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Abstract: The contingency table arises in nearly every application of statistics.
However, even the basic problem of testing independence is not totally resolved.
More than thirty–five years ago, Lancaster (1961) proposed using the mid p–value
for testing independence in a contingency table. The mid p–value is defined as half
the conditional probability of the observed statistic plus the conditional probability
of more extreme values, given the marginal totals. Recently there seems to be
recognition that the mid p–value is quite an attractive procedure. It tends to be
less conservative than the p–value derived from Fisher’s exact test. However, the
procedure is considered to be somewhat ad–hoc.

In this paper we provide theory to justify mid p–values. We apply the Neyman–
Pearson fundamental lemma and the estimated truth approach, to derive optimal
procedures, named expected p–values. The estimated truth approach views p–values
as estimators of the truth function which is one or zero depending on whether the
null hypothesis holds or not. A decision theory approach is taken to compare the
p–values using risk functions. In the one–sided case, the expected p–value is exactly
the mid p–value. For the two–sided case, the expected p–value is a new procedure
that can be constructed numerically. In a contingency table of two independent
binomial samplings with balanced sample sizes, the expected p–value reduces to
a two–sided mid p–value. Further, numerical evidence shows that the expected
p–values lead to tests which have type one error very close to the nomial level. Our
theory provides strong support for mid p–values.

Key words and phrases: Estimated truth approach, Fisher’s exact test, expected
p–value.

1. Introduction

Perhaps one of the simplest problems in statistics, yet one which remains
controversial, is testing independence in a 2 × 2 contingency table. There are
many procedures proposed in the literature and not much conclusive study as
to their worth. In this paper, we exhibit one theory that leads decisively to an
optimal procedure.

For further discussion, let yij and pij be as layed out as follows:

Row total
y11 y12 n1 p11 p12

y21 y22 n2 p21 p22

Column total c d
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We deal with three sampling schemes. In the first scheme, y11 and y21 are
assumed to be two independent binomial observations with sizes n1 and n2 and
success probabilities p11 and p21, respectively. Also, p12 = 1− p11, p22 = 1− p21,
y12 = n1 − y11, and y22 = n2 − y21. The second sampling scheme involves a
multinomial observation y = (y11, y12, y21, y22) with total fixed number of cases
N = n1 + n2, and with probability parameters (p11, p12, p21, p22). The third
sampling scheme assumes that the yij’s are independent Poisson variables with
means pij not necessarily bounded by 1. In any case, let

θ = (p11/p12)/(p21/p22).

Consider the one–sided and two–sided test settings:

H0 : θ ≤ θ0 vs H1 : θ > θ0. (1.1)

H0 : θ = θ0 vs H1 : θ �= θ0. (1.2)

The most interesting and important case is θ0 = 1.
For the one–sided hypothesis, the most popular p–value is the normal p–value

P (Z ≥ t), (1.3)

where Z is a standard normal random variable and t is the realization of

T = (p̂11 − p̂21)
/√

p̂(1 − p̂)
( 1
n1

+
1
n2

)
, (1.4)

where p̂11 = y11/n1, p̂21 = y21/n2 and p̂ = y11+y21

n1+n2
.

Here and below, the α–level test corresponding to a p–value γ(y) rejects H0

if and only if γ(y) ≤ α. The advantage of (1.3) is that it applies to general r × c

contingency tables. The disadvantage of (1.3) is that it is not exactly valid (see
Definition 3.1).

In the case of a 2×2 table, the type one error of the normal p–value converges
asymptotically to the nominal level. However, its exact type one error can be
twice as large as the nominal level when n1 and n2 are moderate and one is much
larger than the other. See Hirji, Tan and Elashoff (1991).

Fisher (1934) derived an alternative p–value by conditioning on the marginal
totals:

Pθ0(Y11 ≥ y11 | marginal totals) = Pθ0(HY ≥ y11). (1.5)

Here Y11 is the random variable with the realized value y11. Further, HY repre-
sents the random variable having the hypergeometric distribution

fθ0(t) =

(
n1

t

)(
n2

c − t

)
θy11
0

/∑(
n1

y1

)(
n2

c − y11

)
θy11
0 , (1.6)



AN OPTIMALITY THEORY FOR MID p–VALUES IN 2 × 2 CONTINGENCY TABLES 809

when max(0, c − n2) ≤ t ≤ min(n1, c). In particular,

f1(t) =

(
n1

t

)(
n2

c − t

)/(n1 + n2

c

)
.

Note that we need only focus on y11 in (1.5), because the data depends only on
y11 after conditioning on the marginal totals.

The p–value (1.5) amounts to Fisher’s exact test. The conditional distribu-
tion (1.6) is exact and Fisher’s exact test is valid. It is often very conservative,
having small type one error. See, for example, Upton (1982) and Hirji, Tan and
Elashoff (1991).

