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Abstract: A multi-step prediction procedure for nonlinear autoregressive (NLAR)

models based on empirical distributions is proposed. Calculations involved in this

prediction scheme are rather simple. It is shown that the proposed predictors are

asymptotically equivalent to the exact least squares multi-step predictors, which

are computable only when the innovation distribution has a simple known form.

Simulation studies are conducted for two- and three-step predictors of two NLAR

models.
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1. Introduction

The nonlinear autoregressive (NLAR) model is a natural extension of the
linear autoregressive (LAR) model and has attracted considerable interest in
recent years. Important results on this model can be found in the literature; for
example, Tong (1990), Tjφstheim (1990) and Tiao and Tsay (1994). Most of the
important results for the LAR model have been extended to the NLAR model,
except for the multi-step prediction which is one of the most important topics in
time series analysis. This lack might be due to the difficulty or even impossibility
of calculating the exact least squared multi-step predictors for NLAR models.

For linear models with martingale difference innovations, the least squares
(linear) multi-step predictors depend on the parameters of the models and the
historical observations, but not on the innovation distributions (see Box and
Jenkins (1976)). Therefore, when the parameters of the LAR models are known,
or good estimates are available, the multi-step predictors can be computed di-
rectly from explicit expressions and their limiting properties can be derived from
those formulae. However, such is not the case for NLAR models. It will be shown
that, under the assumption of i.i.d. innovations, the LAR model is the only time
series model whose multi-step prediction is independent of the innovation dis-
tribution. Therefore, when the innovation distribution is unknown, one cannot
calculate the exact least squares multi-step predictors for NLAR models.
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Numerical and Monte Carlo methods are proposed in the literature to com-
pute the least squares m-step (m > 1) predictors (see Pemberton (1987) or Tong
(1990), p.346) when both the nonlinear regression function and the innovation
distribution are known. However, the use of these approaches is not very realistic
since the innovation distribution is unknown in most situations. The purpose of
the present study is to propose an empirical scheme to evaluate the least squares
multi-step predictors for the NLAR models and to investigate the asymptotics
of the newly proposed predictors. We confine ourselves to the discussion of the
multi-step prediction when the NLAR model is given but the innovation distribu-
tion is unspecified. In Section 2 we propose a simple multi-step prediction method
for NLAR models by using the empirical distribution of the innovation. In Sec-
tion 3 we show that the proposed prediction scheme is asymptotically equivalent
to the exact least squares multi-step prediction. In Section 4 simulation results
are presented for two- and three-step prediction of two kinds of NLAR models.
In Section 5 further discussions and generalizations are given.

2. Prediction Based on the Empirical Distributions

We first consider the following NLAR model of order one:

xt = ϕ(xt−1) + εt, t = 0,±1,±2, . . . , (2.1)

where εt’s are i.i.d. random variables with Eεt = 0, Eε2t < ∞ and an unknown
distribution F , and the innovation εt is independent of xt−1. The time series xt

is assumed to be causal, that is, xt is a function of εt, εt−1, . . . Throughout this
paper, we assume that the regression function ϕ is known and a set of historical
data x1, x2, . . . , xn are available. It is not difficult to see that all the results of
this paper remain true when the regression function ϕ is replaced by a consistent
estimator. The latter is well studied in the literature (Lai and Zhu (1991)) and
will not be considered here.

For one-step prediction the least squares predictor of xn+1, with x1, . . . , xn

being given, is

x̂n+1 = E(xn+1|xn, . . . , x1) = E{ϕ(xn) + εn+1|xn} = ϕ(xn). (2.2)

Under model (2.1), the calculation of x̂n+1 is easy and is independent of the
distribution of εn+1. This is an important property of one-step-ahead prediction
for both linear and non-linear AR models.

However, for multi-step prediction, this is true only for linear models. Indeed,
if ϕ is linear, say ϕ(x) = ax+ b, then from (2.2) we have

x̂n+2 =
∫

[a(axn + b+ ε) + b]dF (ε)

= (a2xn + ab+ b) + a

∫
εdF (ε)

= (a2xn + ab+ b) = ax̂n+1 + b. (2.3)
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By induction, the l-step ahead predictor of the linear model can also be computed
as

x̂n+l = ax̂n+l−1 + b = · · · = alxn + al−1b+ · · · + ab+ b. (2.4)

Note that formula (2.3) does not require knowledge of the distribution F except
for its first two moments.

