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Abstract: A score statistic for testing for trend in count data based on the joint
likelihood of historical control and current experimental counts is proposed using
the negative-binomial distribution to represent between-study extra-Poisson variation.
The score statistic is also derived using a Poisson likelihood for the current experiment
and a negative-binomial likelihood for the historical controls. Similar statistics are
derived using generalized estimating equations based on the first two moments of the
data. The type I and type II error rates of these tests are evaluated using computer
simulation, and compared with those of the Cochran-Armitage test for trend that
does not make use of historical controls. Test statistics proposed by Tarone (1982)
and Kikuchi and Yanagawa (1988) for use with historical controls are also considered.
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1. Introduction

In many toxicological experiments, it is of interest to test for increasing
response with increasing dose. In the Ames assay (Maron and Ames (1983)),
for example, the number of mutant colonies of bacteria observed in replicate

culture plates are counted at a series of increasing dose levels dy < d; < --- <
dr, including an unexposed control at dy = 0. Let X;;; denote the number of
mutant colonies observed in plate j = 1,...,nq; at dose 1 = 0,1,..., k, and let

Xy = Ej Xi;; denote the total number of mutant colonies at dose d;. Suppose
that the observations Xi;; follow independent Poisson distributions with means
0, exp(Bd;), where 6, denotes the expected response in the control group. Then
X,; follows the Poisson distribution

Pr{X,, =z} = e M\ /z! (2=0,1,2,...), (1.1)

where \; = ny;6; exp(8d;).
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To test for a linear trend in counts, Armitage (1955) proposed the statistic

k k
To=> Xudi- XY nyd, (1.2)
1=0 1=0

with variance estimated by

k k 2
V(TO) = X anid? — nl_l (Z nh-di> s (13)
1=0

i=0

where X = Xi/ny, X1 =%, Xy and ny = >_; n1;. This statistic reduces to that
proposed by Cochran (1954) in the case n;; = n, and is analogous to the statis-
tic proposed by both Cochran and Armitage for testing for trend in binomial
proportions. Tarone (1982) subsequently showed that the statistic T is asymp-
totically locally optimal for testing the null hypothesis of no trend against any
smooth monotone increasing alternative. Under the null hypothesis, the stan-
dardized statistic Zcs = Tp/ [V(To)]l/ ? is asymptotically normally distributed
(see Appendix 2). |

Suppose, now, that information on the response rate in the control groups
from other experiments is available for analysis. Although the current con-
trol group represents the most appropriate group against which to compare the
treated groups in the experiment at hand, the historical controls do provide
some information on the spontaneous mutation rate. If properly utilized, this
information may be of use in strengthening inferences based only on the current
experimental data, particularly when the results are somewhat equivocal. How-
ever, it must be recognized that the experimental conditions of the historical and
current experiments should be comparable. As well, care needs to be taken to
accommodate any extra-Poisson variation that may be present in the historical
controls due to between-study differences in experimental conditions.

Tarone (1982) proposed a formal statistical test for trend which makes use
of the available historical control information. In the Ames assay, for example,
let X; denote the total number of mutant colonies in the n; plates in historical
control group j = 2,...,s, and let §, denote the expected response rate in group
J. Assuming that 6, ..., 0, are independent gamma random variates with mean U
and variance p?/p, it follows that X;,..., X, are independent negative-binomial
random variates; in particular, for j = 2,...,s,

-1

PT‘{XJ- =z} = (njﬂ/p)z(x!)—l(1+nj'u/p)—x_p H(p+i) (x=0,1,2,.. D, (1.4)
1=0

with E(X;) = n;jp and V(X;) = n;u(1 + n;u/p); and a similar expression holds

for the probability distribution of X, for which E(X;) = uZLO nq;e°% and
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V(X)) = X gnuef + (u2/p)(Ti_gnie®¥)?. Here, the parameter p > 0
determines the degree of extra-Poisson variation. (The limiting case p = o0
corresponds to Poisson variation.) Assuming the parameters p and p to be known,
Tarone (1982) showed that the score test for trend based on the negative-binomial
likelihood of the data from the current experiment is

k k
T = §X11d1 - )Z' Zonh‘di, (15)

where X = (X + p)/f, with # = ny + p/p. An estimate of the variance of T
based on observed information is. given by

V(T) =X {zk:nh-df -7t (Sk_: nudi) } : (1.6)

1=0 1=0

Note that Tarone’s statistic Zg = T/[V (T)]*/? is of the same form as the Cochran-
Armitage statistic except that X is replaced by X, and n, is replaced by 7.
Since the parameters u and p are unknown in practice, Tarone (1982) proposed
replacing them by their maximum-likelihood estimates £ and p based on the
historical control data. The asymptotic null distribution of the resulting statistic
is standard normal under mild regularity conditions (Appendix 2); however, this
statistic fails to account for estimation error in the historical control parameter
values, which could affect its small-sample properties.