There are dozens of alternative tests proposed in the literature, including
the mid p–value that plays an important role in this paper. For the one–sided
test, the mid p–value is defined as

P (HY > y11) +
1
2
P (HY = y11). (1.7)

The mid p–value was proposed first by Lancaster (1961) and was endorsed by
Plackett (in discussing Yates (1984)), Barnard (1989, 1990), Hirji, Tan and
Elashoff (1991), Upton (1992) and Agresti (1992)). Although the mid p–value has
nice properties in terms of type I error and power, it has been considered ad–hoc,
having little theory attached to it (with the exception of Barnard (1990)).

The two–sided version of the normal p–value (1.3) is the chi–squared p-value
proposed by Pearson (1900):

P (Z2 > t2), (1.8)

where Z and t are defined below (1.3). Obviously Z2 has a chi–squared distri-
bution with one degree of freedom.

There are several two–sided versions of Fisher’s p–value. See Section 5.2.
According to our study, the following choice outperforms others based on Fisher’s
conditional distribution: ∑

{t:fθ0(t)≤fθ0
(y11)}

fθ0(t). (1.9)

This is called Fisher’s two–sided p–value.
What is the suitable two–sided version of a mid p–value? It seems appropri-

ate to consider

γm(y11) =
∑

{t:fθ0
(t)<fθ0

(y11)}
fθ0(t) +

1
2

∑
{t:fθ0

(t)=fθ0
(y11)}

fθ0(t) (1.10)

as the two–sided mid p–value.

Example 1.1. Assume two binomial experiments yield the following table
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Success Failures Row total
pop 1 3 1 4
pop 2 1 3 4

column total 4 4

The one–sided test with θ0 = 1 is equivalent to

H0 : p11 ≤ p21 vs H1 : p11 > p21. (1.11)

Since the realization of T , in (1.4), is (3/4−1/4)/(1
2 · 1

2(1
4 + 1

4 ))
1
2 =

√
2, the normal

p–value is P (z ≥ √
2) = 0.079. Fisher’s p–value (1.5) is P (HY ≥ 3) =

[(4
3

)(4
1

)
+(4

4

)(4
0

)]/(8
4

)
= 0.243 and the mid p–value is

[
1
2

(4
3

)(4
1

)
+
(4
4

)(4
0

)]/(8
4

)
= 0.1285.

The two–sided hypotheses with θ0 = 1 reduces to

H0 : p11 = p21 vs H1 : p11 �= p21. (1.12)

The chi–squared p–value (1.8) is P (Z2 > 2) = 2P (Z >
√

2) = 0.158. The two–
sided Fisher’s p–value (1.9) is .486 whereas the two–sided mid p–value (1.10) is
0.257.

The data are from the well-known Fisher tea tasting experiment (1935). In
the experiment, however, all marginal totals are fixed. Here, we assume the bino-
mial model in order to relate to a normal p–value or chi–squared p–value, which
make sense only for random marginal totals. The p–values are very different.
(The discrepancy will be smaller for larger sample sizes.) The mid p–value falls
between the conservative Fisher’s p–value and the “radical” normal p–value or
chi–squared p–value which, as demonstrated in this example, typically happens.
It seems important to develop a systematic way to choose an “optimal” p–value.

In this paper, we take an approach called the estimated truth approach. See
Hwang and Pemantle (1997) and Blyth and Staudte (1995, 1997). Section 2
gives an introduction to this approach. We apply the Rao–Blackwell Theorem to
derive an optimal “p–value” which is called the expected p–value. It turns out, for
the one–sided test, the expected p–value is the mid p–value (1.7), see Section 3.
For the two–sided test, the expected p–value, in general, can only be evaluated
numerically. However, it is exactly equal to (1.10) for two binominal populations
with n1 = n2. See Section 4. Section 5 reports some numerical studies which
show that the expected p–value is optimal.

2. Estimated Truth Approach

We briefly discuss the approach that will be used in this paper, namely the
estimated truth approach. In it, one views p–values as estimators of the truth
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indicator function which, by definition, is the truth indicator function over the
null hypothesis space.

If the problem is to test the one–sided hypotheses (1.11) then the truth
indicator function considered is I(p11 ≤ p21) = 1 or 0 depending on whether
p11 ≤ p21 or not. Similarly for the two–sided hypotheses (1.12), the truth in-
dicator function considered is I(p11 = p21). It seems plausible that the p–value
can be viewed as an estimator of the truth indicator, because a small p–value
indicates that the null hypothesis is unlikely or the indicator function is nearly
zero. Similarly a large p–value indicates that the null hypothesis is likely and
hence the truth indicator function is one.

