Yi|Zi,xi, Ri = 1) = E(Yi0|xi)(1 + ψ2Zi) + ψ1Zi

+(β + ψ3Zi){Zi − E(Zi|xi, Ri = 1)}. (7)

Assuming that the SSMM (2) holds, (7) allows one in principle to verify (3)
(see also the next section). Because (6) ignores the additional information
about ψ that is available through this conditional mean restriction, it entails
an inefficient subset of all unbiased estimating equations for (ψ1, ψ2). In Sec-
tion 4, we show that, based on this subset of estimating functions, it may be
difficult or even impossible to locally identify ψ even when there is information
for (ψ1, ψ2). In the next two sections, we derive the set of all unbiased esti-
mating functions for (ψ1, ψ2) and a representation for the efficient estimating
function under a less restrictive model.

3.2. Enhancing flexibility

We build on the existing development to consider inference for the more
flexible model

E(Yi − Yi0|Yi0,Zi,xi, Ri = 1) = W ′
i1ψ1 + Yi0W

′
i2ψ2. (8)

Here W i1 = W 1(Zi,xi) ∈ IRp1 and W i2 = W 2(Zi,xi) ∈ IRp2 are design vectors
which include all measured variables, Zi and xi, that predict the causal effect of
exposure; ψ1 ∈ IRp1 and ψ2 ∈ IRp2 are unknown structural parameters and we
redefine ψ = (ψ′

1,ψ
′
2)′. By (A4), both design vectors W i1 and W i2 must be 0
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(w.p.1) when Zi = 0. Model (8) becomes the simpler model (2) upon setting
W i1 = W i2 = Zi.

While inference for ψ1 and ψ2 indexing (8) is possible via straightforward
extension of the methods of Section 3.1, we follow a different route for the afore-
mentioned reasons. First, we replace (3) and the modelling assumptions for
E(Yi0|xi) and E(Zi|xi, Ri = 1) by a single restriction:

E(Yi0|Zi,xi, Ri = 1) = W ′
i3δ, (9)

where W i3 = W 3(Zi,xi) ∈ IRp3 and δ ∈ IRp3 is an unknown structural param-
eter. Like (3), (9) expresses how treatment-free outcomes have been selected to
receive certain exposure levels. Choices of W i3 that depend solely on xi formal-
ize the no-unmeasured-confounders assumption (Robins (1997a)) that xi contains
all risk factors for the outcome that also predict exposure. More general choices
express the fact that the residual association between exposure and outcome is
confounded by unmeasured factors, even after adjustment for measured baseline
covariates.

Model (9) easily enables one to relate treatment-free outcomes nonlinearly
to exposure. Furthermore, it imposes fewer restrictions on the observed data law
than the combination of (3) and models for E(Yi0|xi) and E(Zi|xi, Ri = 1). This
is seen by noting that the latter combination implies a model for E(Yi0|Zi,xi, Ri =
1), namely E(Yi0|Zi,xi, Ri = 1) = E(Yi0|xi) + β′{Zi − E(Zi|xi, Ri = 1)}, while
the reverse is not true.

Model (9) may appear difficult to specify, but this is only seemingly so. In
fact, when combined with (8), (9) yields a standard model for expected outcomes
given observed exposure and baseline covariates in the experimental arm. The
parameters of the latter model (including δ) are estimable in the usual way.
Given (8), specifying (9) is thus essentially equivalent to specifying a model
for expected outcomes given observed exposure and baseline covariates in the
experimental arm.

Assuming that (8) and (9) hold with ψ = ψ0 and δ = δ0, we now develop
the following formal estimation strategy. Together with (9), (8) yields pseudo
exposure-free outcomes for subjects on treatment:

Hi(ψ, δ) = Yi −Ri
(
W ′

i1ψ1 +W ′
i2ψ2W

′
i3δ

)
. (10)

For given δ = δ0, a consistent point estimator for ψ can now be obtained − as
before, by solving (6) − as the value which yields no mean difference in these
outcomes between randomized arms (Robins (1994)). Similarly, combination
of (8) and (9) yields a traditional model for expected outcomes given observed
exposure:

E(Yi|Zi,xi, Ri = 1;ψ, δ) = W ′
i1ψ1 + (1 +W ′

i2ψ2)W
′
i3δ. (11)



914 S. VANSTEELANDT AND E. GOETGHEBEUR

For given ψ = ψ0, a consistent estimator for δ in this model can be obtained
by (weighted) least squares regression of outcomes on exposure and covariates in
the experimental arm. The fact that such regression involves the unknown ψ0

suggests the following iteration scheme for estimating ψ0.

