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Abstract: We consider the problem of testing the presence of alpha in linear factor

pricing models. We propose a robust spatial sign-based nonparametric test that

simultaneously alleviates two prominent difficulties encountered by most existing

methods, namely, those caused by the high dimensionality of the securities and the

departure from normality of the distributions. We rigorously show that the proposed

test has desired theoretical properties and demonstrate its superior performance

using Monte Carlo experiments. These results are established when the number of

securities is larger than the time dimension of the return series and the distribution

of the securities belongs to the family of elliptically symmetric distributions, which

extends the normal distribution to many well-known heavy-tailed distributions. We

apply the proposed test to the monthly returns on securities in stock markets,

showing that it outperforms existing tests.
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1. Introduction

This study focuses on testing the presence of alpha in linear factor pricing

models (LFPMs) when the number of securities is large relative to the time

dimension of the return series.

1.1. LFPM

The LFPM is one of the most fundamental tools in finance. Motivated

by arbitrage pricing theory (APT) (Ross (1976)), LFPMs explain how secu-

rity returns are related to market factors. Special forms of the LFPM include

the well-known single-factor model, that is, the Sharpe–Lintner capital asset

pricing model (CAPM) (Sharpe (1964); Lintner (1965)), Fama–French three-

factor model (Fama and French (1993)), and Fama–French five-factor model
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(Fama and French (2015)). Typically, each factor in these models has signifi-

cant economic meaning and pricing ability.

Let N be the number of securities, and T be the time dimension of the return

series of each security. Let the tth excess return of the ith security be Yit. The

LFPM takes the form

Yit “ αi ` β
J
i ft ` εit, (1.1)

for i “ 1, . . . , N , t “ 1, . . . , T , where ft ” pft1, . . . , ftpq
J P Rp contains p economic

factors at time t, αi is a scalar representing the security-specific intercept, βi ”

pβi1, . . . , βipq
J P Rp is a vector of multiple regression betas with respect to the p

factors, and εit is the corresponding idiosyncratic error term. The LFPM seeks

to explain differences in expected security returns in terms of how security betas

interact with systematic economic factors. Specifically, it predicts a security-

specific linear relationship between the expected security return and the economic

factors. This linear framework has great intuitive appeal and important practical

advantage of simplifying the modeling of security returns, as well as playing a

central role in modern theories of security pricing (Zhou (1993)).

The intercept term αi in (1.1) captures the excessive return of the ith security.

That is, other than the return associated with overall market factors, some securi-

ties may have systematic positive or negative returns due to characteristics of the

individual securities, termed excess returns. Thus, testingα ” pα1, . . . , αN q
J “ 0

allows us to test whether an excess return of a market portfolio exists. In addi-

tion, the test has a special meaning in a CAPM, and is also called the test of the

mean-variance efficiency (Gibbons, Ross and Shanken (1989)).

1.2. Feature and utility of our test

In this work, we devise a novel procedure to test the presence of alpha in an

LFPM. The test is applicable when the number of securities N is much larger than

the time dimension T , which is particularly relevant in modern finance, owing to

the large number of securities on the market. The test is also applicable when the

idiosyncratic errors of the LFPM follow an elliptically symmetric distribution,

or are symmetric and independent between securities. These distributions are

much more general than the familiar normal form, and include many heavy-tailed

distributions. This is an important property, because departures from normality

in such data tend to be the norm rather than exceptions (Mandelbrot (1963)).

The features of our test are established both theoretically and empirically, and

the test is shown to be especially beneficial when the number of securities is much

larger than the time dimension and the departure from normality is severe.
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Our test is a spatial sign-based procedure that belongs to a nonparametric

testing framework that often leads to robustness to departures from normality

(Oja (2010)). Numerous high-dimensional nonparametric testing methods have

been developed, including the high-dimensional multivariate sign- and rank-based

methods (Zou et al. (2014); Wang, Peng and Li (2015); Guo and Chen (2016);

Paindaveine and Verdebout (2016); Feng, Zou and Wang (2016); Feng and Liu

(2017)), designed to perform the simple task of testing whether a very long mean

vector is zero. However, the test for the presence of alpha examined here is

different and much more complex. Although it can be regarded as an extension

of the mean test that includes additive factors, the high-dimensionality of the

securities together with the additive factors causes much complexity, especially

in the case of departures from normality. To the best of our knowledge, there are

currently no high-dimensional nonparametric testing methods for LFPMs.

1.3. Literature review

The test of alpha in LFPMs has received much attention in the econometrics

literature. Early works on LFPMs routinely assume the normality of security

returns (Gibbons, Ross and Shanken (1989); MacKinlay and Richardson (1991);

Zhou (1993)). Unfortunately, there is strong evidence suggesting that the normal-

ity assumption is not always appropriate for security returns in practice. In fact,

numerous studies, since that of Mandelbrot (1963), have documented the heavy

tailness in security return distributions relative to the normal. Such tail thickness

is associated with the tendency of the security returns to take values of extremely

large magnitude with nonnegligible probability. If the sample nonnormalities are

severe, the size and/or power of the tests based on the normality assumption

may be seriously mismeasured, owing to the sensitivity of these methods to the

normality assumption (John and MacDonald (2012)).

This has prompted the econometrics community to derive additional test

procedures of alpha in LFPMs, and to study their limiting distributions without

the normality assumption. Indeed, several multivariate tests for LFPMs have

been proposed that are robust to departures from normality, including para-

metric procedures based on postulating a nonnormal distribution (Zhou (1993)),

semiparametric asymptotic procedures specific to elliptical distributions (Hodg-

son, Linton and Vorkink (2002)), nonnormal Bayesian procedures (Tu and Zhou

(2004)), and tests using large-sample generalized method of moments (GMM) or

bootstrap techniques (John and MacDonald (2012)).