Noting that Xy, is an ancillary statistic for the parameter § of interest,
Kikuchi and Yanagawa (1988) showed that the score statistic based on the con-
ditional likelihood is equivalent to that proposed by Tarone (1982), but with
conditional variance

V(T|X10) = [(X10 + p)/(n10 + P/N)]V(T)/X' (1.7)

Kikuchi and Yanagawa (1988) demonstrated that the first six cumulants of the
standardized conditional score statistic Zxy = T/+/V(T'|X10) converge to those
of a standard normal distribution.

In this paper, we develop score statistics based on the joint likelihood of
the experimental and historical control data. Our approach is similar to that
used by Prentice et al. (1992) for quantal response data. In addition to the
negative-binomial model described above, we also consider a Poisson model for
the experimental data coupled with a negative-binomial model for the historical
control data, thereby retaining the original model for the current experiment
even with the use of historical control information.
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We also use an estimating-equation approach to derive tests for trend under
the assumption of no extra-Poisson variation in the current experiment and also
allowing for extra-Poisson variation in the current experiment. The estimating-
equation approach is designed to avoid the parametric assumptions underlying
the Poisson and negative-binomial models, with a possible sacrifice in efficiency
under these models compared with the likelihood methods.

2. Score Tests for Trend with Historical Controls

2.1. The negative-binomial model

In this section we derive tests for trend under the negative-binomial model
introduced in Section 1. When no overdispersion is apparent, each of the tests
derived here reduces to the Cochran- Armitage test with the historical and current
controls pooled to form one large control group.

2.1.1. Tests based on the likelihood

The likelihood function can be written as L = L,L,, where

gr—le—6p/n k s
x nq;0eP% )X g=m:0e7% g 2.1
= / T(p)(u/p)? ,11,( :0e™%) 1)

is the likelihood for X, ..., X%, and

Lzocﬁ(1+nju/p) (u/p)* H(p+€ (2.2)

7=2

is the likelihood for X,..., X,. Note that the likelihoods (2.1) and (2.2) would
be unchanged if they were based on individual plate counts rather than total
counts. The score statistic for testing 8 = 0 is given by

T == = X idi n i, 23
8ﬁ B=0,u=f0,p=po ; ! ny + po/p,o Z 1:d ( )

where [, and py are maximum-likelihood estimates of 4 and p under 8 =
To obtain these estimates the model is parametrized using ¢ = u/p in place of
p to avoid numerical problems associated with the convergence of the negative-
binomial likelihood to a Poisson likelihood as p — oo.

The variance of T' can be estimated by

T -1
Vobs = tgp — I:Lﬁ#} l:’“uu "up:l [‘*Bu] ’ (2.4)

Lpp bup  Lpp
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using the elements of the observed information matrix given in Appendix 1. If
observed information is replaced by expected information, we obtain the simple
variance estimator

k k 2
VEexp = flo {Znud? -7t (Z nlid,-) } , (2.5)
1=0

where

1 fo Po 1
77l = - — |14 = _ < — . . 2.6
Po + Niflo [ Po + Mifho Zj:l anO/(PO + nj”O)} (26)

We thus have two trend test statistics

Zngo =T /v Vous (2.7)

Znes =T/ [ Vexp- (2.8)

As shown in Appendix 2, Zypo is asymptotically normally distributed under
the null hypothesis that 3 = 0. However, Zngg has a different limiting distribu-
tion because of the variation in the current control response rate 8;. Conditional
on 0,, Znge is asymptotically normally distributed with mean zero and variance
6,/u under the null hypothesis; averaging over the gamma density

and

F(815 1, ) =(p/u)?67 " e #/# /T(p) (61> 0), (2.9)
for 6, gives

P(Znss > 7) ~ /O 11 = B(a/1/80)) (61 1, p)d6;. (2.10)

Note that the mixed-normal upper tail probability in (2.10) does not depend
on p and converges to the corresponding standard normal tail probability as
p — oo. Table 1 gives the mixed-normal probability evaluated at standard normal
critical values corresponding to significance levels 0.10, 0.05 and 0.01 for selected
values of p. The mixed-normal and standard-normal tail probabilities are in
reasonable agreement, especially when there is little overdispersion. This finding
is similar to that reported by Krewski et al. (1991) using analogous models for
quantal data. The mixed-normal tail probability tends to be higher than the
normal at the 1% critical value and lower at the 10% critical value. This is
consistent with a result of Shaked (1980) which implies that there is a unique
positive critical value at which the two tail probabilities agree. In this case,
it appears that this value is very close to the 5% critical value. Thus, in our
simulation study we will assess the true error rates of all statistics, including
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ZNBE, using standard normal critical values with a nominal significance level of

5%.

