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Abstract: This paper considers the construction of block designs for estimating given

sets of treatment contrasts. Necessary and su�cient conditions are given for the

form of the matrix M which minimizes the trace of HM
�

H
0, where H is the con-

trast matrix. The application of this result in constructing highly e�cient designs is

illustrated.
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1. Approximate Information Matrices

Let D = D(v; b; k) be the class of block designs, not necessarily connected,

having b blocks of size k and v treatment labels, where the ith label occurs

ri times in the design (i = 1; : : : ; v). Let H� be a vector of contrasts in the

treatment parameters � , where rank (H) = h � v � 1 and let DH be the subset

of designs in D for which H� is estimable under the usual additive model. Let

Cd be the information matrix of the design d 2 DH and de�ne the set CH by

CH = fCd : d 2 DHg.
A common objective in designing an experiment is to �nd a design d� 2 DH

for which the average variance of the least squares estimators of H� is minimized

or, equivalently, for which tr(HC�

d H
0) is a minimum over all Cd 2 CH , where

C�

d is the Moore-Penrose generalized inverse of Cd and tr denotes trace. In

general, this is a very di�cult problem. Speci�c contrast matrices that have

been considered in the literature include all pairwise comparisons (reviewed in

Shah and Sinha (1989)), test treatment versus control contrasts (reviewed in

Hedayat, Jacroux and Majumdar (1988), and also in Shah and Sinha (1989)),

dual versus single contrasts (Gerami, Lewis, Majumdar and Notz (1994)), and

general contrasts in completely randomized designs (Sinha (1970)).

Our approach is to minimize tr(HM�H 0), for any given set of contrasts H� ,

over all matrices M 2 M where the set M contains CH and is de�ned below.

Although this minimization may not result in a matrix M corresponding to an

information matrix of a design d 2 DH , we show in Section 2 that it can lead
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to the identi�cation of highly e�cient designs. Accordingly, we call M 2 M an

approximate information matrix. Let the set M be de�ned as

M =fM : M is a v � v; symmetric, non-negative de�nite matrix with

h � rank(M) � v � 1;M1v = 0 and tr (M) � cmaxg; (1)

where cmax is the maximum trace of Cd over DH and where 1v is a vector of v

unit elements. Let x1; : : : ; xv be a set of orthonormal eigenvectors ofM 2M and

let �1; : : : ; �v be the corresponding eigenvalues. On de�ning ��1i = 0 if �i = 0,

and writing M� in terms of its spectral decomposition, it follows that

tr(HM�H 0) = tr

"
H

 
vX

i=1

��1i xix
0

i

!
H 0

#
=

vX
i=1

��1i tr(Hxix
0

iH
0) =

vX
i=1

��1i �i;

(2)

where �i = x0iH
0Hxi; 1 � i � v. Using the Cauchy-Schwarz inequality,
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with equality holding if and only if �i = ��
1=2
i for some constant �; 1 � i � v.

Therefore, writing
P
�i = t, and using (2) and (3), we have tr(HM�H 0) �

t�1(
Pv

i=1 �
1=2
i )2 and tr(HM�H 0) is a minimum over M if and only if M is such

that (i) �i = ��
1=2
i (i = 1; : : : ; v), where � is a constant such that

P
�i = cmax,

and (ii)
Pv

i=1 �
1=2
i is a minimum over all sets of orthonormal vectors x1; : : : ; xv in

Rv. The following theorem characterizesM 2M so that (i) and (ii) are achieved.

Theorem. Let M be de�ned as in (1) and let H� be a vector of contrasts

in the treatment parameters � where rank(H) = h. Let u1; : : : ; uv be a set of

orthonormal eigenvectors of H 0H and let �1; : : : ; �v be the corresponding eigen-

values. Then tr(HM�
�

H 0) = minftr(HM�H 0) : M 2 Mg if and only if

M� = �
Pv

i=1

p
�iuiu

0

i, where � is a constant such that tr(M�) = cmax.

Proof. Let H 0H have `+ 1 � 2 distinct eigenvalues, and let the multiplicity of

the jth distinct eigenvalue be nj . Without loss of generality we assume that the

labelling of the eigenvectors u1; : : : ; uv of H 0H is such that the eigenvalues are

ordered �1 = � � � = �s1 > �s1+1 = � � � = �s2 > � � � > �s`+1 = � � � = �v = 0 where

sj =
Pj

i=1 ni for j = 1; : : : ; ` and where h = s` and v = s(`+1). De�ne Ej+1 to be

the subspace of Rv spanned by usj+1; : : : ; us(j+1)
.

Su�ciency: Follows from the fact that, when M� is as in the statement of the

theorem, tr(HM�
�

H 0) achieves the lower bound B(H) of Gerami and Lewis

(1992).
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Necessity: De�ne �i as in (2). Write H 0H in terms of its spectral decomposition.

It then follows that �i =
Pv

j=1 �j(u
0

jxi)
2; i = 1; : : : ; v. Let � = P�, where

� = (�1; : : : ; �v)
0; � = (�1; : : : ; �v)

0 and P is a v � v matrix with (i; j)th element

(u0jxi)
2.