For non-linear models the situation becomes more complicated. For example,
the two-step least squares predictor for model (2.1) is

x̂n+2 = E(xn+2|xn, . . . , x1) = E{ϕ(xn+1) + εn+2|xn}
= E{ϕ(ϕ(xn) + εn+1)|xn} =

∫
ϕ(ϕ(xn) + ε)dF (ε), (2.5)

where F (·) is the distribution of εt. Now the right hand side of (2.5) depends
on F , and can not be further reduced, as in (2.3). Indeed, linear models are the
only models with the property that the multi-step prediction is independent of
the innovation distribution.

In fact if the two-step prediction is independent of F , the right side of (2.5)
remains the same when F is concentrated at a and −a with equal probabilities,
for any x and a ≥ 0. Thus, by taking a > 0 and = 0 respectively, we obtain

ϕ(x+ a) + ϕ(x− a) = 2ϕ(x).

This, together with measurability of ϕ, implies ϕ is a linear function.
We propose a prediction procedure when the innovation distribution is un-

known. In most practical situations a set of historical records x1, . . . , xn of the
NLAR model (2.1) is available and, in general, the regression function ϕ is either
known or can be well estimated. Thus throughout this paper we assume that ϕ is
known. Hence, to compute the multi-step predictors, one needs a good estimator
of the innovation distribution. Note that when ϕ is given, the innovations {εt}
can be calculated exactly from the data since εk = xk−ϕ(xk−1), k = 2, 3, . . . , n.
Then, the empirical distribution Fn of the innovations ε1, . . . , εn can be taken as
an estimate of the innovation distribution, where

Fn(x) =
1

n− 1

n∑
k=2

I(εk < x), (2.6)

and I(εk < x) denotes the indicator function of the set (εk < x). We propose

x̂∗n+2 =
1

n− 1

n∑
k=2

ϕ(ϕ(xn) + εk) (2.7)

as our two-step predictor.
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The prediction procedure (2.7) can be easily extended to the l-step prediction
for l > 2. For instance, for three-step prediction, the exact least squares predictor
is

x̂n+3 =
∫ ∫

ϕ(ϕ(ϕ(xn) + ε) + ε
′
)dF (ε)dF (ε

′
). (2.8)

As at (2.6), we take

x̂∗n+3 =
1

(n− 1)(n − 2)

∑ ∑
2≤k �=j≤n

ϕ(ϕ(ϕ(xn) + εk) + εj) (2.9)

as the three-step predictor. In general, the exact l-step least squares predictor is

x̂n+l =
∫

· · ·
∫
ϕ(ϕ(· · · (ϕ(xn) + ε1) + · · ·) + εl−1)dF (ε1) · · · dF (εl−1)

and our proposed predictor is

x̂∗n+l =
(n− l)!
(n − 1)!

∑
(l−1,n)

ϕ(ϕ(· · · (ϕ(xn) + εi1) + · · ·) + εil−1
), (2.10)

where the summation
∑

(l−1,n) runs over all possible (l − 1)-tuples of distinct
i1, . . . , il−1.

Finally, we describe the conditional variance of xn+2 given x1, . . . , xn, useful
for interval prediction of xn+2. Note that

Var (xn+2|x1, . . . , xn) = Var (xn+2|xn) =
∫
ϕ2(ϕ(xn) + ε)dF (ε) − x̂2

n+2. (2.11)

Following the same idea as in the construction of the predictors, we may replace
the unknown F in (2.11) by the empirical distribution Fn and obtain the following
estimator of V ar(xn+2|xn):

Var ∗(xn+2|xn) =
1

n− 1

n∑
k=2

ϕ2(ϕ(xn) + εk) − (x̂∗n+2)
2. (2.12)

3. Asymptotic Equivalence of x̂∗n+l and x̂n+l

In this section, we show that the proposed l-step predictor x̂∗n+l is asymp-
totically equivalent to the exact least squares predictor x̂n+l.

As an illustration we first consider the LAR model, say ϕ(x) = ax + b. By
(2.6) and (2.3),

x̂∗n+2 =
1

n− 1

n∑
k=2

{a(axn + b+ εk) + b}

= a2xn + ab+ b+
1

n− 1

n∑
k=2

aεk = x̂n+2 +
1

n− 1

n∑
k=2

aεk. (3.1)
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It is trivial that x̂∗n+2 − x̂n+2 → 0 a.s. by the strong law of large numbers. That
is, the proposed predictor x̂∗n+2 is asymptotically equivalent to x̂n+2.