To model the heavy tail property of security returns, an appropriate dis-

tribution family popular in the literatue is the elliptical distribution family. In
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fact, Chamberlain (1983) showed that a mean-variance analysis of the CAPM

is consistent with investors’ portfolio decision-making if and only if the returns

are elliptically distributed. Moreover, in the case of elliptical returns, the CAPM

remains valid theoretically. Hodgson, Linton and Vorkink (2002) state that it

is important to test security-pricing models for the case when the returns are

elliptically distributed. Indeed, the elliptical family contains not only the nor-

mal distribution, but also many well-known heavy-tailed distributions, including

Student’s t-distribution as well as the logistic, contaminated normal, and power

exponential distributions, among others. Hence, it offers a more flexible frame-

work for modeling security prices or returns. Hodgson, Linton and Vorkink (2002)

proposed exact tests for both the case in which the returns are elliptically dis-

tributed and the case in which the error terms are elliptically distributed. To

assess whether the returns are elliptically distributed, they further provide exact

tests based on measures of multivariate skewness and kurtosis, complementing

studies on the distributional properties of security returns. Beaulieu, Dufour and

Khalaf (2007) developed exact mean-variance efficiency tests for market portfolios

in the context of a CAPM, accommodating a wide class of possibly nonnormal

error distributions.

In modern financial markets, thousands of securities are traded every day,

which naturally raises the issue of testing when N is large or diverges to infinity.

In these situations, it is unrealistic to require T to increase with the number

of securities, because a large enough T is likely to increase the possibility of

structural changes in the factor loadings, which may destroy the identical distri-

bution assumption of the factors over time periods, as is commonly assumed in

LFPMs. Owing to these difficulties, none of the aforementioned tests are appli-

cable (Pesaran and Yamagata (2012)). To perform a test for alpha when N ą T ,

modern procedures include those of Pesaran and Yamagata (2012), Fan, Liao

and Yao (2015), Gagliardini, Ossola and Scaillet (2016), and Pesaran and Yama-

gata (2017). However, a common drawback of these methods is their inability to

handle many well-known heavy-tailed distributions, such as the multivariate Stu-

dent’s t-distribution and a mixture of multivariate normal distributions, which

are commonly used to model securities. Some of these methods also impose ad-

ditional assumptions on either the error structure or the loadings in an LFPM.

Note that Pesaran and Yamagata (2012, 2017) impose moment conditions only

on the distributions of the errors, which enables us to apply their tests to certain

nonnormal data. However, as mentioned in Zou et al. (2014), the error vector

from a multivariate t-distribution or from a mixture of multivariate normal distri-

butions does not satisfy these moment conditions. In addition, in our numerical
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experiments, we find that the statistical performance of these tests deteriorates

quickly when the nonnormality is severe, especially for heavy-tailed distributions;

see Section 4.

The rest of the paper is organized as follows. Section 2 describes the pro-

posed nonparametric testing procedure, and explains the formulation of the test

and its advantages. The theoretical results of the test, including the limiting null

distribution, power performance under the local alternative, and asymptotic rel-

ative efficiency, are established in Section 3. Monte Carlo experiment results are

presented in Section 4 to evaluate the finite-sample performance of the proposed

testing method compared with that of its main competitors. Finally, we conclude

the paper in Section 5. Extensive simulation results and all technical proofs are

relegated to the Supplementary Material, where we also showcase the superior

performance of the test by analyzing stock return data from the Standard &

Poor’s 500 and CSI 300 indices.

1.4. Notation

Let Yi¨ “ pYi1, . . . , YiT q
J P RT and εi¨ “ pεi1, . . . , εiT q

J P RT , for each

i “ 1, . . . , N , Yt “ pY1t, . . . , YNtq
J P RN and εt “ pε1t, . . . , εNtq

J P RN , for each

t “ 1, . . . , T , and Y “ pY1¨, . . . ,YN ¨q P RTˆN , ε “ pε1¨, . . . , εN ¨q P RTˆN , B “

pβ1, . . . ,βN q
J P RNˆp, F “ pf1, . . . , fT q

J P RTˆp, and 1T “ p1, . . . , 1q
J P RT . IT

is the T ˆ T identity matrix. Let MF “ IT ´FpFJFq´1FJ and h “ MF1T . For

any vector x, let }x} be the l2 norm of x, and let Upxq be the spatial sign function

defined as Upxq ” Ipx ‰ 0qx{}x}. In fact, the spatial sign is a multivariate

extension of the sign function. The function projects the vector onto a unit

sphere and is related to global contrast normalization. Here, “spatial” reflects

that the argument of the original “sign” function is one dimensional, whereas the

argument of the “spatial sign” function is multidimensional.

Throughout this paper, we assume that εt are independently and identically

distributed (i.i.d.) from an N -variate mean-zero elliptical distribution with prob-

ability density function

detpΣq´1{2gp}Σ´1{2ε}q, ε P RN , (1.2)

where Σ P RNˆN is a symmetric positive-definite scatter matrix and g is a

generator function. The elliptical distribution is characterized by the scatter

matrix and the generator function.
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2. Methodology

2.1. The proposed test

The proposed spatial sign test was motivated by the need to handle a large

number of securities (N ą T ) and the need to accommodate distributions of the

error εt beyond normality.

A natural treatment of the nonnormal distribution is to resort to nonpara-

metric testing procedures. To this end, following the sign-based test in Section

13.3 of Oja (2010), we first form rUt “ UtrΣ´1{2pYt´ rBftqu, for t “ 1, . . . , T , and

then construct a test statistic

Q0 ”
NhJprU1, . . . , rUT q

JprU1, . . . , rUT qh

hJh
.

Note that h is defined in Section 1.4 and represents the residual of the projection

of F to 1N , and hphJhq´1h is the projection matrix onto the column space of h.