In the estimated truth approach, one uses a loss function, L(I, γ(X)), to
evaluate an estimator γ(X) of I, where X denotes the data. It seems natural to
impose two basic requirements on L:

L(0, γ(X)) is increasing in γ(X), and L(1, γ(X)) is decreasing in γ(X), (2.1)

and these are assumed to hold throughout the paper. A special case of a loss
function that satisfies (2.1) is the squared error loss

(I − γ(X))2, (2.2)

which can be justified as a proper loss function from a Bayesian point of view,
see Hwang and Pemantle (1997). We shall, however, take a frequentist decision
theory approach below. As in the usual decision theory, one then tries to find
the estimator that minimizes, in some sense, the risk function

R(θ, γ(X)) = EθL(I, γ(X)). (2.3)

In simple settings without nuisance parameters, the estimated truth ap-
proach has been applied to evaluate p–values in Hwang, Casella, Robert, Wells
and Farrell (1992). Two parallel approaches are the estimated confidence ap-
proach and the estimated loss approach. The former approach, initiated in Berger
(1985), addresses the problem of estimating I(θ ∈ CX) for a given confidence set
CX . The latter approach, most recently studied by Lindsay and Li (1997), fo-
cusses on estimating the loss of a given estimator. Related papers are included
in the references. A well written review of these three approaches is in Goutis
and Casella (1995).

3. One–sided Test

3.1. General result

We begin with some definitions. The size of a test is the supremum of the
type one error over the null hypothesis space. A test has α level if its size is
bounded above by α.
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Definition 3.1. An estimator γ(X) is said to be test–valid if for every α, 0 <

α < 1, the test that rejects if and only if γ(X) ≤ α has level α. Furthermore, if
the test has size α, then γ(X) is said to be test–exact.

Below we focus on the case where fθ(X) has a monotone likelihood ratio in
X, where both X and θ are one–dimensional. In such a case the uniformly most
powerful α level test for the one–sided test

H0 : θ ≤ θ0 H1 : θ > θ0 (3.1)

exists by Theorem 2 on page 78 of Lehmann (1997). Furthermore, it is given by
the critical function (corresponding to a randomized test):

ϕM (X) = 1 X > c

= γ X = c (3.2)

= 0 X < c

where c and γ are chosen so that

Eθ0ϕM (X) = α. (3.3)

(A critical function of a test gives the probability of rejecting H0.) Hence the
power of a critical function ϕ(X), i.e.,

β(θ) = Eθϕ(X) (3.4)

is maximized by ϕ(X) = ϕM (X) for θ > θ0 among all tests of level α.
Below we focus on the case where X takes only integer values. Let U be

a random variable uniformly distributed over [0, 1] which is independent of X.
The statistical problems based on observing X or Z = X + U are equivalent. In
particular, if we observe Z, then almost surely we have X = [Z]. Here and later,
for any number a, [a] denotes the largest integer less than a. We consider a test
that rejects H0 if

Z = X + U > k, (3.5)

where k is chosen so that the test has size α. This corresponds to a test of the
form (3.2), where c = [k] and γ = 1 − (k − [k]), and hence is UMP.

Let z = x + u where z, x and u are realizations of Z, X and U . As in
Lehmann (1997, p.70), we define the p–value corresponding to a sequence of
tests as the smallest type one error under which the corresponding test rejects
H0. The p–value corresponding to the randomized test (3.5) is

γR(z) = Pθ0(Z > z). (3.6)
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Putting these together with Theorem 2 on p. 78 of Lehmann (1997), we have
the following theorem. The result seems to be known, but we have not found it
in the literature.

Theorem 3.2. Assume that L satisfies (2.1). The estimator γR(Z) has the
minimum risk function for every θ > θ0 among all the test–valid estimators.
That is, for every θ > θ0,

EθL(I(θ ≤ θ0), γR(Z)) ≤ EθL(I(θ ≤ θ0), γ(Z)), (3.7)

as long as γ(Z) is test–valid. Furthermore, if γ(Z) is test–exact and its maximum
type one error occurs at θ = θ0, i.e.,

max
θ≤θ0

P (γ(Z) ≤ α) = Pθ0(γ(Z) ≤ α) = α, (3.8)

then (3.7) holds for every θ.

Proof. Assume that γ(Z) is test–valid. Compare the two tests with rejection
regions {γR(Z) ≤ α} and {γ(Z) ≤ α}. The former is a UMP α level test and
the latter has level α as well. Hence Pθ(γR(Z) ≤ α) ≥ Pθ(γ(Z) ≤ α) for θ > θ0.
This implies that γR(Z) is stochastically smaller or equal to γ(Z) which, in turn,
implies that L(0, γR(Z)) is stochastically smaller or equal to L(0, γ(Z)) by (2.1).
Consequently (3.7) holds.