For the NLAR models, we can not rely on a formula similar to (3.1). Fur-
thermore, as mentioned earlier, the variable xn is dependent on the innovations
ε2, ε3, . . . , εn. Thus the summands in (2.7) are no longer independent of each
other. Fortunately the following lemma, interesting in its own right, enables us
to establish the equivalence.

Lemma 3.1. Suppose that {ε1, ε2, . . . , } is a sequence of iid. random vari-
ables and X is a random p-vector possibly be dependent on {ε1, ε2, . . . , } Let
ψ(x, e1, . . . , ek) be a measurable function in Rp+k which is uniformly equi-
continuous in x, that is, for each given η > 0 there is a constant δ > 0 such
that

sup
e1,...,ek

|ψ(x1, e1, . . . , ek) − ψ(x2, e1, . . . , ek)| < η, (3.2)

when ‖x1 − x2‖ ≤ δ, where ‖ · ‖ is any norm equivalent to the Euclidean norm.
Assume that for each fixed x, E|ψ(x, ε1, . . . , εk)| <∞.

Then with probability one,

(n− k)!
n!

∑
(k,n)

ψ(x, εi1 , . . . , εik) →
∫
. . .

∫
ψ(x, e1, . . . , ek)F (de1) . . . F (dek), (3.3)

where the summation
∑
(k,n)

is defined as in (2.10) and F is the common distribution

of the random variables ε’s.

Proof. Write

gn(x) =
(n− k)!
n!

∑
(k,n)

ψ(x, εi1 , . . . , εik)

and
g(x) =

∫
. . .

∫
ψ(x, e1, . . . , ek)F (de1) . . . F (dek).

For any given η > 0, by the assumption on ψ there is a constant δ > 0 such
that (3.2) is true. For any large but fixed M > 0, we may split the p-dimensional
ball B(M) = {x, ‖x‖ ≤ M} into disjoint subsets Ai with ai ∈ Ai, i = 1, . . . ,m,
such that for any point x ∈ B(M), ‖x − ai‖ < δ for some integer i ≤ m. For
brevity, we denote the indicator function I(X ∈ Ai), i = 1, . . . ,m by Ai. For
convenience, write A0 = I(X �∈ B(M)).

By (3.2), we have
m∑

i=1

Ai|gn(X) − gn(ai)| < η
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and
m∑

i=1

Ai|g(X) − g(ai)| < η.

Therefore

|gn(X) − g(X)| ≤ 2η + ∞ · A0 +
m∑

i=1

Ai|gn(ai) − g(ai)|.

Write hi(e1, . . . , ek) = (k!)−1 ∑
(π) ψ(ai, eπ(1), . . . , eπ(k)), where the summa-

tion
∑

(π) runs over all permutations of {1, . . . , k}. It follows that gn(ai) can be
viewed as a U -statistic with the kernel hi so gn(ai) → g(ai) a.s., by the strong
law of large numbers for U -statistics (see Chow and Teicher (1988), p. 389).
Consequently, with probability one,

lim sup |gn(X) − g(X)| ≤ 2η + ∞ · A0.

Since η can be chosen arbitrarily small and M can be arbitrarily large, we finally
obtain

lim |gn(X) − g(X)| = 0, a.s.

Here is a theorem for two-step predictors.

Theorem 3.2. Suppose that the function ϕ and the distribution of εt in model
(2.1) satisfy the following conditions,

(i) ϕ is uniformly equi-continuous, and for some constants 0 < ρ < 1, M > 0,

|ϕ(x)| ≤ ρ|x|, |x| ≥M ;

(ii) the innovations εt have zero mean, finite variance and a density which is
positive everywhere.

Then we have
lim

n→∞(x̂∗n+2 − x̂n+2) = 0, in probability (3.4)

and
lim

n→∞(V ar∗(xn+2|xn) − V ar(xn+2|xn)) = 0, in probability. (3.5)

Proof. By An and Huang (1996), under conditions (i) and (ii), model (2.1) has
a unique stationary solution which is geometrically ergodic. Then, by Chen and
An (1997), the condition Eε2t < ∞ implies Ex2

t < ∞. Hence by condition (i),
Eϕ2(xt) < ∞ and Eϕ2(ϕ(xn) + ε) < ∞. With stationarity, it is sufficient for
(3.4) to show that

1
n

n∑
i=1

ϕ(ϕ(x) + εi) →
∫
ϕ(ϕ(x) + ε)dF (ε), as n→ ∞, (3.6)
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in probability. In fact, (3.6) is a direct consequence of Lemma 3.1 by taking
k = 1 and ψ(x, e) = ϕ(ϕ(x) + e). Conclusion (3.5) can be proved similarly.