Step 1. Choose a starting value ψ̂
(0)

for ψ0, e.g., as obtained from Section 3.1.

Step 2. Given current estimates ψ̂
(k)

, k = 0, 1, 2, . . ., for ψ0, estimate δ0 by
fitting (11) to the observed outcomes in the active treatment arm, with

ψ̂
(k)

in place of ψ. This yields estimators δ̂
(k+1)

for the unknown δ0.
Step 3. Given current estimates δ̂

(k)
, k = 1, 2, . . ., for δ0, calculate pseudo

exposure-free outcomes Hi(ψ, δ̂
(k)

) by evaluating (10). Next, solve (6)
for ψ with d1(.),d2(.) arbitrary (p1 + p2)-dimensional functions of xi.

This yields estimates ψ̂
(k+1)

for ψ0.

Step 4. Iterate steps 2 and 3 until ‖ψ̂(k+1) − ψ̂(k)‖ is sufficiently small.

In the Appendix, we show that this algorithm yields regular, asymptotically
linear (RAL) estimators for ψ0 (and hence consistent, asymptotically normal
estimators for ψ0) under mild regularity conditions. More generally, we show that
all regular asymptotically linear (RAL) estimators of (ψ0, δ0) are asymptotically
equivalent to the solution of an estimating equation of the form

n∑
i=1

{Ri − pr(Ri = 1|xi)}{d1(xi)Hi(ψ, δ) + d2(xi)}

+d3(Zi,xi)Ri{Yi −W ′
i1ψ1 − (1 +W ′

i2ψ2)W
′
i3δ} = 0 (12)

for some (p1+p2+p3)-dimensional function d1(.),d2(.) of xi and d3(.) of (Zi,xi).
We further derive an optimal choice d1opt(.),d2opt(.),d3opt(.) for which the solu-
tion to (12) attains the semiparametric variance bound for (ψ0, δ0) in our model.

3.3. Enhancing robustness

So far, we have seen that flexible estimation strategies for SSMM’s can
be derived which avoid a combination of models for E(Yi0|Zi,xi, Ri = 1) and
E(Zi|xi, Ri = 1). Instead, a single ‘nuisance’ model is used for the residual as-
sociation between potential exposure-free outcomes and exposure after adjusting
for baseline covariates, i.e., E(Yi0|Zi,xi, Ri = 1). Misspecification of this model
does not affect tests of the important null hypothesis of no average causal effect
are robust to it. Furthermore, goodness-of-fit can be verified from (11) when (8)
holds. Bad news enters, however, because minor misspecifications could yield
inconsistent estimates in other points of the structural parameter space. This is
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of special concern when there is little power to detect anomalies in the nuisance
model.

To overcome this problem, we now consider inference for ψ under the sole
SSMM assumption (8) (and the causal assumptions of Section 2). From (8), it
follows that

E(Yi −W ′
i1ψ1|Zi,xi, Ri = 1) = E{(1 +W ′

i2ψ2)Yi0|Zi,xi, Ri = 1},
and hence E((Yi −W ′

i1ψ1)/(1 +W ′
i2ψ2)|Zi,xi, Ri = 1) = E(Yi0|Zi,xi, Ri = 1).

It follows that

Hi(ψ0) =
Yi −RiW

′
i1ψ1

1 +RiW
′
i2ψ2

, (13)

represents a pseudo exposure-free outcome. In the control arm, Hi(ψ0) coincides
with the observed exposure-free outcome (by (A4)). In the experimental arm,
it represents a conditionally unbiased predictor (given xi) for the exposure-free
outcome when ψ = ψ0, by the fact that

E{Hi(ψ0)|xi, Ri = 1} = E{Hi(ψ0)|xi, Ri = 0}.
In the Appendix, we show that RAL estimators for ψ0 can be obtained (under
regularity conditions) by solving (6) with pseudo-exposure free outcomes (13),
provided (Yi −W ′

i1ψ1)/(1+W ′
i2ψ2) has finite variance in the experimental arm

when ψ = ψ0. We further show that (6) constitutes essentially all unbiased
estimating equations for ψ0 under the observed data model defined by the sole
restriction (8) and the assumptions of Section 2. That is, all RAL estimators
for ψ0 under this model are asymptotically equivalent to the solution of (6) for
some choice of d1(.),d2(.). We further derive an optimal choice d1,opt(.),d2,opt(.)
for which the solution to (6) attains the semiparametric efficiency bound for our
model.