Furthermore, rB and rΣ are the estimators of B and the scatter matrix of εt, Σ,

under H0, respectively, and are thus required to satisfy

T
ÿ

t“1

rΣ´1{2UtrΣ´1{2pYt ´ rBftquf
J
t “ 0, (2.1)

1

T

T
ÿ

t“1

UtrΣ´1{2pYt ´ rBftquUtrΣ
´1{2pYt ´ rBftqu

J “
1

N
IN . (2.2)

Note that (2.1) means that given rΣ, rB should minimize the objective function

QpBq “
řT
t“1 ||

rΣ´1{2pYt ´Bftq||, where || ¨ || denotes the l2 norm. Here, (2.2)

means that the sample spatial sign covariance matrix of rεt “ rΣ´1{2pYt ´ rBftq

should be p1{NqIN . These two equations are similar to the Hettmansperger–

Randles estimators of the location vector and the scatter matrix (Hettmansperger

and Randles (2002)).

Operationally, rB and rΣ are obtained using the following iterative algorithm:

(i) rεt Ð rΣ´1{2pYt ´ rBftq, t “ 1, . . . , T ;

(ii) rB Ð rB` rΣ1{2t
řT
t“1 Uprεtqf

J
t up

řT
t“1 ftf

J
t {}rεt}q

´1;

(iii) rΣ Ð N rΣ1{2tT´1
řT
t“1 UprεtqUprεtq

JurΣ1{2.

Note that the operation rΣ´1{2pYt ´ rBftq is a centering and standardization

step, which is performed inside the spatial-sign function Up¨q to achieve test in-

variance under affine transformations, leading to the notion of “inner centering
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and standardization” frequently used to describe the test statistic. The main

purpose of the spatial sign function Up¨q is to weaken the normality condition

required by other tests, such as Hotelling’s test (Oja (2010)). After these stan-

dardization steps, each row of prU1, . . . , rUT q is projected onto the linear space

spanned by the residual of projecting 1p onto the space spanned by f1, . . . fT .

Obviously, this projection is what cannot be explained by the factors, and needs

to be picked by an intercept. Hence, it may indicate that we need to include

the intercept term. In the spatial sign test described above, the average norm

squares of the residuals is used as a summary statistic to quantify the model’s

goodness-of-fit under H0.

Unfortunately, despite its robustness against the normality of the error dis-

tribution, the above test statistic is not feasible when N ą T , because the sample

scatter matrix rΣ is not invertible. The singularity of rΣ is a direct consequence

of the singularity of T´1
řT
t“1 UprεtqUprεtq

J in step (iii) above. To circumvent

this problem, we replace rB with the least-square estimator pB “ ppβ1, . . . , pβN q
J,

where, for each i “ 1, . . . , N , pβi ” pF
JFq´1FJYi¨ is the restricted OLS estima-

tor of the slope coefficient βi by letting αi “ 0. Then, we replace the residual

scatter matrix Σ with its diagonal matrix D, and weaken the requirement on the

estimator pD of D to

T
ÿ

t“1

UtpD´1{2pYt ´ pBftquf
J
t “ 0,

1

T

T
ÿ

t“1

diagrUtpD´1{2pYt ´ pBftquUtpD
´1{2pYt ´ pBftqu

Js “
1

N
IN .

Thus, the estimator pD can be obtained using the following iterative algorithm:

(i) ξt Ð pD´1{2
pεt, t “ 1, . . . , T ;

(ii) pD Ð N pD1{2diagtT´1
řT
t“1 UpξtqUpξtq

JupD1{2.

Note that rB is an estimator of B obtained by assuming that εt follows an

elliptical distribution. In contrast, the least-square estimator pB assumes that

εt follows a multivariate normal distribution. The most significant difference

between the two is that in the high-dimensional case, pB is available, but rB is

not. Furthermore, even when Σ is known, and hence rB becomes available, there

is still a difference. Specifically, pB is an unbiased estimator of B under H0,

whereas rB obtained from (2.1) and (2.2) is not unbiased, as mentioned in Section

13.3 of Oja (2010). In particular, when the dimension is very large, there is a

nonnegligible bias term in the proposed test statistic if we replace pB with rB.
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After obtaining pB and pD, we can form pUt “ UtpD´1{2pYt ´ pBftqu and con-

struct the test statistic similarly as before, yielding

Q1 ”
NhJppU1, . . . , pUT q

JppU1, . . . , pUT qh

hJh

“ NphJhq´1
T
ÿ

t1,t2“1,t1‰t2

ht1ht2 pU
J
t1
pUt2 `N

“ Q`N.

What we find is that although the above test statistic can be applied to

handle the case of N ą T , its performance gradually deteriorates as N increases.

For example, when N ą T 2, the performance is not satisfactory, owing to the

hidden bias in Q. The bias has two main sources. First, when constructing
pUt “ UtpD´1{2pYt ´ pBftqu, we used the diagonal matrix pD to replace pΣ. This

may incur an Opp
?
N{T q bias, which may be nonignorable in practice. This

phenomenon is observed in other testing problems as well; see, for example,

Srivastava, Katayama and Kano (2013) and Feng et al. (2015). Second, compared

with the problem without factors, an additional operation is needed to estimate

B, and replacing B with pB contributes another source of bias, because both
pD´1{2 and Yt´ pBft contain pB. The two sources of bias cannot be extracted and

analyzed separately.

Hence, we correct the bias using a bootstrap, leading to the following spatial

sign-based test statistic:

TSS “
Q´ δQ

b

2 {trpR2q

, (2.3)

where

Q “ NphJhq´1
T
ÿ

t1,t2“1,t1‰t2

ht1ht2 pU
J
t1
pUt2 , (2.4)

and for any t “ 1, . . . , T , ht is the tth element of h, pUt “ UtpD´1{2pYt ´ pBftqu.

Here, R “ D´1{2ΣD´1{2 is the correlation matrix, and

{trpR2q ”
N2

hJhphJh´ 1q

T
ÿ

t1,t2“1,t1‰t2

h2
t1h

2
t2

!