To establish the second assertion, all we need to do is to establish (3.7)
for θ ≤ θ0. By Theorem 2 (iv) on p.79 of Lehmann (1997), Pθ(γ(Z) ≤ α) is
minimized by the UMP test {γR(Z) ≤ α} as long as the second equation in
(3.8) holds. Hence Pθ(γR(Z) ≤ α) ≤ Pθ(γ(Z) ≤ α), for θ ≤ θ0, and γR(Z) is
stochastically larger or equal to γ(Z). Since L(1, ·) is decreasing by (2.1), this
implies that EθL(1, γR(Z)) ≤ EθL(1, γ(Z)) for θ ≤ θ0.

3.2. Expected p–value

Thus far we have been discussing results mostly relating to randomized rules.
Even though their corresponding p–value has the optimality described in Theo-
rem 3.2, a randomized p–value is subject to criticisms. The main criticism is that
the experimenter cannot base the decision on the observation only but is, in some
situations, forced to toss a die or use computer randomization to reach a final de-
cision. This does not seem reasonable. Therefore we propose a non–randomized
p–value below.

From (3.6) we have γR(z) = Pθ0(Z > z) = Pθ0(X > x) + Pθ0(X = x

and U > u). By independence of X and U , we conclude γR(z) = Pθ0(X >

x)+(1−u)Pθ0(X = x). Taking the conditional expectation of γR(z) with respect
to U while x is fixed leads to γE(x) = Pθ0(X > x)+ 1

2Pθ0(X = x), which is called
the expected p–value. We have the following theorem.
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Theorem 3.3. In addition to (2.1), assume that L(I, ·) is convex. Then

EθL(I(θ ≤ θ0), γE(X)) ≤ EθL(I(θ ≤ θ0), γ(Z)) (3.9)

for all θ > θ0 and any test–valid estimator γ(Z). If γ(Z) is test–exact and
satisfies (3.8), then (3.9) holds for every θ. Strict inequality holds in (3.9) if
L(I, ·) is strictly convex. In particular, for squared error loss and θ = θ0,

Eθ0(I(θ ≤ θ0), γE(X))2 <
1
3

= Eθ0(I(θ ≤ θ0) − γ(Z))2. (3.10)

Proof. The theorem follows if we show that γE(X) dominates γR(Z). This
follows easily from Jensen’s inequality

EθL(I(θ ≤ θ0, γR(Z)) = EθE[L(I(θ ≤ θ0), γR(Z))|X]

≥ EθL[I(θ ≤ θ0), E(γR(Z)|X)]

= EθL[I(θ ≤ θ0), γE(X)].

Also, by Jensen’s inequality, the risk of γE(X) is strictly smaller than γR(Z) if
L(I, ·) is strictly convex. For (3.10), note that the squared error loss is strictly
convex and hence (3.9) holds with strict inequality when L is replaced by squared
error loss. Furthermore, γ(Z) is uniformly distributed (see e.g., Lehmann (1997,
p.170)) for θ = θ0. Hence its risk with respect to the squared error loss is 1

3 ,
establishing (3.10).

In the above derivation, we use a uniform random variable U . It turns out
that any continuous random variable supported on [0, 1] as its support leads to
the same estimator γE.

Is γE(X) test–valid? The answer is, unfortunately, no. Otherwise, for a
strictly convex loss function, Theorem 3.3 leads to a strict inequality in (3.9) and
contradicts (3.7). It is, however, very close to being test–valid. In particular a
test–valid estimator has expectation 1

2 , which is the expectation of γE(X).
To argue further for the assertion that γE(X) is nearly test–valid, we note

that γ(X) is test–valid if and only if

Eθh(γ(X)) ≤ Eh(U), θ ≤ θ0, (3.11)

for every nonincreasing function h. Here U represents, as before, a uniform ran-
dom variable over [0, 1]. (Test–validity follows by taking h(t) to be the indicator
function, i.e., h(t) equals one or zero depending on whether t is smaller than α

or not.) Although γE does not satisfy (3.11) for every nonincreasing function h,
it does satisfy the inequality for every nonincreasing convex function h.
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Numerical studies in Figure 2 of Hirji, Tan and Elashoff (1991, p.1148) indi-
cate that γE(X) is nearly test–valid when applied to a 2 × 2 contingency table.

In summary, γE(X) should be preferred to γR(Z) for two reasons. First,
the expected p–value involves no randomness and seems to make more sense in
practice. Second, it has smaller risk than γR(Z) for squared error loss and all
other convex nondecreasing losses.