The condition that (Yi −W ′
i1ψ1)/(1 + W ′

i2ψ2) has finite variance in the
experimental arm (when ψ = ψ0) is not easy to verify because it involves the
unknown ψ0. Failure of this constraint is however detectable because it leads
to severely inflated standard errors for ψ̂. In practice, it is sufficient for this
condition to hold that W ′

i2ψ2 falls outside the interval [−1 − σ,−1 + σ] w.p.1
for some σ > 0.

If the variance of (Yi − W ′
i1ψ1)/(1 + W ′

i2ψ2) is high in the experimen-
tal arm, the estimating functions can become very unstable. Assuming that
E(Yi0|Zi,xi, Ri = 1) is continuous in the points {(Zi,xi) : W ′

i2ψ2 = 1} when
ψ = ψ0, greater stability may be obtained by replacing Hi(ψ0) by a prediction

E

[
Yi −W ′

i1ψ1

1 +W ′
i2ψ2

|Zi,xi, Ri = 1

]
(14)
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for all observations i for which W ′
i2ψ2 ∈ [−1 − σ,−1 + σ] (for some chosen

σ > 0). These predictions can be obtained in the usual way via an ordinary least
squares estimator or some kernel estimator based on all remaining observations.
As the rule for selecting observations depends on the unknown ψ0, (6) must
be solved through an iterative process. Alternatively, one may choose to delete
observations i for which W ′

i2ψ̂2 ∈ [−1 − σ,−1 + σ] for some chosen σ > 0 and
preliminary estimator ψ̂2, and then update iteratively. The impact of deleting
these observations or misspecifying a model for (14) will be negligible when the
event W ′

i2ψ2 ∈ [−1 − σ,−1 + σ] is rare under the truth ψ = ψ0.

4. Identifiability

While modelling the impact of treatment-free outcomes on treatment ac-
tivity was considered as a natural extension of the existing structural mean
model methodology, doing this is unfortunately not possible without reliance
on untestable assumptions. In this section, we investigate the nature of these
assumptions.

Consider the following simple example in which xi is a dichotomous covariate
measured at baseline. Consider the semiparametric models A(1), A(2) and A(3)
for the observed data, defined by the assumptions of Section 2 and an additional
assumption given by one of the following models.

A(1) : E(Yi − Yi0|Zi, Yi0, xi, Ri = 1) = ψ1Zi + ψ2ZiYi0.

A(2) : E(Yi − Yi0|Zi, Yi0, xi, Ri = 1) = ψ1Zi + ψ2Zixi.

A(3) : E(Yi − Yi0|Zi, Yi0, xi, Ri = 1) = ψ1Zi + ψ2ZiYi0 + ψ2Zixi.

With a single dichotomous covariate xi, there are only two identifying restrictions
(6), hence at most two parameters can be identified in these models. In particular,
all three models are nonparametric models for the observed data. It follows that,
no matter how large the sample size, there is no empirical evidence favouring one
model over the others. We conclude for this example that there is no information
to disentangle the effects of covariates xi and of treatment-free response Yi0 on
treatment activity.

One possibility to cope with this identification problem, is to assume that
the model holds within sufficiently rich covariate strata, i.e., that

E(Yi − Yi0|Zi, Yi0,xi, Ri = 1) = ψ1Zi + ψ2ZiYi0. (15)

In that case, one can solve (6) with richer x-dependent indices d1(x),d2(x). The
following theorem, proved in the Appendix, shows however that this strategy also
relies on untestable assumptions.



STRONG STRUCTURAL MEAN MODELS 917

Theorem 1. Consider the semiparametric model A for the observed data, defined
by the assumptions of Section 2 and the additional assumptions E(Yi0|Zi,xi, Ri =
1) = h1(Zi,xi) and E(Yi − Yi0|Zi,xi, Yi0, Ri = 1) = h2(xi)Zi1 + q(Zi,xi)Yi0 with
h1(.) and h2(.) unrestricted, q(.) fixed and known satisfying q(0,xi) = 0,∀xi, and
Zi1 the first scalar component of Zi. Then A defines a nonparametric identified
model (Robins (1997b)) for the observed data provided that for each xi, E[Zi/{1+
q(Zi,xi)} | xi, Ri = 1] differs from 0, and for each (Zi,xi), q(Zi,xi) differs from
−1.