UppD´1{2
rε
pt1,t2q
t1 qJUppD´1{2

rε
pt1,t2q
t2 q

)2
,

where rε
pt1,t2q
t1 “ Yt1 ´

pB
pt1t2q
t1 ft1 , rε

pt1,t2q
t2 “ Yt2 ´

pB
pt1t2q
t2 ft2 , and pB

pt1t2q
t1 and pB

pt1t2q
t2

are the least-square estimators of B based on the first half and second half of

the sample tpYt, ftqutıt1,t2 , respectively. Let σT “
a

2trpR2q. As presented in
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the following theoretical analysis, the variance of Q is asymptotically described

by σ2
T under some specific conditions. The construction of {trpR2q follows the

estimation of the asymptotic variance in Feng, Zou and Wang (2016).

Here, TSS is a standardized version of Q, Q is a condensed version of Q1, and

Q1 is a high-dimensional substitute for Q0. Note that Q0 is the traditional spatial

sign test statistic for low-dimensional data proposed by Oja (2010). Intuitively,

Q is composed of the sum of the weighted inner products of pairs of the spatial

sign vectors ppUt1 , pUt2q, with weights ht1ht2 , where we use the leave-out strategy,

that is, we exclude the diagonal elements h2
t
pUJ
t
pUt. In particular, for each pUt,

the diagonal matrix pD´1{2 is multiplied to scale Yt´ pBft. Then, pUt extracts the

direction of the resulting vector pD´1{2pYt ´ pBftq.

We have not explained δQ in (2.3). Indeed, δQ is an assessment of EpQq, and

can be ignored in theory, because EpQq “ ot
a

2trpR2qu when minpT,Nq Ñ 8,

as shown in Theorem 1. However, to ensure the test precision for all relative

sizes of T and N , we suggest setting δQ “ pEpQq, instead of ignoring it. To

this end, a practical approach is to employ a bootstrap procedure. Specifically,

let qεi “ Yi ´ qαi ´ qβJi ft, where pqαi, qβiq is the least-square estimator of pαi,βiq

in model (1.1). Similarly to the above restricted OLS estimator pβi, we use the

normal OLS estimator qβi because it is an unbiased estimator of βi. We randomly

generate a Rademacher variable η˚it and form

Y˚
it “

pβJi ft ` qεitη
˚
it.

Then, the bootstrap test statistic Q˚ described in (2.4) can be computed based

on the bootstrap sample pY˚
it, ftq, for i “ 1, . . . , N and t “ 1, . . . , T . We repeat

the sampling procedure B “ 100 times, and use the average Q˚ as δQ.

We establish that TSS has a standard normal distribution when minpN,T q Ñ

8. Hence, we perform a level-α test by rejecting H0 when TSS is larger than the

p1´ αq quantile of the standard normal distribution.

2.2. Comparison with existing tests and advantages

Our test is the first high-dimensional nonparametric testing method forα “ 0

in LFPMs. It allows the number of securities N to be larger than the number

of observations T , which is most relevant in modern finance because of the large

number of securities that are priced every day. It also allows the error distribution

to be any elliptical distribution, which is arguably the most relevant distribution

family in security-pricing problems. For example, Hodgson, Linton and Vorkink

(2002) states the importance of testing security-pricing models for elliptically dis-
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tributed returns, and Chamberlain (1983) shows that a mean-variance analysis of

a CAPM is consistent with an investor’s portfolio decision-making if and only if

the returns are elliptically distributed. Moreover, in the case of elliptical returns,

the CAPM remains valid theoretically. Hodgson, Linton and Vorkink (2002) pro-

pose exact tests for elliptically distributed returns/errors. Indeed, the elliptical

family is very general, and contains not only the normal distribution, but also

many well-known heavy-tailed distributions, including the Student’s t, logistic,

contaminated normal, and power exponential distributions, among others, as well

as offering a more flexible framework for modeling security prices or returns.

In contrast, classical tests of α “ 0 in LFPMs apply only to a fixed N , while

requiring that T diverges. These tests rely mainly on multivariate statistical

analysis tools or time series treatments; see, for example, Jensen (1968), Douglas

(1968), Black, Jensen and Scholes (1972), Fama and MacBeth (1973), Gibbons,

Ross and Shanken (1989), and Fama and French (2004). Among these classical

methods, the GRS test (Gibbons, Ross and Shanken (1989)) is considered the

most popular. It is an exact multivariate F-test if the error distribution is normal,

but deviates from the F-test when the normality assumption is violated. The GRS

test has been extended by, among others, MacKinlay and Richardson (1991) and

Zhou (1993). However, most of these works require the number of securities N

to be smaller than the number of observations T , and that the errors follow a

normal distribution. These two drawbacks lead to invalid testing results when

either one of these requirements is violated. Hence, the test is often inapplicable

for analyzing modern finance problems, owing to the large number of securities

and the frequently observed heavy-tailed behavior of many securities (Mandelbrot

(1963)).

To relax the normality assumption, several procedures were proposed to an-

alyze the large sample property of the test statistic, which no longer has an exact

F distribution. For example, John and MacDonald (2012) used a large-sample

GMM and bootstrap technique, Hodgson, Linton and Vorkink (2002) derived

a semiparametric asymptotic procedure specific to elliptical distributions, Zhou

(1993) prescribed parametric procedures based on postulating a non-normal dis-

tribution, and Tu and Zhou (2004) used a non-normal Bayesian procedure. How-

ever, these procedures still apply only in the fixed N setting.

Recently, Pesaran and Yamagata (2012), Fan, Liao and Yao (2015), Gagliar-

dini, Ossola and Scaillet (2016), and Pesaran and Yamagata (2017) proposed

several new methods that allow N to grow with T . However, these methods still

impose various assumptions on the error distribution that do not contain many

well-known heavy-tailed distributions, such as the multivariate Student’s t and
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the mixture of multivariate normal distributions.