Table 1. The mixed-normal tail probability (2.10)
evaluated at standard normal critical values

1- E91 [(I)(Zl-—a Vv M/Gl)]*

o a=0.10 a =0.05 a=0.01
04 0.070 0.046 0.022
1 0.082 0.049 0.019
2 0.088 0.049 0.016
6 0.095 0.049 0.013
20 0.098 0.050 0.011
40 0.099 0.050 0.010
100 0.100 0.050 0.010

* This probability does not depend on . It was evaluated numerically using the IMSL
subroutine DQDAGS.

2.1.2. A test based on estimating equations

We now derive a trend test assuming only the moment structure implied by
the negative-binomial model, viz.,

b

M1 = E(Xl) = (nlo/J" s 7n1k,u’eﬁdk)T

Vi = diag(u1) + p1f ¢/ 1,

i =E[X;]=n;p (j=2,...,8), and

Vi=V(X;) =nu(l+n;¢) (G=2,...,5), (2.11)
where X; = (Xy0,...,X1x)T and ¢ = u/p. (The parametrization (u, @) is used

here for mathematical convenience.)
The statistic is based on estimating equations of the form

DYV Xy — )+ 3 DIV (X — ) =0, (2.12)
j=2
where
Op1/0u [nm ny ef% e ny el J
T _ 1 _

Dl B [a/‘l’l/aﬂJ o O nlldl“eﬁdl LRI nlkdk“eﬂdk ? (2‘13)

and 81./6
DJ [aﬂj/aﬁJ [OJ (] 2,...,8). ( . )
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It is easily verified that V; has inverse

vl = pHdiag(nyg, ..., [nkeP®*])7Y) — (o7 + Z ny %) 71T}, (2.15)

where J is a matrix with all elements equal to unity. It follows that the estimating
equations can be written as

k -1k s
1+ ¢Z7’L11’6'Bdi} Z(Xli - nliueﬁdi) -+ Z[l -+ ¢nj]—1[X]' — TLJ,LL] = 0, (216)

i=0 i=0 j=2

and

k
Z d; (Xli - nli,ueﬂd

1=0

k g k
— o7+ nlieﬁdi:I > (X - nype?®) nydie®t = 0.
=0 1=0 1=0
(2.17)
Estimates [io and g{)o of 1 and ¢ under 8 = 0 are obtained by iteratively solving
the equations ‘

Z 1+n]¢0 } Z 1+nj¢o)” ]} : (2.18)

and

dh)o = ZZ]‘/S, (219)
j=1

where Z; = [(X; — n;f0)?/(n;fio) — 1]/n;. Note that Equation (2.18) is derived
from the first estimating equation (2.16).

The score-type statistic T for testing 8 = 0, obtained from the second es-
timating equation (2.17), has the same algebraic form as the score under the
negative-binomial model given in (2.3). A variance estimate can be obtained
using the negative of the derivative of the score-type vector DTVIX, — ]
+ 252 Df‘@"l[X ; — i;], which is analogous to observed information in likeli-
hood theory. This gives

2
(L4 X! _
VeE-NBO = [k ( 15 6o) [Z nyd? — a7t (Znu ) } ; (2.20)

(14 mn, ¢0 =0 i=0

where

1 1 1
nt'==——— |1+ 0 = . 2.21
" (n1+ ¢5") ( (1 + n1¢o) Z;=1X1ﬂ5]/(nj+¢51)) 221
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If the expected “information” (DT V! D, +3 2 Dij'le) is used, the following
variance estimate is obtained:

k k 2
VeEE-NBE = fo Znudf ~n! (Z nlidi) : (2.22)
1=0

=0

where

. 1 ( 1 1 )
n = —'—A__—l— 1 + = 5 =1 . (223)
(n1+¢g7) (1 + n1¢o) Zj:l n;/(n; + &g )

The latter variance estimate has the same algebraic form as the variance estimate
based on expected information given by (2.5) and (2.6), although the parameter
estimates take on different values.