Theorem 1 states that for given q(.), the unknown parameters h1(.) and h2(.)
can be identified. For unrestricted h1(.) and h2(.), it defines a nonparametric
model for the observed data, meaning that it fits the observed data perfectly well.
As such there can never by any data evidence favouring one value of q(.) over
another. In particular, it is not possible to identify nonparametrically whether
intervention-free response predicts treatment activity (that is, whether or not the
estimated effect is due to the independent effect of covariates alone). Because
of this inherent identification problem, we argue that strong structural mean
models should not be used as the single model in a data analysis, but should
be compared with others in a sensitivity analysis. The results should be used
in a hypothesis-generating manner, aimed to increase our understanding of the
treatment mechanism.

Interestingly, our effort to make more efficient use of the information in
the data, via the estimation methods of Sections 3.2 and 3.3, is further re-
warded by a greater capacity to identify the unknown model parameters and
thus less reliance on untestable modelling assumptions. To illustrate this, we
consider the special case where xi can take three different values and the model
E(Yi − Yi0|Zi, xi, Ri = 1) = (ψ1 + ψ2xi + ψ3Yi0)Zi holds. Fitting the incor-
rect model (2) with the methods of Section 3.1 would require the estimation of
three unknown parameters, and thus leave no power to detect model misspeci-
fication. In contrast, the new methods generally allow identification of all three
parameters ψ1, ψ2 and ψ3 and thus enable us to detect that (2) is incorrectly
specified. Likewise, consider the special case where xi is dichotomous. Then the
unknown parameters in (2) are inestimable with the methods of Section 3.1, but
can generally be estimated with the new methods.

5. Simulation Results

A simulation study illustrates the finite sample performance of the proposed
estimators. We generate 1,000 data sets of 1,000 independent samples as in
Fisher-Lapp and Goetghebeur (2001). Standard uniformly distributed covariates
xi1 = Ui(0, 1) and standard normally distributed covariates xi2 = Ni(0, 1) are
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independently generated and subsequently used in all simulations. Conditional
on them, exposure measurements Z̃i are generated as Z̃i = 0.5xi1 + 0.5Ui(0, 1),
and exposure-free outcomes obey the following working models.

1. Yi0|Z̃i, xi1, xi2 = 6 + 2xi1 − 2xi2 + 3Z̃i +Ni(0, 1).
2. Yi0|Z̃i, xi1, xi2 = 6 + 2xi1 − 2xi2 + 10Z̃2

i +Ni(0, 1).
3. Yi0|Z̃i, xi1, xi2 = 6 + 2xi1 − 2xi2 − 5Z̃i + 3Z̃ixi1 + 3Z̃ixi2 + 10Z̃2

i +Ni(0, 1).

A randomization indicator Ri is generated independently of all other variables
with success probability 0.5 and Zi is taken to be RiZ̃i. Observed outcomes in
the experimental arm (Ri = 1) are generated as

Yi = Yi0 + ψ1Zi + ψ2ZiYi0 + εi, (16)

with ψ1 = 5, ψ2 = 1, where εi (i = 1, . . . , n) are conditionally uncorrelated, mean
zero random variables, given (Zi, Yi0,xi, Ri = 1), with constant variance σ2

ε = 2
when Z̃i �= 0 and σ2

ε = 0 when Z̃i = 0. In all simulations, estimates for the
mean components are obtained via the estimation methods (A) of Section 3.1,
(B) of Section 3.2 with E(Yi0|Z̃i, xi1, xi2) linear in Z̃i, xi1 and xi2, (C) of Section
3.3, and (D) of Section 3.2 with the correct working model for E(Yi0|Z̃i, xi1, xi2).
Optimal indices d1opt(.),d2opt(.),d3opt(.) in the estimating equations were esti-
mated by assuming linear regression models for all conditional expectations in
the expressions for the efficient estimating function (see the Appendix) and by
assuming that all conditional variances are independent of baseline covariates.
For simplicity, we used the iterative algorithm of Section 3.2 in parts (B) and
(D). Here, optimal indices were calculated for the separate estimating equations
(i.e., efficient estimators were used for ψ assuming that δ is known, and for δ as-
suming that ψ is known). As such, we achieved reasonable but not full efficiency
in parts (B) and (D). Table 1 summarizes the results.

Table 1. Simulation results: empirical bias and standard error based on
1,000 simulations of size 1,000.