In addition to the flexibility of allowing a large N and an elliptical error

distribution, our test is also more powerful, sometimes much more powerful,

than competing tests also designed for large N , as we show in our numerical

experiments.

3. Theoretical Properties

We now establish the theoretical level and power properties of our test.

First, we state several required assumptions.

(A1) The p-dimensional vector of common factors ft is distributed independently

of the errors εit1 , for all i “ 1, . . . , N and all t, t1 “ 1, . . . , T . The number

of factors p is fixed and fJt ft ď K ă `8, for a constant K and all t “

1, . . . , T . The matrix T´1p1T ,Fq
Jp1T ,Fq is positive definite, and as T Ñ8,

T´11JTMF1T ą τmin for some positive constant τmin.

(A2) The error vectors ε1, . . . , εT are i.i.d. from the N -variate mean-zero elliptical

distribution with probability density function

detpΣq´1{2gp}Σ´1{2ε}q, ε P RN .

Assumption (A1) ensures the independence between the factors and the er-

rors. It also ensures the uniform boundedness of fJt ft. These two conditions are

basic assumptions that appear in many related studies, such as in Assumption 1

of Pesaran and Yamagata (2017). The remaining requirements on F and MF in

Assumption (A1) are similar to those required in Condition (C3) of Lan, Feng

and Luo (2018) and in Assumption 1 of Pesaran and Yamagata (2012, 2017).

Note that, similarly to the corresponding assumption in Pesaran and Yamagata

(2017), we do not require mutual independence of ft, that is, temporal depen-

dence between ft can be allowed, and the restriction is imposed using conditions

on the matrix MF. Note too that different forms of restrictions on the temporal

dependence of ft appear in the literature. For example, Fan, Liao and Yao (2015)

allows the factors ft to be weakly correlated across t, but satisfy the strong mixing

condition, that is, Assumption 4.1 (iii) of Fan, Liao and Yao (2015).

Assumption (A2) allows for weak or strong error cross-correlations once the

effects of the factors are removed from the returns on individual securities, charac-

terized by the scatter matrix Σ, under the elliptical distribution framework (1.2).

Compared with the mixed weak-factor spatial framework imposed in Pesaran and

Yamagata (2017), the family of elliptical distributions is more general and can
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contain many more types of heavy-tailed distributions, such as the Student’s t, lo-

gistic, contaminated normal, and power exponential distributions, among others

(Zou et al. (2014)). It also allows a mixture of these distributions. As mentioned

in Pesaran and Yamagata (2017), such residual interdependencies can arise ow-

ing to spatial or other network-type spillover effects not captured by the common

factors ft.

Furthermore, we acknowledge that Assumption (A2) still requires that the

errors are symmetrically distributed, which is not always satisfied in practice.

We assume the symmetry to facilitate the mathematical derivations. Indeed,

there are some asymmetric extensions in the literature from the family of ellip-

tical distributions (Fang (2003); Genton and Loperfido (2005)). However, tests

based on spatial sign functions under asymmetric distributions require more in-

depth study, because establishing the corresponding asymptotic theory will be

challenging.

Additionally, we impose the following assumption on Σ.

(A3) a. trpR4q “ ottr2pR2qu;

b. T´2N2{trpR2q “ Op1q and logN “ opT q;

c. trpR2q ´N “ opT´1N2q.

Here, R ” D´1{2ΣD´1{2 is the correlation matrix.

Assumption (A3)-a is used in Feng and Sun (2016), and holds automatically if

all the eigenvalues of R are bounded, which is commonly assumed in the literature

on estimating high-dimensional covariance matrices (Bickel and Levina (2008)).

Conditions (A3)-b and (A3)-c are used in Feng, Zou and Wang (2016) to restrict

the difference between εJt εt and εJt Rεt, thus ensuring the consistency of the

estimators of D. The three conditions in Assumption (A3) ensure that the error

terms are weakly cross-sectionally correlated through the returns on individual

securities. If we assume trpR2q “ OpNq, Conditions (A3)-b,c reduce to N “

OpT δq, where δ P p1, 2q.

Finally, we impose an assumption on the local alternative intercept vector

α.

(A4) αTD´1α “ Opc´2
1 T´1N´1σT q and αTD´1ΣD´1α “ opc´2

1 T´1N´1σ2
T q,

where c1 “ Ep}Σ´1{2εt}
´1q and σT “

a

2trpR2q.

Assumption (A4) is similar to Condition (C4) of Feng and Sun (2016), which

serves as a high-dimensional extension of the classical local alternative hypothesis.

In fact, Assumption (A4) restricts the difference between α and 0 to be not too

large, which enables the variance of Q to be asymptotically described by σ2
T .
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We now establish the theoretical properties of our testing procedure in terms

of its null and alternative distributions. These properties ensure the validity of

the test and enable the power calculation in practice. The proof techniques are

quite different to those of existing works, such as Feng, Zou and Wang (2016).

For example, we investigate the effect of estimating the residuals, handle the

additional weights related to the factors, and analyze the influence of the factors

on the unbiasedness of the statistic. These analyses do not appear in the literature

and require novel treatments.

Proposition 1. Under Assumptions (A1)–(A3) and H0, when minpT,Nq Ñ 8,

Q{σT
D
Ñ Np0, 1q. Here, σT is defined in Assumption (A4).

The trace trpR2q, which is needed in the construction of the test statistic

TSS , can be assessed using

{trpR2q ”
N2

hJhphJh´ 1q

T
ÿ

t1,t2“1,t1‰t2

h2
t1h

2
t2

!

UppD´1{2
rε
pt1,t2q
1 qJUppD´1{2

rε
pt1,t2q
2 q

)2
.

Recall that in rε
pt1,t2q
1 and rε

pt1,t2q
2 , pB

pt1t2q
1 and pB

pt1t2q
2 are the least-square esti-

mators of B based on the first-half and second-half, respectively, of the sample

tpYt, ftqut“t1,t2 . The purpose of splitting the samples is to ensure the indepen-

dence of pB
pt1t2q
1 and pB

pt1t2q
2 , thus avoiding additional bias.