3.3. Application to a 2 × 2 contingency table

As shown below the estimated truth approach, although unconditional, leads
to a p–value based on the distribution of Y = (y11, y12, y21, y22) conditional on
the marginal totals. To describe the conditional distribution of Y , it suffices to
consider y11. Regardless of the sampling scheme, the conditional distribution of
y11 given the marginal totals of c, d, n1, and n2 has the probability function

fθ(y11) =

(
n1

y11

)(
n2

c − y11

)
θy11

/∑
y11

(
n1

y11

)(
n2

c − y11

)
θy11. (3.12)

To describe the optimal solution, we begin with the randomized uniform
most powerful unbiased test which is also based on Fisher’s conditional distri-
bution (see Tocher (1950) or Lehmann (1997)). Consider Z = y11 + U , where
U is an independent uniform random variable over [0, 1]. Similar to the earlier
development that led to (3.6), the p–value (based on the randomized test) is

γR(z) = Pθ0(Z > z | marginal totals)

=
∑

t>y11

fθ0(t) + (1 − u)fθ0(y11) (3.13)

where y11 = [z] and u = z − y11. Taking the conditional expectation of γR(z)
with respect to U while fixing y11, gives the expected p–value

γE(y11) =
∑

t>y11

fθ0(t) +
1
2
fθ0(y11). (3.14)

This is identical to (1.7) and is exactly the mid p–value of Lancaster (1961).
We call a test α–level unbiased if its probability of rejection is at most α

under the null hypothesis and its probability of rejection is at least α under the
alternative hypothesis. Obviously any α–level unbiased test has size α under a
continuity assumption. An estimator γ(Z) is said to be test–unbiased if for every
α the rejection region {γ(X) ≤ α} is α–level unbiased.

Theorem 3.4. Assume the loss function L(I, γ(Z)) satisfies (2.1) and also
L(I, ·) is convex. Let γE(y11) be as in (3.14). Then EL(I(θ ≤ θ0), γE(y11)) ≤
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EL(I(θ ≤ θ0), γ(Z)), ∀ pij , where the expectation is taken with respect to pij ’s
and γ(Z) is any test–unbiased estimator. Strict inequality holds in the last in-
equality if L(I, ·) is strictly convex. In particular, E[(I(θ ≤ θ0) − γE(y11))2] <
1
3 = E[I(θ ≤ θ0) − γ(Z)]2, for all pij ’s such that θ = θ0.

Note that Theorem 3.4 holds with respect to binominal sampling, multi-
nominal sampling and the Poisson sampling. This is due to the fact that γE(X)
dominates γ(Z) even if the criterion is based on comparing the conditional risks
E[L(I(θ ≤ θ0), γ(Z)) | marginal totals].

4. Two–sided p–value

4.1. General result

Assume the distribution of X belongs to a discrete exponential family, i.e.,

P (X = x) = fθ(x) =

{
π(θ)h(x)eθx if x is an integer
0 otherwise.

As in Section 3, we first construct an exact randomized test based on Z = X +U,

where U has a uniform distribution over [0, 1].
The goal here is to test H0 : θ = θ0 vs. H1 : θ �= θ0. We first derive the

p–value corresponding to the class of UMP unbiased tests. By the argument
below (3.5) and by Lehmann (1997, p.135), the α–level UMP unbiased test uses
a critical function that can be written as

ϕ(Z) =

{
1 if Z /∈ (c1, c2)
0 otherwise

(4.1)

where c1 and c2 satisfy
Eθ0ϕ(Z) = α (4.2)

and Eθ0{[Z]ϕ(Z)} = Eθ0([Z])Eθ0ϕ(Z). The latter equation is equivalent to
Eθ0([Z] − m)ϕ(Z) = 0 where m = Eθ0([Z]). The equation is, in turn, equivalent
to

Eθ0([Z] − m)I(c1,c2)(Z) = 0, (4.3)

where I(c1,c2)(Z) is the indicator function of (c1, c2). Note that if c1 �= c2 satisfy
(4.3) then

[c1] ≤ m ≤ [c2]. (4.4)

Otherwise, suppose that one of the inequalities fails, say m < [c1]. This implies
that, for Z > c1, [Z] ≥ [c1] > m and hence [Z] − m > 0, contradicting (4.3).

For a fixed c2 satisfying (4.4), let B1(c2) be the smallest c1 such that (4.3)
is satisfied. Similarly, for a fixed c1 satisfying (4.4), let B2(c1) be the largest c2
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satisfying (4.3). Now we are ready to state Theorem 4.1, which is proven in the
Appendix.