The test statistics

Zge-nBo =T'/+/VeE-NBO (2.24)

‘and
Zgg-NBE =1'/\/VEE-NBE (2.25)

have the same limiting distributions as the corresponding likelihood-based statis-
tics, Znpo and Zngg, respectively (see Appendix 2).

2.2. The Poisson/negative-binomial model

In the previous section, we allowed for extra-Poisson variation from exper-
iment to experiment. For the current experiment, however, extra variation due
to differences between experiments may not be considered relevant. In fact,
statistical analysis of data from the experiment at hand in the absence of his-
torical control data would not allow for such overdispersion. Because of this,
we consider the Poisson/negative-binomial model in which the observations in
the current experiment are Poisson variates and the historical controls follow a
negative-binomial distribution. Following Prentice et al. (1992), we assume that
the mean u of the historical control response rates is equal to the current control
response rate ¢;. When the historical controls display no overdispersion, each of
. the tests derived here reduces to the Cochran-Armitage test with the historical
and current controls pooled to form one large control group.

2.2.1. Tests based on the likelihood

The likelihood function can be written as L = L;L,, where

k
S (T (2.26

1=0
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is the Poisson likelihood from the current study, and L, is the negative-binomial
likelihood from the historical controls given in (2.2). The score statistic for testing
B = 0 is given by

8tnL - g
T = = E Xlidi — Mo E 'fll,;di, (227)
—0

00 18=0,u=fo0,p=po —o

where [io and p, are maximum-likelihood estimates of x and p under § = 0. As
previously, these estimates are obtained using the parametrization (u, ¢).
The variance of T can be estimated by

Vobs = tgg — LzuLpp/("ppr - Lip)’ (2.28)

based on observed information (Appendix 1). Alternatively, using expected in-
formation the following simple formula results:

~1 2

k s k

n N

Vexp = fho nyd: — [ny+ po Y ( n z‘di) . (2.29)
P ; ; (Po + njfio) g '

Note that this is similar in form to Tarone’s variance estimate in (1.6).
The corresponding test statistics,

Zpo = T'/v/Vous (2.30)

ZpE = T/\/VExpa (231)

are asymptotically normally distributed with mean zero and variance one under
the null hypothesis (see Appendix 2).

and

2.2.2. A test based on estimating equations

We now derive a score-type test assuming only that the data has the moment
structure implied by the model of the previous section. Specifically, we suppose

T
g = E[X1]) = (nioy, na1peP®, ... nype’®) and
V; = Cov(X;) = diag(p.). (2.32)
The moments of X5, ..., X, are unchanged from Section 2.1.2 as are the deriva-

tives D;.
The estimating equations can thus be written as

k s
Z(Xu — nypels) + Z(l —+ nj¢)—1(Xj —n;p) =0, and (2.33)
=2

1=0

k
z di(Xli — nlipeﬁd‘) = 0. (234)

1=0
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Estimates fi, and d30 of u and ¢ under # = 0 can be obtained by solving the
equations

}fLO = X1 + Z(l + njéo)_IXj / ny + Z(l -+ njébo)”lnj s (235)
=2 j=2
and \
do=>2;/(s—1). (2.36)
j=2

Note that Equation (2.35) is derived from the first estimating equation (2.33).
The second estimating equation evaluated at 8 = 0 and 1 = fip gives the
score-type statistic

k k
T=Y Xudi—fioy_ nud;. (2.37)
1=0 1=0
Both the observed and expected “information” produce the same variance esti-
mate for T, viz.,

—~1 2
k s k
VEE_.p = [LO Z nlid? — My + Z Tl](l -+ nj¢0)_1J (Z nh-di) . (238)
1=0

1=0 =2

As with the previous model, this variance estimate has the same algebraic form as
that in (2.29) based on expected information, although the parameter estimates
are different. The test statistic

ZEE_p = T/\/ VEE—P (239)

is asymptotically standard normal under the null hypothesis (see Appendix 2).