Proposition 2. Under Assumptions (A1)–(A3), {trpR2q{trpR2q
P
Ñ 1 when

minpT,Nq Ñ 8.

The results in Propositions 1 and 2 prompt us to construct the test statistic in

(2.3) and obtain the limiting null distribution of the test statistic TSS in Theorem

1.

Theorem 1. Under Assumptions (A1)–(A3) and H0, when minpT,Nq Ñ 8,

TSS
D
Ñ Np0, 1q.

Theorem 1 allows us to perform a level-α test by rejecting the null hypothesis

when TSS ą z1´α, where z1´α is the p1´ αq quantile of Np0, 1q.

We further study the asymptotic distribution of TSS under the alternative

hypothesis.

Theorem 2. Under Assumptions (A1)–(A4), when minpT,Nq Ñ 8, TSS
D
Ñ

NpµSS , 1q, where µSS “ limminpT,NqÑ8 σ
´1
T φ2, φ2 “ ωTNc2

1α
JD´1α and c1 “

Ep}Σ´1{2εt}
´1q.
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Here, ω “ 1 ´ Epftq
J

tEpftf
J

t qu
´1Epftq P p0, 1s. Under Assumption (A1),

we have T´1hJh Ñ ω by Lemmas B.1 and E.2 of Fan, Liao and Yao (2015).

Theorem 2 is used to compute the asymptotic power function of TSS , which is

equal to

βSSpαq “ lim
minpT,NqÑ8

Φ

"

´ zα `
ωTNc2

1α
JD´1α

σT

*

.

According to Theorem 6 of Pesaran and Yamagata (2017), the asymptotic

power function of their proposed test, abbreviated as the PY test, is

βPY pαq “ lim
minpT,NqÑ8

Φ

ˆ

´ zα `
ωTNc´1

2 αJD´1α

σT

˙

,

where c2 “ Ep}Σ´1{2εt}
2q. Hence, the asymptotic relative efficiency of the pro-

posed SS test with respect to the PY test is

AREpSS,PYq “ tEp}Σ´1{2εt}
´1qu2Ep}Σ´1{2εt}

2q

ě tEp}Σ´1{2εt}
´1qu2tEp}Σ´1{2εt}qu

2 ě 1.

The above expression of βSSpαq indicates that the SS test is consistent (in

the sense that its power tends to one) if ωTNc2
1α
JD´1α{σT Ñ 8. In par-

ticular, the power function of the SS test before the limit operation has the

same order as that of the PY test. Similarly to the PY test, the SS test has

power even if the number of securities with nonzero alphas does not increase

with N . For example, if αJD´1α — N δα , T — Nd, and trpR2q — OpNq, then

ωTNc2
1α
JD´1α{σT — N δα`d´1{2, where the condition trpR2q — OpNq appears

in Pesaran and Yamagata (2017). Here, η1 — η2 means that η1 and η2 are of the

same order. In such a situation, the SS test is still consistent if δα ` d ą 1{2,

which does not require δα ą 0.

To illustrate the above asymptotic power functions more intuitively, we con-

sider them in some special cases. According to Appendix 3 in the supplementary

material of Zou et al. (2014), when εt „ tp0, IN , vq with v ą 2, we have c1 “

pΓtpv ` 1q{2u{pv1{2Γpv{2qqqpΓtpN ´ 1q{2u{ΓpN{2qq, c2 “ pv{pv ´ 2qqN , σT “
?

2N , and

βSSpαq “Φ

#

´zα ` lim
minpT,NqÑ8

ωT

c

N

2

Γ2tpv ` 1q{2u

vΓ2pv{2q

Γ2tpN ´ 1q{2u

Γ2pN{2q
αJα

+

“Φ

"

´zα ` lim
minpT,NqÑ8

ωT
?

2N

2Γ2tpv ` 1q{2u

vΓ2pv{2q
αJα

*

,
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βPY pαq “Φ

"

´zα ` lim
minpT,NqÑ8

ωT
?

2N

v ´ 2

v
αJα

*

.

Hence,

AREpSS,PYq “
2

v ´ 2

Γ2tpv ` 1q{2u

Γ2pv{2q
ą 1.

Note that because the asymptotic power function of the power enhancement

test proposed by Fan, Liao and Yao (2015), abbreviated as the PE test, is not

derived by the authors, we cannot provide the theoretical relative efficiency of the

SS test with respect to the PE test. However, we do provide numerical results

to show the superiority of our SS test. Finally, although the test procedure in

Gagliardini, Ossola and Scaillet (2016) can also be used to perform the test, as

mentioned in Pesaran and Yamagata (2017), it does not retain the test level under

the null, theoretically or empirically. For this reason, we do not include it here.

4. Monte Carlo Experiments

We now conduct Monte Carlo experiments to compare the finite-sample per-

formance of the proposed SS test with that of several existing methods.

4.1. Simulation design

Simulation 1 This simulation is designed to mimic the commonly used Fama–

French three-factor model, where the factors ft have strong serial correlation

and heterogeneous variance. Specifically, we consider a modified version of the

example studied in Section 5.1 of Pesaran and Yamagata (2017). The response

Yit is generated according to the following LFPM with p “ 3:

Yit “ αi `

p
ÿ

j“1

βijftj ` εit,

where the three factors ft1, ft2, and ft3 are the three Fama–French factors (Market

factor, SMB, HML). We generate each factor from an autoregressive conditional

heteroskedasticity process and the GARCH(1,1) model. Specifically,

ft1 “ 0.53` 0.06ft´1,1 ` h
1{2
t1 ζt1, Market factor,

ft3 “ 0.19` 0.19ft´1,2 ` h
1{2
t2 ζt2, SMB factor,

ft3 “ 0.19` 0.05ft´1,3 ` h
1{2
t3 ζt3, HML factor,

where for j “ 1, 2, 3, ζtj are generated independently from a standard normal

distribution, and the variance term htj is generated as follows:
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ht1 “ 0.89` 0.85ht´1,1 ` 0.11ζ2
t´1,1, Market factor,

ht2 “ 0.62` 0.74ht´1,2 ` 0.19ζ2
t´1,2, SMB,

ht3 “ 0.80` 0.76ht´1,3 ` 0.15ζ2
t´1,3, HML.