Working model Estimation method Bias(ψ̂1) Bias(ψ̂2) SE(ψ̂1) SE(ψ̂2)

A -0.0243 2.30 E-3 1.014 0.109
1 B -0.0580 6.20 E-3 1.061 0.115

C -0.0590 6.36 E-3 1.090 0.118
A -0.631 0.0605 1.623 0.147

2 B -0.489 0.0451 1.475 0.134
C -0.178 0.0193 1.483 0.136
D -0.182 0.0197 1.471 0.135
A -1.454 0.166 1.653 0.182

3 B -0.963 0.110 1.494 0.168
C -0.268 0.0406 1.501 0.169
D -0.283 0.0421 1.514 0.171



STRONG STRUCTURAL MEAN MODELS 919

We find that the three methods yield approximately unbiased estimates for
the mean parameters when the conditional mean of Yi0 is linear in Zi conditional
on xi. The method of Section 3.1 has the smallest finite-sample bias for all
parameters. Only the robust estimator of Section 3.3 and the estimator of Section
3.2 (with correct nuisance model) yield approximately unbiased estimators of the
mean components when this assumption fails. All methods yield almost equally
precise estimators for the mean components, suggesting that increased robustness
to model misspecification need not necessarily come with information loss. For
the mean components estimated via the robust estimator of Section 3.3, we have
observed important efficiency improvements by implementing optimal indices in
the estimating equations.

6. Discussion

Strong structural mean models (SSMM’s) were introduced by Fischer-Lapp
and Goetghebeur (2001) to model the dependence of treatment efficacy on po-
tential treatment-free outcomes in a biologically meaningful way. In this pa-
per, we have shown that this dependence is unfortunately not nonparametrically
identified, meaning that identification relies on untestable assumptions. Despite
this, we believe that the methods are useful if carefully applied. This is because
treatment-free response is a useful reference indicator of natural health status (in
the absence of treatment) and thus a possibly strong predictor of treatment activ-
ity. To avoid confounding the effect of covariates with the effect of treatment-free
outcome, sufficient care must be exercised. In particular, we recommend always
testing for the independent effects of covariates that are used for conditioning in
(8).

In Section 4, we have shown that the parameters indexing SSMM’s can be
identified nonparametrically if one has available knowledge regarding certain non-
identifiable functions q(.). The choice q(.) = 0 encodes the investigator’s belief
that the average causal effect in the exposed is linear in the observed exposure
and does not depend on treatment-free outcomes. Values of q(.) different from
0 measure deviations from this extreme scenario. In general, however, the non-
identifiable functions q(.) are difficult to interpret. This makes it hard to perform
a sensitivity analysis which evaluates the impact that different degrees of depar-
ture from q(.) = 0 have on inference about the average causal effect. It is an open
question whether there exist possible reparameterizations of the model that could
better enable such sensitivity analysis. Challenging extensions are also foreseen
in accommodating this work to complex longitudinal data structures.

In summary, we have built on the work of Fischer-Lapp and Goetghebeur
(2001) to derive new estimation methods for SSMM’s that allow greater flexi-
bility in model building and enhance robustness against misspecification of the
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nuisance models. Simulation studies have shown that the new methods perform
considerably better under such model misspecification. The new methods tend
to be less stable in small samples, but their increased robustness does not ap-
pear to come at the expense of information loss in the moderate samples sizes
encountered in practice.
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Appendix

A.1. Semiparametric efficiency in Section 3.2

Consider Model A for the observed data, defined by (8), (9), (A1)−(A4) and
pr(Ri = 1|xi) known. Consider Model A∗ for the observed data defined by the
conditional mean models:

E{Ui1(ψ0, δ0)|xi} = E(Ui3|xi) = 0 (17)

E{Ui2(ψ0, δ0)|Zi,xi, Ri = 1} = 0, (18)

where Ui1(ψ, δ) = {Yi−Ri(W ′
i1ψ1+W

′
i2ψ2W

′
i3δ)}{Ri−pr(Ri = 1|xi)}, Ui2(ψ, δ)