Theorem 4.1. The p–value γR(z) corresponding to a sequence of UMP unbiased
randomized tests is

γR(z) = Pθ0(Z /∈ (c1, c2)), (4.5)

where c1 and c2 depend on z as follows:

[z] > m, then c1 = B1(z) and c2 = z;

[z] < m, then c1 = z and c2 = B2(z); (4.6)

[z] = m, then c1 = m and c2 = z. (4.7)

Similar to Theorem 3.2, the next theorem can be established and hence the
proof is omitted.

Theorem 4.2. Assume that the loss function L(I, γ(Z)) satisfies (2.1) and that
L(I, ·) is convex. Then

EθL(I(θ = θ0), γR(Z)) ≤ EθL(I(θ = θ0), γ(Z)) (4.8)

for all θ and for any test–unbiased estimator γ(Z).

4.2. Expected p–value

The p–value defined in Theorem 4.1 corresponds to a randomized test. It is
desirable to come up with a p–value corresponding to a nonrandomized test. We
propose to use the expected p–value

γE(x) =
∫ 1

0
γR(x + u)du, (4.9)

which can be numerically evaluated. Similar to Theorem 3.3, we have the fol-
lowing theorem whose proof is omitted.

Theorem 4.3. Assume that L(I, γ(Z)) satisfies (2.1) and also that L(I, ·) is
convex. Then

EθL(I(θ = θ0), γE(X)) ≤ EθL(I((θ = θ0), γ(Z)) (4.10)

for θ and for any test–unbiased estimator γ(Z). Strict inequality holds in (4.10)
if L(I, ·) is strictly convex. In particular, for squared error loss and θ = θ0,

Eθ0(I(θ = θ0) − γE(X))2 <
1
3

= Eθ0(I(θ = θ0) − γ(Z))2. (4.11)
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4.3. Application to a 2 × 2 contingency table

Similar to Theorem 4.1, the UMP unbiased tests (e.g., Lehmann (1997,
p.155)) give the corresponding p–value

γR(z) = P (Z /∈ (c1, c2)). (4.12)

The Z in (4.1) and (4.12) is defined as Z = Y11 + U where Y11 has probability
function (3.12) and U is a uniform random variable independent of Y11. Fur-
thermore z = y11 + u is the realization of Z = Y11 + U , c1 and c2 are defined in
(4.6), and B1 and B2 are defined right before Theorem 4.1. In other words, all
the expectations and probabilities are calculated with respect to the conditional
distribution given the marginal totals. The Rao–Blackwellized p–value is

γE(y11) =
∫ 1

0
γR(y11 + u)du. (4.13)

As is demonstrated in the next section, γE works very well in risk. One reason
is given in Theorem 4.4 (The proof is similar to that of Theorem 4.3 and is
omitted).

Theorem 4.4. The statements in Theorem 3.4 hold if I(θ ≤ θ0) is replaced
by I(θ = θ0) and γE(y11) refers to (4.13) instead of (3.14). Further, the results
apply to binominal sampling, multinominal sampling, and Poisson sampling.

In general, we do not have an explicit expression for γE(y11) and numerical
integration is applied in practice. However, for independent binomial sampling,
we may show that, for θ0 = 1 and n1 = n2,

γE(y11) = γm(y11), (4.14)

where γm(y11) is defined in (1.10) and is the two–sided mid p–value, also known
as quasi–exact p–value (Hirji, Tan and Elashoff (1991)). The proof of (4.14)
is not included here. It will be reported elsewhere, see Yang, Lee and Hwang
(2000).

5. Numerical Comparisons

In this section, we present the risk functions of several p–values. We focus
on squared error loss and 2×2 contingency tables sampled from two independent
binominal distributions. All numerical results reported are obtained using exact
calculations. Based on the risk functions, we conclude that the expected p–value
performs better or as well as all the other p–values. We expect that similar con-
clusions hold for other sampling distributions, such as multinomial distributions
and Poisson distributions, due to the fact that Theorems 3.4 and 4.4 hold for
these distributions as well.
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5.1. One–sided case

For the one–sided hypothesis (1.1) with θ0 = 1, we calculate the risk functions
of the expected p–value (i.e., mid p–value, (3.14)), Fisher’s p–value (1.5), the
normal p–value (1.3), and the exact normal p–value to be described below.

According to the numerical studies, the normal p–value and the expected
p–value perform the best among all the procedures we consider. Both are much
better than Fisher’s test. The normal p–value, however, has type I error sub-
stantially larger than the nominal level. See Hirji, Tan and Elashoff (1991).
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Figure 1. (One-sided test) The risk of the p-values plotted against the natural
logarithm of odds ratio based on p11 = 0.3 + 0.01t & p21 = 0.3 − 0.01t,
t = 0, . . . , 20, and n1 = n2 = 20.