It is straightforward to establish the asymptotic equivalence of the proposed
l-step predictor and the exact least squares predictors along the same lines. More-
over, the restrictions on ϕ and the distribution of εt can be relaxed to a certain
extent. This is discussed in Remarks 3.1 and 3.2. Stronger versions of Theorem
3.2 are conjectured in Remark 3.3.

Remark 3.1. The positiveness of the innovation density is only used to guar-
antee the existence of a stationary solution to model (2.1). Therefore if the
function ϕ is bounded, say |ϕ(x)| ≤ K, the innovation density can be weakened
to be positive on the interval (−K,K). See An and Huang (1996) about this.

Remark 3.2. An important time series model is the Threshold Autoregressive
(TAR) model (see Tong (1990) Chan (1993)), for which, unfortunately, the ϕ
function is discontinuous and hence does not satisfy the conditions of Theorem
3.2. However, the continuity condition there can be weakened to cover the TAR
case as follows.

For each η > 0 and each compact sub-set E ⊂ Rk, there exists a constant
δ > 0 such that for any x ∈ Rp, there are two points a1 and a2 in the ball
B(x, δ) = {y : ‖y−x‖ ≤ δ} so that for any y ∈ B(x, δ) and any (e1, . . . , ek) ∈ E,

|ϕ(y, e1, . . . , ek) − ϕ(aj , e1, . . . , ek)| < η, (3.2′)

holds for either j = 1 or 2.

Remark 3.3. In the linear case, the convergence of x̂∗n+2 − x̂n+2 is in the strong
version. It is natural to conjecture that (3.4) can be strengthened to the a.s.
version. Also, when ϕ is linear, by the iid assumption and Eε2t = σ2 < ∞,
from (3.1) we know that (n)1/2(x̂∗n+2 − x̂n+2) → N(0, a2σ2). This implies that
x̂∗n+2 − x̂n+2 = Op(1/(n)1/2). We therefore conjecture that this should still be
true for the nonlinear case under the conditions of Theorem 3.2. It might also be
of interest to establish the asymptotic normality under stronger conditions than
those proposed in Theorem 3.2.

4. Simulation Results

In this section, two examples of NLAR models are discussed and simulated to
compare the proposed two- and three-step predictors with the exact least squares
predictors.

The first NLAR model used in the simulation is

xt =
−xt−1

1 + x2
t−1

+ εt, t = 1, . . . , n. (4.1)
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If {εt} is uniformly distributed on the interval [−1, 1] then, by (2.3), the exact
least squares predictor for the second step is given by

x̂n+2 =
∫
ϕ(ϕ(xn) + ε)dF (ε)

=
1
2

∫ 1

−1
ϕ(c+ ε)dε =

1
2

∫ c+1

c−1
ϕ(x)dx

=
1
2

∫ c+1

c−1

−x
1 + x2

dx =
1
4

log
1 + [ϕ(xn) − 1]2

1 + [ϕ(xn) + 1]2
, (4.2)

where c = ϕ(xn). The second NLAR model used in the simulation is the threshold
NLAR model:

xt =

{
1 − 0.5xt−1 + εt, xt−1 < 0;
0.5xt−1 + εt, xt−1 ≥ 0.

(4.3)

If εt has the double exponential density f(ε) = 1
2e

−|ε|, then by (2.3) and further
calculations, we have

x̂n+2 =

{
1 − ϕ(xn)/2, if ϕ(xn) < 0;
ϕ(xn)/2 + e−ϕ(xn), if ϕ(xn) ≥ 0.

(4.4)

The analytic form of the higher multi-step predictors for models (4.1) and (4.3)
is rather involved and thus difficult to present.