Expressing each x1; : : : ; xv in terms of the orthonormal basis u1; : : : ; uv of

Rv (and vice versa), it can be shown that P is doubly stochastic. Hence, from

Theorem A.4 of Marshall and Olkin (1979, p: 20), � = P� is majorized by �.

Theorem A.4.b of Marshall and Olkin (1979, p: 58) establishes that the function

�Pv
i=1 �

1=2
i is strictly Schur convex on (R+)v. Hence,

Pv
i=1 �

1=2
i �Pv

i=1 �
1=2
i with

equality if and only if � = R�, for some permutation matrix R. Without loss of

generality take R = I, and � = �.

In order to �nd an M in the set M de�ned in (1) whose eigenvectors satisfy

(ii), we seek x1; : : : ; xv so that the matrix P = f(u0jxi)2g satis�es P� = � =

�. It is shown in the appendix that P has block diagonal form with nj � nj

matrices Pj (j = 1; : : : ; ` + 1) on the diagonal. It follows from the de�nition

of P that, for i = sj + 1; : : : ; s(j+1), the vector xi is orthogonal to each vector

ut 62 Ej+1. Hence, xi 2 Ej+1. This holds for all j = 1; : : : ; `+1, and consequently

(x1; : : : ; xv) is an alternative complete set of orthonormal eigenvectors of H 0H.

Using (i), the matrixM which minimizes tr(HM�H 0) isM� = �
Pv

i=1

p
�ixix

0

i =

�
Pv

i=1

p
�iuiu

0

i where � is such that tr(M�) = cmax.

Corollary. If d� 2 DH has information matrix M� de�ned in the theorem then

d� is A-optimal over D.

2. Applications and Discussion

A direct application of the theorem and its corollary is the well-known result

that a balanced block design is A-optimal for estimating a complete set of v � 1

orthonormal contrasts, or a complete set of pairwise comparisons.

For other sets of contrasts H� , the approximate information matrix M�

generally will not correspond to the information matrix of any design in DH .

However, it enables highly e�cient designs to be located within the class of

aligned designs. Aligned designs are de�ned by Lewis and Gerami (1994) to

be designs whose information matrices have a set of orthonormal eigenvectors

in common with H 0H. The contrasts H� are estimable in all aligned designs.

In the class of non-aligned designs, estimability would need to be checked, for

example, via HC�C = H.

The following problem, which was posed by a statistician at a pharmaceutical

company, serves to illustrate our approach. In planning a trial to compare a very

large number of stimuli, prior knowledge was used to give a preliminary ranking

to the size of the e�ects of the stimuli, labelled �0; : : : ; �v�1. An incomplete block
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design was required to enable e�cient estimation of the following subset of all

pairwise comparisons:

�i � �i+j for i = 0; : : : ; v � 1; j = 1; : : : ; p < v � 2; (4)

where i+j is evaluated modulo v. Comparisons between the high and low ranked

stimuli were included as well as those between stimuli ranked close together. For

this set of contrasts H 0H is a circulant matrix with initial row (2p;�10p, 0;�10p),
and hence M� is also circulant.

The class of aligned designs includes all designs having circulant information

matrices. For equal treatment replication, the approximate concurrence matrix

is N�N�
0

= k(rI �M�). It is sensible to consider designs with equal treatment

replication for two reasons. Firstly, in this particular set of contrasts, each treat-

ment e�ect occurs the same number of times with the same coe�cients. Secondly,

the diagonal elements of M� are equal and equi-sized blocks are required. The

entries in the concurrence matrix are adjusted to attain integer entries and to

retain the symmetric circulant structure under the restriction that the row sums

are all equal to rk. Guided by these restrictions, a shortlist of approximate con-

currence matrices can be drawn up, not all of which will necessarily correspond

to realizable designs.

For illustration, consider v = 6 treatments and the contrasts (4) with p = 2.

For a design with b = 12 blocks of size k = 3, H 0H and M� are circulant

matrices with �rst rows as follows, H 0H : f4 � 1 � 1 0 � 1 � 1g, and
M� : f4 �0:9 �0:9 �0:4 �0:9 �0:9g: For any binary design, the diagonal elements
of its information matrix are k�1r(k � 1). Hence, using M� and k = 3; r = 6,

the approximate concurrence matrix N�N�
0

is circulant with �rst row N�N�
0

:

f6 � 2:7 � 2:7 � 1:2 � 2:7 � 2:7g: The following shortlist of circulant matrices
with integer entries and row sums rk = 18 may be drawn up as candidates for

the concurrence matrix of an e�cient design.

(a) f 6 3 3 0 3 3 g (b) f 6 2 3 2 3 2 g
(c) f 6 3 2 2 2 3 g (d) f 6 4 2 0 2 4 g
(e) f 6 2 4 0 4 2 g
Cyclic designs exist with concurrence matrices c, d and e. The generating

blocks for each of the designs are (012) and (013) for c, two copies of (012) for

d, and (012) and two copies of (024) for e. A comparison of tr(HC�

d H
0) with

its minimum value tr(HM�
�

H 0) = 4:9494 (which is equal to the bound B(H) of

Gerami and Lewis (1992)), gives e�ciencies 0.991, 0.961 and 0.949, respectively.