We also consider the exact normal p–value which is valid, Pθ0(T ≥ t |
marginal totals), where T and t are defined in and around (1.4). One might
think that since this is a conditional procedure, it should do better than (1.3),
perhaps because theorems such as Theorem 3.3 prove that optimal estimators
are based on Fisher’s conditional distribution. However, the numerical results in
Figure 1 show the opposite. In fact the exact normal p–value does worse than
the normal p–value. This apparently is due to the fact that the exact normal
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p–value is based on a discrete distribution whereas its unconditional version, the
normal p–value, is based on a continuous distribution.

It is interesting to pay some attention to θ0 = 1 or ln θ0 = 0. The risk
function Eθ0(1−γ(Z))2 at such a point for a test–exact estimator γ(Z) should be
1/3. For the mid p–value, the risk is .330, slightly conservative, as drawn in Figure
1, whereas the risk of the normal p–value is 0.335, slightly nonconservative. The
other p–values have risk functions far away from 1/3 and behave quite differently
than the test–exact estimator.

Hence these numerical calculations are consistent with Theorem 3.4, which
all point to the superiority of γE . We did similar calculations for the balanced
case n1 = n2 = n, n = 10, 40. We also graphed the risks for the unbalanced
cases with (n1, n2) = (10, 20) and (n1, n2) = (20, 40). The graphs are all similar
to Figure 1 but are not reported here. Furthermore, for θ = 1, the risks of the
mid p–value are close to 1/3 in all the cases we examined.

5.2. Two–sided case

As discussed in Agresti (1992, p.135, (a),(b),(c)) three p–values based on
the Fisher’s conditional argument are proposed: (a) Fisher’s double p–value, (b)
Fisher’s (two–sided) p–value, and (c) exact chi–squared p–value. These p–values
will be defined specifically below. Fisher’s double p–value (a) is

min{1, 2P (HY ≥ y11)} (5.1)

(we make a modification to make sure that it is not greater than one). However,
its risk do not fit in Figure 2, where smaller risks are plotted including those
of Fisher’s p–value (b) a valid test defined in (1.9). As shown in Figure 2,
Fisher’s p–value performs much worse than the chi–squared p–value (1.8). The
expected p–value (4.13) is doing the best for two reasons: it is optimal in the sense
of Theorem 4.3; it corrects the “discreteness” effect by taking the expectation
with respect to U . It seems that discreteness has a more important effect than
conditioning, as evidenced by the poor performance of Fisher’s p–value.

One may wonder whether one can improve upon the chi–squared p–value by
conditioning. This leads to the exact chi–squared p–value (c) defined as P (|T | ≥
|t| | all the marginal totals), where the conditional probability is evaluated using
the hypergeometric distribution. This p–value, however, performs worse than
the chi–squared p–value. Apparently, the “discreteness” effect makes the exact
chi–squared p–value perform worse even though it may have done the right thing
by conditioning.
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Figure 2. (Two-sided tests) The risk of p-values plotted against the natural
logarithm of odds ratio based on p11 = 0.3+ (or −)0.01t & p21 = 0.3− (or
+)0.01t, t = 0, . . . , 20, and n1 = n2 = 20.

We also consider alternative p–values, denoted by SS and BB, which stand
respectively for the p–values proposed by Suissa and Shuster (1985) and Berger
and Boos (1994). The procedure SS is defined as supp Pp(|T | ≥ |t|) where Pp

denotes the exact probability evaluated under the two binomial populations with
p11 = p21 = p and T is defined as in (1.4) with the realization t. The p–value BB
denotes min

(
1, supp∈Cβ

PR(|T | ≥ |t|) + β
)

where β = 0.001 and Cβ stands for a
1 − β = .999 confidence interval for p. For our studies with n1 = n2 = n, ≤ 20,
BB has a risk almost identical, but slightly smaller, than SS. For larger n, the
difference may become larger. Fisher’s p–value, SS, and BB have the advantage
of being test–valid. The risks of these three p–values, however, are not good.

The p–value with the smallest risk function is the expected p–value. It is
calculated by numerically averaging 1000 p–values γR(y11 + u) where u is taken
to be 1000 equal space points in [0, 1]. Note that, as demonstrated in Figure 2
for the balanced case and Figure 3 for the unbalanced case, it has the smallest
risk functions for θ �= 1; also its risk at θ = 1 is 0.321 in both Figures 2 and 3,
close to the ideal value 1/3. These two cases are, however, not all what we have
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considered. Although not reported in this paper, we also calculated numerically
the risk for (n1, n2) = (10, 10), (20, 40) and for the sequence of (p11, p12) given
in the title of Figure 2. All the graphs are similar to Figures 2 or 3. They
demonstrate that the risks of the expected p–value is the smallest among p-values
discussed, or nearly so.
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Figure 3. (Two-sided tests) The risk of p-values plotted against the natural
logarithm of odds ratio based on p11 = 0.3+ (or −)0.01t & p21 = 0.3− (or
+)0.01t, t = 0, . . . , 20, and n1 = 10, n2 = 20.