= Yi −W ′
i1ψ1 − (1 +W ′

i2ψ2)W
′
i3δ and Ui3 = Ri − pr(Ri = 1|xi). Then A and

A∗ define the same semiparametric model for the observed data. Indeed, it is
easy to see that A∗ is implied by the restrictions of A. To show the reverse,
we prove that for any observed data law satisfying the restrictions in A∗, we
can always exhibit a full data law satisfying A which marginalizes to this ob-
served data law. Consider thus an arbitrary observed data law satisfying the
restrictions for A∗, defined by f(xi) = f∗(xi), E(Ri|xi) = pr∗(Ri = 1|xi), with
f(Zi|xi, Ri = 1) = f∗(Zi|xi, Ri = 1),E(Yi|Zi,xi, Ri = 1) = W ′

i1ψ1 + (1 +
W ′

i2ψ2)W
′
i3δ, f(εi1|Zi,xi, Ri = 1) = f∗(εi1|Zi,xi, Ri = 1), E(Yi|xi, Ri = 0) =

E∗(W ′
i3δ|xi, Ri = 1) and f(εi0|xi, Ri = 0) = f∗(εi0|xi, Ri = 0), for εi1 = Yi −

E(Yi|Zi,xi, Ri = 1), εi0 = Yi − E(Yi|xi, Ri = 0) and arbitrary well-defined densi-
ties f∗(.) (and expectations E∗(.)). Then we construct a full data law that satisfies
A and marginalizes to this observed data law. Choose f(xi) = f∗(xi), E(Ri|xi) =
pr∗(Ri = 1|xi) and let f(Zi|xi, Ri = 1) = f∗(Zi|xi, Ri = 1). Further, let the con-
ditional density of Yi0 given (Zi,xi, Ri = 1) be such that E(Yi0|Zi,xi, Ri = 1) =
W ′

i3δ and
∫
f(εi0|Zi,xi, Ri = 1)f∗(Zi|xi, Ri = 1)dZi = f∗(εi0|xi, Ri = 0). This

is always possible upon choosing Yi0 = W ′
i3δ+νi with f(νi = x|Zi,xi, Ri = 1) =

f(νi = x|xi, Ri = 1) = f∗(εi0 = x|xi, Ri = 0). Finally, let the conditional density
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of Yi given (Yi0,Zi,xi, Ri = 1) be such that E(Yi|Yi0,Zi,xi, Ri = 1) is as given by
(8) and

∫
f(εi1|Yi0,Zi,xi, Ri = 1)f(Yi0|Zi,xi, Ri = 1)dYi0 = f∗(εi1|Zi,xi, Ri =

1). Doing this is again possible using similar arguments as before.
We thus conclude that A and A∗ define the same semiparametric model for

the observed data. Further, the finite-dimensional parameter (ψ′
0, δ

′
0)′ index-

ing A and A∗, which can be defined as the solution of (17)−(18), is the same
functional of the observed data law under both models. It follows that all consis-
tent asymptotically normal (CAN) estimators of (ψ′

0, δ
′
0)′ in Model A are CAN

estimators of (ψ′
0, δ

′
0)′ in Model A∗, and vice-versa. In particular, the semipara-

metric efficiency bound is the same for both models. Knowing this is important
because it implies that semiparametric efficient estimating equations for (ψ′

0, δ
′
0)′

in A can be constructed as for A∗.
Following Chamberlain (1992), the semiparametric efficiency bound for A∗

is attained by solving an estimating equation of the form∑
i

d1(xi)Ui1(ψ, δ) + d2(Zi,xi)Ui2(ψ, δ) + d3(xi)Ui3 = 0

for particular choices of d1(xi),d2(Zi,xi) and d3(xi). Furthermore, all RAL esti-
mators of (ψ′

0, δ
′
0)

′ are asymptotically equivalent to the solution of an estimating
equation of this form, for some choice of d1(xi),d2(Zi,xi),d3(xi). Using Cham-
berlain (1992), we find that the semiparametric variance bound for our model is
attained by choosing:

U∗
i1 := Ui1(ψ, δ) − E {Ui1(ψ, δ)Ui2(ψ, δ)|Zi,xi, Ri = 1}

E
{
U2

i2(ψ, δ)|Zi,xi, Ri = 1
} Ui2(ψ, δ),

d1(xi) =
E{∇γU

∗
i1(ψ, δ)|xi}

E{U2∗
i1 (ψ, δ)|xi} ,

d2(Zi,xi) =
E{∇γUi2(ψ, δ)|Zi,xi, Ri = 1}
E{U2

i2(ψ, δ)|Zi,xi, Ri = 1}
−d1(xi)

E {Ui1(ψ, δ)Ui2(ψ, δ)|Zi,xi, Ri = 1}
E

{
U2

i2(ψ, δ)|Zi,xi, Ri = 1
}

and d3(xi) = −d1(xi)E(Yi|Ri = 0,xi), where γ = (ψ′, δ′)′.