Group divisible designs exist with concurrence matrices a and b, see Table 1, and

these both have e�ciency 0.990.
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Table 1. Group divisible designs for b = 12, r = 6, v = 6, k = 3

Design with concurrence matrix (a) Design with concurrence matrix (b)

0 0 0 0 0 0 1 1 1 2 3 3 0 0 0 0 0 0 1 1 1 1 2 2

1 1 1 2 2 4 2 2 3 3 4 4 1 1 2 2 3 4 2 3 3 3 3 4

2 5 5 4 4 5 3 3 5 4 5 5 2 5 3 4 4 5 4 4 5 5 5 5

Although the above application is such that a class of equi-replicate designs

is a reasonable choice, the same approach can be taken when unequal treatment

replication is more appropriate. In this case the formula of Jones (1976) can be

used to allocate replications amongst the treatments.

Further examples are given by Lewis and Gerami (1994), and Kao, Notz and

Dean (1994). The theorem is less useful as a tool for identifying e�cient designs

outside the class of aligned designs, since search algorithms such as that of Jones

and Eccleston (1980) already exist.
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Appendix: The form of P satisfying P� = �

Let � have entries �1 = � � � = �s1 > �s1+1 = � � � = �s2 > � � � > �s`+1 = � � � =
�v = 0, where sj =

Pj
i=1 ni for j = 1; : : : ; ` and v = s(`+1) and ` � 1. Then

� = (�1; : : : ; �v)
0 = (a11

0

n1
: : : a`1

0

n`
010n(`+1)

)0. Let P = fpijg be any v � v doubly

stochastic matrix P , with non-negative elements, satisfying P� = �. The ith

element of P� is

a1

s1X
j=1

pij + a2

s2X
j=s1+1

pij + � � � + a`

sX̀
j=s(`�1)+1

pij ;

where sr =
Pr

i=1 ni, for r = 1; : : : ; `. Now P� � � = 0 by assumption. For

1 � i � s1, the ith element of P� � � is

(a2 � a1)

s2X
j=s1+1

pij + � � � + (a` � a1)

sX̀
j=s(`�1)+1

pij = 0:

Since a1 > a2 > � � � > a` > 0, and since the elements of P are non-negative, it

follows that pi(s1+1); : : : ; pis` are all zero. Thus, P can be partitioned as fPijg,
i; j = 1; 2, where P11 is n1 � n1 and P12 = 0. Since P is doubly stochastic, the

row sums of P11 are unity. Consequently 10P111 = n1. Now P11 has n1 columns

with non-negative entries summing to at most 1.0. Thus each column sum must

be exactly 1.0 and, therefore, P21 = 0. This implies that P22 is doubly stochastic,
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and the above argument can be repeated using the fact that P22�
�

2
= ��

2
where

��
2
= (�s1+1; : : : ; �v)

0. Repeated application of the argument shows that P has

block diagonal form with ith matrix Pii on the diagonal of size ni � ni (i =

1; : : : ; `+ 1).

References

Gerami, A. and Lewis, S. M. (1992). Comparing dual with single treatments in block designs.

Biometrika 79, 603-610.

Gerami, A. and Lewis, S. M., Majumdar, D. and Notz, W. I. (1994). E�cient block designs

for comparing dual with single treatments. Ohio State University Technical Report, 501.

(Submitted for publication).

Hedayat, A. S., Jacroux, M. and Majumdar, D. (1988). Optimum designs for comparing test

treatments with controls (with discussion). Statist. Sci. 3, 462-491.

Jones, B. (1976). An algorithm for deriving optimal block designs. Technometrics 18, 451-458.

Jones, B. and Eccleston, J. A. (1980). Exchange and interchange procedures to search for

optimal designs. J. Roy. Statist. Soc. Ser.B 42, 238-243.

Kao, L.-J., Notz, W. I. and Dean, A. M. (1994). E�cient designs for conditional main e�ects

contrasts. Ohio State University Technical Report, 529. (Submitted for publication).

Lewis, S. M. and Gerami, A. (1994). Finding e�cient block designs for estimating speci�c

treatment contrasts. Southampton University Preprint Series, 253. (Submitted for publi-

cation).

Marshall, A. W. and Olkin, I. (1979). Inequalities: Theory of Majorization and its Applications.

Academic Press, New York.

Shah, K. R. and Sinha, B. K. (1989). Theory of Optimal Designs. Lecture Notes in Statist. 54,

Springer-Verlag, Berlin.

Sinha, B. K. (1970). On the optimality of some designs. Calcutta Statist. Assoc. Bull. 19,

1-22.

Department of Statistics, The Ohio State University, Columbus, OH, 43210, U.S.A.

Faculty of Mathematical Studies, The University of Southampton, Southampton, S09 5NH,

England.

(Received November 1993; accepted March 1995)