In the following we compare x̂n+k with x̂∗n+k, k = 2, 3, for NLAR models (4.1)
and (4.3). First we generate x1, . . . , xn from model (4.1) with uniform innovation
and from model (4.3) with double exponential innovation, respectively. The
exact two-step predictors x̂n+2 for models (4.1) and (4.3) are calculated directly
by formulae (4.2) and (4.4), respectively, while the three-step predictors x̂n+3

are calculated by using formulae (2.8) via numerical integration. The proposed
predictors x̂∗n+2 and x̂∗n+3 are computed by (2.7) and (2.9), respectively. The
sample sizes (n) in our simulation studies are chosen as 100, 200 and 400 with
1,000 replications each. For the ith replication, i = 1, . . . , 1000, let dk,i = x̂n+k,i−
x̂∗n+k,i for k = 2, 3. Let d̄k = 1

1000

∑1000
i=1 dk,i be the sample mean of the kth step

prediction errors and MSEk be the sample mean squared error of x̂∗n+k for k =2,3,
respectively.

In the third and fourth columns of Tables 1 and 2, we list d̄k and MSEk

for k = 2, 3, and n =100, 200 and 400 for models (4.1) and (4.3), respectively.
Furthermore, in order to investigate the effect of assuming an incorrect innovation
density, we also generate n observations from model (4.1) when {εt} has the
following exponential mixture density:

f(x) =
7
8
(7e7xI[x≤0]) +

1
8
(exI[x>0]).
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Table 1. Compare x̂n+k with x̂∗n+k for model (4.1)

n εt ∼ U [−1, 1] εt ∼ Exponential Mixture
Pseudo Predictor

d̄
(1)
wnpk

MSE
(1)
k

100 2nd step 10.9 × 10−4 11.3 × 10−4 13.7 × 10−4 3.21 × 10−4 −4.34 × 10−2 5.32 × 10−3

3rd step 9.52 × 10−4 3.34 × 10−4 3.13 × 10−4 1.46 × 10−4 −2.56 × 10−2 7.18 × 10−3

200 2nd step 3.80 × 10−4 5.71 × 10−4 9.49 × 10−4 1.72 × 10−4 −4.38 × 10−2 5.27 × 10−3

3rd step 6.11 × 10−4 1.66 × 10−4 −1.18 × 10−4 0.73 × 10−4 −2.60 × 10−2 7.25 × 10−3

400 2nd step 1.05 × 10−4 2.67 × 10−4 2.86 × 10−4 0.81 × 10−4 −4.45 × 10−2 5.32 × 10−3

3rd step 0.58 × 10−4 0.82 × 10−4 −0.27 × 10−4 0.34 × 10−4 −2.59 × 10−2 7.26 × 10−3

d̄k MSEk d̄k MSEk

First we compute the exact predictors x̂n+k(k = 2, 3) from (2.5) and (2.8) by
numerical integration and the proposed predictors x̂∗n+k as before. The simulation
results are listed on the fifth and sixth columns of Table 1. Next we calculate
the pseudo k-step predictors ŵnp(1)

n+k,i, with a false density of N(0, 2
7) at the ith

repetition , from (2.5) and (2.8) via numerical integration, k = 2, 3, and i =
1, 2, . . . , 1000. Let d(1)

wnpn+k,i = x̂n+k,i − ŵnp
(1)
n+k,i, k = 2, 3 and i = 1, 2, . . . , 1000

d̄
(1)
wnp be the sample mean and MSE

(1)
k be the sample mean squared error of

ŵnp
(1)
n+k. The results are listed in the 7th and 8th columns of Table 1. Similarly,

for model (4.2) with double exponential innovation, we compute the pseudo kth
step predictors at the ith iteration ŵnp

(2)
n+k,i, k = 2, 3, and i = 1, 2, . . . , 1000,

from (2.2) and (2.8) and with a false density of N(0, 2). With d̄(2)
wnp as the sample

mean of the prediction errors of ŵnp(2)
n+k’s and MSE

(2)
k the sample mean squared

error of ŵnp(2)
n+k’s, the results are listed in columns 5 and 6 of Table 2.

Table 2. Compare x̂n+k with x̂∗n+k for model (4.3)

n εt ∼ Double Exponential
Pseudo Predictor

d̄
(2)
wnpk

MSE
(2)
k

100 2nd step 6.99 × 10−4 41.3 × 10−4 6.64 × 10−2 10.1 × 10−3

3rd step 5.71 × 10−4 40.5 × 10−4 5.99 × 10−2 7.66 × 10−3

200 2nd step −6.85 × 10−4 20.9 × 10−4 6.50 × 10−2 7.83 × 10−3

3rd step −3.99 × 10−4 21.2 × 10−4 5.89 × 10−2 5.62 × 10−3

400 2nd step 1.05 × 10−4 9.48 × 10−4 6.58 × 10−2 6.65 × 10−3

3rd step −0.48 × 10−4 9.71 × 10−4 5.92 × 10−2 4.52 × 10−3

d̄k MSEk

Tables 1 and 2 reveal the following phenomena.