A.2. Semiparametric efficiency in Section 3.3

Suppose we consider the semiparametric model Asub defined by (8), the
causal assumptions of Section 2 with pr(Ri = 1|xi) known and arbitrary correctly
specified parametric submodel E(Yi0|Zi,xi, Ri = 1; δ) = η(Zi,xi; δ) for a known
function η(.) of a known infinite-dimensional nuisance parameter δ. Then the
previous Appendix shows for each δ how to calculate the orthogonal complement
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of the nuisance tangent space (Bickel, Klaassen, Ritov and Wellner (1993) and
Newey (1990)) for ψ, which identifies all unbiased estimating functions for ψ
(that lead to a RAL estimator). To calculate the orthogonal complement to the
nuisance tangent space for ψ in A defined solely by (8) and the assumptions
of Section 2 with pr(Ri = 1|xi) known, we derive the subset of these estimating
functions (obtained for all δ) which are orthogonal to the tangent space Λδ for the
infinite-dimensional nuisance parameter δ. Omitting subscripts i for notational
convenience, we first show that the tangent space for δ in A is given by

Λδ = {Ra1(Y,Z,x) + (1 −R)a0(Y0,x) : a1(.), a0(.) arbitrary, satisfying

E{a1(Y,Z,x)|Z,x, R = 1} = 0,E{a0(Y0,x)|x} = 0,
E{εa1(Y,Z,x)|Z,x, R = 1} = η(Z,x; δ)(1 +W ′

2ψ2),

E{Y0a0(Y0,x)|x} = E{η(Z,x; δ)|x, R = 1}} ,
where ε = Y −W ′

1ψ1 − (1 +W ′
2ψ2)η(Z,x; δ). To show this, we consider the

likelihood for a single observation

L(ψ, δ, η1, η2, η3, η4) = η4(x) {η1(Y |Z,x, R=1;ψ, δ)η2(Z|x, R=1)pr(R=1|x)}R

×
{∫

η3(Y0|Z,x, R=1; δ)η2(Z|x, R=1)dZpr(R=0|x)
}1−R

,

where η2(.) is the unknown conditional density of Z (given (x, R = 1)), η1(.), η3(.)
specify the conditional densities of Y and Y0 (given (Z,x, R = 1)) up to the known
mean and η4(.) specifies the density of x. It is easy to verify that all scores for
δ are contained in Λδ. Vice versa, one can show that all elements of Λδ can be
viewed as scores for a parametric submodel. Indeed, consider arbitrary a1(.), a0(.)
satisfying the restrictions for Λδ. Next consider the parametric submodel de-
fined by L with η1(Y |Z,x, R = 1; δ) = η10(Y |Z,x, R = 1){1 + δa1(Y,Z,x)},
η2(Z|x, R = 1) = η20(Z|x, R = 1), η3(Y0|Z,x, R = 1; δ) = η30(Y0|Z,x, R =
1){1 + δa0(Y0,x)} and η4(x) = η40(x), where η10(.), η20(.), η30(.) and η40(.)
denote the densities indexing the true regular parametric submodel. Define
η0(Z,x) =

∫
Y0η30(Y0|Z,x, R = 1)dY0. If the above models are well-defined, it is

obvious that the score for δ in these submodels is Ra1(Y,Z,x)+ (1−R)a0(Y0,x)
at the truth δ = 0. That these models are well-defined is seen as follows.

1. The density functions are valid in the sense that they integrate to 1, because
E{a1(Y,Z,x)|Z,x, R = 1} = E{a0(Y0,x)|x} = 0.

2. These parametric submodels satisfy, for all δ, the original restrictions on
the observed data law implied by (8). This follows because, for η∗(Z,x) =
η0(Z,x)(1 + δ),

E(Y |Z,x, R = 1) =W ′
1ψ1 + (1 +W ′

2ψ2)η0(Z,x) + δη0(Z,x)(1 +W ′
2ψ2)

=W ′
1ψ1 + (1 +W ′

2ψ2)η
∗(Z,x)
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by the fact that E{εa1(Y,Z,x)|Z,x, R = 1} = η0(Z,x)(1 +W ′
2ψ2), and