The above process is simulated over the periods t P t´49, . . . , 0, 1, . . . , T u with

the initial values f´50,j “ 0 and h´50,j “ 1, for any j P t1, 2, 3u, and the generated

data that belong to the periods t1, . . . , T u are extracted as the simulation data.

To verify the robustness of the proposed testing method in terms of non-

normal or heavy-tailed distributions, we generate εt from the following three

distribution settings:

(I) Multivariate normal distribution: εt „ Np0,Σq;

(II) Multivariate t-distribution: εt „ tN p0,Σ, 3q;

(III) Multivariate mixture normal distribution: εt are generated from γNN p0,Σq`

p1´ γqNN p0, 9Σq, denoted by MNN,γ,9p0,Σq; γ is fixed to be 0.8.

Here, the covariance matrix Σ “ D1{2RD1{2, with D “ diagtσ2
1, . . . , σ

2
Nu and

R “ IN ` bb
J ´ B̌, where σ2

i are generated independently from Up20, 100q,

b “ pb1, . . . , bN q
J, and B̌ “ diagtb21, . . . , b

2
Nu. To generate different degrees of

error cross-sectional dependence, we generate the first and last rN δγ s elements of

b independently from Up0.7, 0.9q, and set the remaining elements in the middle to

be zero, where the exponent δγ “ 0.25, 0.5, 0.6. Here, δγ “ 0.25 corresponds to the

case of weak correlation, and δγ “ 0.6 corresponds to that of strong correlation.

We conducted the simulations for T “ 50, 100, N “ 100, 200, 500, and p “ 1, 3, 5.

Finally, the three groups of coefficients corresponding to the three factors

βi1, βi2, and βi3 are generated independently from Up0.2, 2q, Up´1, 1.5q, and

Up´1.5, 1.5q, respectively. Then, we set α “ 0 under the null hypothesis, and

under the alternative hypothesis, we consider two cases: (1) the dense case: we

generate αi independently from Np0, 1q for i “ 1, 2, . . . , rN0.8s, keeping the re-

maining αi zero; (2) the sparse case: we generate αi independently from Np0, 16q

for i “ 1, 2, . . . , rN0.3s, keeping the remaining αi zero. Here, r¨s denotes the

integer part of a real number.

Note that to provide a comprehensive picture, we consider additional simu-

lation settings in the Supplementary Material.
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4.2. Simulation results

We now present the results of SS, PY, and PE under Simulation 1, where we

generate each factor with an autoregressive conditional heteroskedasticity process

to mimic the commonly used Fama–French three-factor model. All results are

based on 1,000 replications. The results of the three testing methods in terms of

both empirical size and empirical power are summarized in Tables 1 and 2.

Table 1 summarizes the results of Simulation 1 for T “ 50. It indicates

that if the error of the LFPM has a multivariate normal distribution, all tests

in the comparison exhibit similar power performance, and in most cases, the

proposed SS test controls the empirical size better than the two competitors do,

especially when N is large. Furthermore, if the error follows a heavy-tailed or

nonnormal distribution, such as the Student’s t or mixture of multivariate normal

distributions, regardless of which LFPM is the true mean model, the SS test

outperforms the two competitors in terms of both empirical size and empirical

power for both the dense and the sparse cases, especially in high-dimensional

situations. This indicates that the SS test is much more robust to departures

from normality than is PY or PE, as is expected based on their construction.

Table 2 summarizes the results of Simulation 1 for T “ 100. It indicates that

when T increases to 100, the results are similar to those in Table 1, and the

advantage of the SS test becomes even more prominent.

Note that the effective sample size, that is, the degrees of freedom of the test

statistic, is v “ T ´ p´ 1, a monotonically decreasing function of p, which leads

to the result shown in Tables 1 and 2 that the power decreases when p increases

from one to five for each testing procedure.

In summary, the experiment results all illustrate the robustness of the SS

test to departures from normality of the error distribution, and show the test

consistency and better power performance than that of the PY and PE tests for

high-dimensional securities in LFPMs.

5. Discussion

In this paper, we have proposed a robust test, SS, for testing the presence

of alpha in LFPMs that aims to simultaneously alleviate the difficulties of high-

dimensional securities and a departure from normality of the error distribution.

The theoretical properties of the proposed SS test are established for the family

of elliptical distributions, which is a much broader distribution family than the

commonly studied mixed weak-factor spatial representation because it includes

heavy-tailed distributions. These theoretical results are illustrated in a Monte
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Table 1. Size and power of the SS, PY, and PE tests in Simulation 1 with T “ 50.