(1) From columns 3 and 5 of Table 1 and column 3 of Table 2, the sample
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means of the two- and three-step prediction errors decrease as sample size n
increases. This illustrates the asymptotic equivalence of the two predictors.

(2) From columns 4 and 6 in Table 1 and column 4 in Table 2, the two-
and three-step mean squared errors of our predictors are approximately
inversely-proportional to the sample size n. This result is in accordance
with our conjecture in Remark 3.3 that x̂∗n+2 − x̂n+2 = Op(n−1/2). Further-
more, the normal probability plot of d3,i (see Fig. 1) for model (4.1), with
uniform innovation and n=400, strongly supports our asymptotic normality
conjecture.

(3) The accuracy of the proposed predictor does not rely on knowledge of the
innovation density. However, the accuracy of x̂n+2 and x̂n+3 computed from
(2.5) and (2.8) is greatly influenced by the correctness of the innovation
distribution (see columns 7 and 8 in Table 1 and columns 5 and 6 in Table
2). For example, for model (4.1) with exponential mixture innovation, d̄3 =
10−3d̄

(1)
wnp2 and MSE3

.= 0.05MSE
(1)
3 when n = 400.
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Figure 1. Normal Probability plot, n = 400

5. Further Discussions

An advantage of the multi-step prediction scheme proposed in this paper is
its simplicity of calculation. Although it is a disadvantage to assume that the
autoregressive function ϕ of the NLAR model is known, this can be overcome
by replacing the unknown autoregressive function ϕ with a good estimator. It is
easy to see from the proof of Theorem 3.2 that this replacement does not alter the
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asymptotic equivalence provided the estimator of the autoregressive function is
consistent. An example of such replacement can be found in Lai and Zhu (1991).

For simplicity we discussed only the approximation of the multi-step predic-
tion for NLAR models of order one. The approach can be easily extended to
higher orders. For example, consider the following NLAR model of order p:

xt = ϕ(xt−1, . . . , xn−p) + εt. (5.1)

When ϕ is given and x1, . . . , xn are available,

εt = xt − ϕ(xt−1, . . . , xn−p), t = p+ 1, . . . , n.

Consequently, the two-step predictor x̂n+2 can be approximated by

x̂∗n+2 =
1

n− p

n∑
k=p+1

ϕ(ϕ(xn, xn−1, . . . , xn−p+1) + εk, xn, . . . , xn−p+2). (5.2)

The multi-step predictors can be approximated in a similar manner, and one can
easily establish the asymptotic equivalence of the proposed and exact predictors.
The details are omitted.

Another generalization is to consider NLAR models with conditional het-
eroscedasticity (see Chen and An (1997)). As an example, we consider the model

xt = ϕ(xt−1) + εtσ(xt−1), t = 1, . . . , n, (5.3)

where the functions ϕ(·) and σ(·) are known, and the εt’s are assumed to satisfy
Eε2t = 1 for purposes of identifiability. When x1, . . . , xn are obtained,

εt = {xt − ϕ(xt−1)}/σ(xt−1), t = 2, 3, . . . , n.

Hence, the two-step predictor can be obtained by employing the empirical dis-
tribution of εt, i.e.,

x̂∗n+2 =
1

n− 1

n∑
k=2

ϕ(ϕ(xn) + εkσ(xn)). (5.4)

Finally, we emphasize that this approach can be adapted to the so-called
autoregressive conditional heteroscedasticity (ARCH) models (see Engle (1982)).
An example is {

xt = ϕ(xt−1) + εth
1/2
t

ht = α0 + α1{xt−1 − ϕ(xt−2)}2,
(5.5)

where the εt’s are assumed to be the same as in model (5.3). Substituting the
second equation into the first in (5.5), we have

xt = ϕ(xt−1) + εt{α0 + α1[xt−1 − ϕ(xt−2)]2}
1
2 . (5.6)



570 MEIHUI GUO, ZHIDONG BAI AND HONG ZHI AN

This turns out to be an NLAR model with conditional heteroscedasticity

σ2(xt−1, xt−2) = α0 + α1{xt−1 − ϕ(xt−2)}2.

Therefore, the multi-step predictors based on the empirical distribution of εt’s
can be easily obtained.
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