E(Y0|x) = E{η0(Z,x)|x, R = 1} + δE{η0(Z,x)|x, R = 1}
= E{η∗(Z,x)|x, R = 1}

by E{Y0a0(Y0,x)|x} = E{η0(Z,x)|x, R = 1}.
Now an arbitrary element RA1(Y,Z,x) + (1 − R)A0(Y0,x) of the orthogo-

nal complement to the nuisance tangent space for ψ is orthogonal to the tan-
gent space for δ if E{RA1(Y,Z,x)a1(Y,Z,x) + (1 − R)A0(Y0,x)a0(Y0,x)} = 0.
From the previous Appendix, we know that A1(Y,Z,x) = {1 − π(x)}[d1(x){ε +
η(Z,x)}+d3(x)]+d2(Z,x)ε for given η(.), and that A0(Y0,x) = −π(x){d1(x)Y0+
d3(x)}. Calculating the above expectation and solving the equation yields

d2(Z,x) = −{1 − π(x)}d1(x)
W ′

2ψ2

1 +W ′
2ψ2

.

From this, we find that the orthogonal complement of the nuisance tangent space
for ψ in A is

{
{R−π(x)}

[
d∗

1(x)
(
R
Y −W ′

1ψ1

1 +W ′
2ψ2

+ (1−R)Y
)

+ d∗
2(x)

]
;d∗

1(.),d
∗
2(.)arbitrary

}
.

To find the efficient score, we project the score for ψ, i.e.,

−R∂ log η1(Y,Z,x;ψ, δ)
∂ε

(
W ′

1 W
′
2η(Z,x; δ)

)
,

with ε defined earlier and η(Z,x; δ) = W ′
3δ, onto the orthogonal complement

of the nuisance tangent space for ψ in A. It can easily be checked that this
projection is obtained by setting

d2(x) = −d1(x)E(H|x),

d1(x) =
E

{(
W ′

1 W
′
2η(Z,x;δ)

)
1+W ′

2ψ2

|x, R = 1
}

{1 − π(x)}Var (H|x, R = 1) + π(x)Var (H|x, R = 0)
.

A.3. Proof of nonparametric identifiability

Denote expectations and densities w.r.t. the true observed data law with
subscript 0, and those based on the model without subscript. To prove the
theorem, we construct a joint law of (Yi, Yi0,Zi, Ri,xi) that marginalizes to the
observed data law and satisfies all assumptions. First we set f(Zi,xi, Ri) =
f0(Zi,xi, Ri). Then we choose f(Yi|Zi,xi, Ri) = f0(Yi|Zi,xi, Ri) and define Yi0 =
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Yi in the subpopulation defined by (Zi = 0,xi, Ri) to satisfy (A4). To satisfy the
model restrictions, we choose h1(Zi,xi) and h2(xi) as the solutions to

0 = E0{Yi − h2(xi)Zi1 − q(Zi,xi)h1(Zi,xi)|xi, Ri = 1} − E0(Yi|xi, Ri = 0), (19)

0 = E0[Yi − h2(xi)Zi1 − {1 + q(Zi,xi)}h1(Zi,xi)|Zi,xi, Ri = 1]. (20)

These solutions are unique when, for each xi, E[Zi1/{1 + q(Zi,xi)} | xi, Ri = 1]
differs from 0 and for each (Zi,xi), q(Zi,xi) does not equal −1. Finally, let
f(Yi0|Zi,xi, Ri = 1) be an arbitrary density with conditional mean h1(Zi,xi),
given (Zi,xi, Ri = 1), that satisfies f(Yi0|Zi = 0,xi, Ri = 1) = f0(Yi|Zi =
0,xi, Ri = 1) abd (A1). This is possible by (19) and (20). Likewise, let
f(Yi|Yi0,Zi,xi, Ri = 1) be any density with conditional mean h2(xi)Zi1 + {1 +
q(Zi,xi)}Yi0, given (Yi0,Zi,xi, Ri = 1), that satisfies

∫
f(Yi|Yi0,Zi,xi, Ri =

1)f(Yi0|Zi,xi, Ri = 1)dYi0 = f0(Yi|Zi,xi, Ri = 1). Doing this is possible by (20).
We conclude that the unknown functions h1(.) and h2(.) are identified and that
the chosen full data law satisfies the model restrictions and marginalizes to the
observed data law by construction. The lack of identifiability of q(Zi,xi) follows
because, by repeating the earlier arguments for different values of q(Zi,xi) �= −1,
it is seen that all such values are compatible with the observed data law.
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