Finally, it is desirable to develop a procedure which works well in risk and
which is computationally less intensive than γE(y11). The two–sided mid p–value
γm(y11), defined in (1.10), is such a procedure. For the balanced case in Figure
2, the risk functions of γE and γm are identical, agreeing with the analytically
verified equation (4.14). For the unbalanced case γm has the second best risk
function, only slightly larger than γE . Of course, the advantage of γm is its
simplicity in form and in computation. Even the calculation for γE is still much
faster than for SS and BB. Of course, the price we pay in using γE is that it is
only approximately valid unlike SS and BB.
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Actual significance levels. In Figures 4 and 5, we study the actual significance
level corresponding to each of the various p–values, i.e., the test that rejects if
and only if the p–value is less than α. For α = .05, and unequal sample sizes,
these pictures graph the actual significance level which is the supremum of the
type I error over all p11 and p12 satisyfing H0. The two figures demonstrate
the well–known result that Fisher’s p–value is conservative, whereas the chi–
square p–value is too radical. See also Hirji, Tan and Elashoff (1991). Note
that the expected p–value, BB and SS have actual significance levels closest to
α = 0.05, much closer than the chi–squared p–value. The mid p–value performs
quite reasonably, albeit not as well as the expected p–value. For the balanced
case similar results are obtained, although the failure of chi–squared test is not
as drastic.

We also numerically calculated the power of these tests in many different
cases. Our numerical results, not reported here, show that the tests correspond-
ing to SS, BB, the mid p–value and the expected p–value are all quite similar.
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Figure 4. The actual significance levels of two-sided p-values under the nom-
inal level= 0.05.
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Figure 5. The actual significance levels of two-sided p-values under the nom-
inal level= 0.05.

6. Conclusion

In this paper, we take the estimated truth approach and derive the corre-
sponding optimal procedure which turns out to be the expected p–value. By
evaluating the risk functions, we find that the expected p–value performs the
best. It dominates both the p–values of the Fisher’s exact test and the Pear-
son’s chi–squared test among others. This appears to be the first type of result
where one uses a criterion to conclude decisively that a nonrandomized p–value,
namely the expected p–value, dominates several other p–values proposed in the
literature.

For the one–sided hypothesis, the expected p–value is the mid p–value which
has been recognized as a very good p–value in practice.

For the two–sided hypothesis, the expected p–value is new. However, for
the balanced two binomial sampling 2× 2 table, it reduces to the two–sided mid
p–value. Also for the unbalanced case, the expected p–value perform similarly to
the mid p–value.

In both cases, we also numerically show that the actual significance level of
the expected p–value is very close to the nominal level α. Hence the expected
p–value, although not exactly valid, is approximately valid. We feel that this is
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due to the fact that the expected p–value, although nonrandomized, mimics the
randomized p–value which has the actual significance levels exactly equal to α.

It is interesting that the unconditional estimated truth approach suggests a
conditional solution. It also handles the discreteness by Rao–Blackwellization.
Handling the discreteness properly can reduce the risk function a lot. In contrast,
conditioning has a smaller effect.

In this paper we have provided a theory which strongly supported the mid
p–values.
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Appendix

Proof of Theorem 4.1. We first assume that [z] > m (the proof for [z] < m

is similar and is omitted). For such a case, we prove that the p–value in (4.5) is
the smallest p–value among all (c1, c2) satisfying (4.3) such that H0 is rejected,
i.e., z /∈ (c1, c2). This and the assumption that [z] > m imply that

z ≥ c2. (A.1)

(Otherwise z ≤ c1 and [z] ≤ [c1] ≤ m by (4.4), which contradicts [z] > m.)
It follows directly from (4.3) that B1(c2) is decreasing in c2. Hence B1(z) ≤

B1(c2) ≤ c1 where the last inequality follows directly from the definition of
B1. The inequality and (A.1) imply that (B1(z), z) ⊇ (c1, c2). Hence Pθ0(Z /∈
(B1(z), z)) ≤ P (Z /∈ (c1, c2)), establishing the assertion for [z] > m.

Now for [z] = m. Note that in this case, the UMP unbiased test is nonunique,
since any pair of (c1, c2) ⊂ (m,m + 1) will satisfy (4.3) and will give the same
power as long as c1 − c2 is fixed. In order to define a specific nested sequence
of rejection regions, we focus on the rejection regions (c1, c2) when c1 = m. (It
leads to similar expected p–values for whatever choice of sequence.) Hence, we
end up with (4.7).
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