Scenarios Np0,Σq tN p0,Σ, 3q MNp,γ,9p0,Σq

δγ δγ δγ
N Method 0.25 0.5 0.6 0.25 0.5 0.6 0.25 0.5 0.6

Sizes

100 SS 0.049 0.048 0.044 0.043 0.045 0.056 0.054 0.042 0.055

PY 0.049 0.055 0.061 0.045 0.047 0.062 0.050 0.056 0.066

PE 0.064 0.052 0.036 0.040 0.028 0.024 0.055 0.033 0.029

200 SS 0.051 0.052 0.053 0.048 0.044 0.052 0.043 0.047 0.057

PY 0.050 0.049 0.070 0.073 0.057 0.051 0.086 0.057 0.070

PE 0.055 0.033 0.021 0.037 0.033 0.021 0.085 0.050 0.034

500 SS 0.050 0.046 0.060 0.045 0.046 0.044 0.042 0.048 0.051

PY 0.062 0.054 0.066 0.088 0.092 0.069 0.103 0.115 0.101

PE 0.043 0.035 0.016 0.061 0.054 0.034 0.091 0.071 0.045

dense

100 SS 0.60 0.54 0.49 0.43 0.40 0.33 0.45 0.39 0.34

PY 0.64 0.55 0.48 0.17 0.17 0.12 0.18 0.17 0.17

PE 0.66 0.56 0.47 0.17 0.12 0.11 0.17 0.14 0.10

200 SS 0.75 0.69 0.58 0.52 0.44 0.38 0.52 0.46 0.36

PY 0.80 0.70 0.58 0.20 0.19 0.16 0.24 0.22 0.16

PE 0.80 0.70 0.55 0.18 0.15 0.10 0.22 0.19 0.11

500 SS 0.93 0.87 0.74 0.54 0.47 0.42 0.55 0.51 0.40

PY 0.94 0.91 0.76 0.26 0.22 0.21 0.31 0.28 0.25

PE 0.94 0.89 0.79 0.21 0.19 0.14 0.27 0.22 0.15

sparse

100 SS 0.57 0.52 0.48 0.42 0.40 0.34 0.50 0.47 0.41

PY 0.59 0.54 0.48 0.24 0.20 0.18 0.35 0.32 0.30

PE 0.56 0.51 0.44 0.20 0.18 0.14 0.25 0.18 0.18

200 SS 0.58 0.53 0.44 0.39 0.38 0.32 0.50 0.45 0.37

PY 0.60 0.54 0.46 0.20 0.19 0.14 0.36 0.31 0.27

PE 0.58 0.50 0.40 0.18 0.16 0.11 0.24 0.20 0.13

300 SS 0.60 0.54 0.40 0.33 0.31 0.26 0.46 0.41 0.32

PY 0.64 0.57 0.45 0.18 0.18 0.14 0.29 0.29 0.23

PE 0.61 0.54 0.36 0.15 0.12 0.07 0.20 0.16 0.10

Carlo experiment, the findings of which suggest that the proposed SS test is much

more robust to departures from normality than are the two prominent examples

of existing methods, PY and PE, in terms of both empirical size and empirical

power. The proposed test is used to analyze a data set of monthly returns on

securities in the S&P 500 index over the period 2005–2018, where a large number

of securities exhibit a nonnormal distribution property. As suggested by the

results of the application for the CAPM and the Fama–French three-factor model,
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Table 2. Size and power of the SS, PY, and PE tests in Simulation 1 with T “ 100.

Scenarios Np0,Σq tN p0,Σ, 3q MNp,γ,9p0,Σq

δγ δγ δγ
N Method 0.25 0.5 0.6 0.25 0.5 0.6 0.25 0.5 0.6

Sizes

100 SS 0.046 0.054 0.051 0.040 0.052 0.052 0.053 0.051 0.054

PY 0.076 0.059 0.068 0.034 0.032 0.038 0.048 0.051 0.058

PE 0.036 0.027 0.008 0.034 0.014 0.008 0.056 0.025 0.012

200 SS 0.057 0.049 0.056 0.043 0.054 0.058 0.053 0.052 0.046

PY 0.051 0.042 0.061 0.038 0.027 0.051 0.063 0.044 0.057

PE 0.052 0.021 0.005 0.027 0.010 0.007 0.053 0.027 0.006

500 SS 0.047 0.049 0.048 0.046 0.043 0.052 0.042 0.052 0.057

PY 0.050 0.050 0.056 0.040 0.033 0.040 0.077 0.062 0.065

PE 0.045 0.015 0.002 0.023 0.020 0.018 0.049 0.022 0.011

dense

100 SS 0.97 0.95 0.94 0.89 0.85 0.81 0.86 0.84 0.79

PY 0.96 0.94 0.90 0.33 0.30 0.29 0.45 0.42 0.35

PE 0.97 0.93 0.90 0.35 0.26 0.21 0.48 0.37 0.27

200 SS 0.99 0.99 0.98 0.94 0.94 0.91 0.96 0.92 0.91

PY 1.00 0.99 0.97 0.40 0.38 0.29 0.54 0.47 0.40

PE 0.99 0.99 0.99 0.35 0.30 0.27 0.56 0.47 0.35

500 SS 1.00 1.00 1.00 0.97 0.98 0.96 0.99 0.99 0.97

PY 1.00 1.00 1.00 0.43 0.40 0.31 0.65 0.62 0.46

PE 1.00 1.00 1.00 0.36 0.34 0.29 0.63 0.57 0.47

sparse

100 SS 0.77 0.75 0.74 0.71 0.70 0.67 0.74 0.70 0.66

PY 0.80 0.75 0.73 0.39 0.35 0.30 0.58 0.54 0.49

PE 0.78 0.73 0.70 0.34 0.32 0.27 0.49 0.37 0.32

200 SS 0.80 0.79 0.72 0.72 0.71 0.63 0.76 0.75 0.65

PY 0.81 0.79 0.71 0.34 0.30 0.28 0.56 0.53 0.48

PE 0.82 0.78 0.69 0.31 0.27 0.21 0.39 0.38 0.28

500 SS 0.85 0.81 0.72 0.76 0.71 0.65 0.79 0.76 0.66

PY 0.87 0.81 0.74 0.27 0.22 0.22 0.55 0.49 0.42

PE 0.87 0.83 0.72 0.20 0.15 0.14 0.34 0.31 0.20

the proposed SS test is more inclined to reject the null hypothesis than is PE or

PY, benefiting from its superior power. Pesaran and Yamagata (2017) further

considered a mixed weak-factor spatial framework that allows unobserved factors.

It would be interesting to extend our method to this more general setting as well.
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Supplementary Material

The online Supplementary Material contains additional numerical results, a

real-data analysis, and the technical proofs.
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