3. Examples

To illustrate the calculations of the above proposed statistics, consider the
data in Table 2 previously analyzed by Tarone (1982). The results in Table 3
show that, with the exception of the Kikuchi-Yanagawa test, the use of historical
control data in this example weakens the evidence for mutagenicity compared to
the Cochran-Armitage test. This occurs because the historical control mutation
rate (8.35 & 0.36, standard error based on Fisher information) is much higher
than that observed in the current experiment (3.33 # 1.05), and the trend tests
are based on the assumption of equal rates. The effect is most pronounced
with tests based on the Poisson/negative-binomial model, which do not allow for
extra-Poisson variation in the current experiment.
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Table 2. Number of mutant colonies of Salmonella (TA1537)
exposed to Benz(a)anthracene in the Ames a»ssayJr

Historical controls*

10(2), 13(1), 14(2), 15(2), 16(3), 17(4), 18(1), 19(4), 20(6), 21(6), 22(2), 23(4), 24(1),
26(2), 27(2), 28(2), 29(5), 31(1), 32(1), 33(1), 34(2), 35(2), 37(2), 38(1), 39(3), 40(1),
44(1), 46(1), 47(1)

Experimental data
Dose: 0 03 1.0 33 100
Count: 10 18 21 16 35

T Each count is the sum of three replicate plate counts.
* Frequency of occurrence in parentheses.

Table 3. Tests for trend using the data in Table 2

Model parameters

Test statistic m ) T 14 Z=T/JV p-value
Zca 137.2 1387.0 3.684 0.00011
Zr (M) 8.354 0.727 131.0 1489.5 3.394 0.00034
(EE) 8354  0.711 130.9 14917 3.388 0.00035
(ML) 8.354 0.685 130.6 1495.4 3.378 0.00036
Zgy (M) 8.354 0.727 131.0 1074.4 3.996 0.00003
(EE) 8.354 0.711 -130.9 1080.8 3.981 0.00003
(ML) 8.354 0.685 130.6 1092.0 3.954 0.00004

Zpo 8.040 0.671 77.0 2510.4 1.538 0.06205
ZpPE 8.040 0.671 77.0 2510.0 1.538 0.06205
ZEE-P 8.015 0.770 78.1 2487.2 1.567 0.05862
ZNBO 8.319 0.672 130.7 1493.0 3.382 0.00036
ZNBE 8.319 0.672 130.7 1824.9 3.059 0.00111
Z b NBO 8.320 0.709 131.0 14899 3.393 0.00034
ZEE_NBE 8.320 0.709 131.0 1820.5 3.070 0.00107

* Estimates of the parameters 4 and ¢ may be obtained by the method of moments (M),
the estimating equations (2.18) and (2.19) (EE), or maximum likelihood (ML).

A more typical example, for which the application of the trend tests is rea-
sonable, is given in Table 4. This data set was part of an interlaboratory study
of the Ames assay (Claxton and Lewtas (1991)); the historical controls were ob-
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tained from different experiments performed in the same laboratory as part of
this study. The current and historical controls appear to have equal response
rates (44 & 2 in the historical controls compared with 48 & 5 in the current
experiment). The results in Table 5 show that the use of historical controls by
all tests strengthens the evidence for an increasing trend, particularly the tests

based on the Poisson/Negative-Binomial model.

Table 4. Number of mutant colonies of Salmonella (TA98)
exposed to Coal Tar solution in the Ames assay]L

Historical controls*

52, 70, 74, 77, 85, 90, 97, 100, 107, 109, 113, 117, 123

Experimental data

Dose:

0

1.25

2.5

5.0 7.5

10.0

Count:

96

120

115

104 109

132

t Each count is the sum of two replicate plate counts.

* Frequency of occurrence in parentheses.

Table 5. Tests for trend using the data in Table 4

Model parameters

Test statistic © ¢ T 1% Z=T/VV  p-value
Zca 137.5 8362 1.504 0.0663
Z: (M) 46.69 1.861 159.2 8851 1.692 0.0453
(EE) 46.69 1.679 161.4 8901 1.711 0.0435
(ML) 46.69 1.866 159.1 8850 1.692 0.0453
Zky (M) 46.69 1.861 159.2 7554 1.832 0.0335
(EE) 46.69 1.679 161.4 7598 1.852 0.0320
(ML) 46.69 1.866 159.1 7553 1.831 0.0336

Zpo 54.22 3.359 248.4 9081 2.607 0.0046
ZpE 54.22 3.359 248.4 10778 2.393 0.0084
ZgE—_p 53.64 2.297 278.8 11402 2.611 0.0045
ZNBO 47.52 1.855 157.4 8722 1.685 0.0460
ZNBE 47.52 1.855 157.4 7482 1.820 0.0344
ZEE_NBO 47.53 1.648 159.7 8863 1.697 0.0448
ZEE—NBE 47.53 1.648 159.7 7535 1.840 0.0329

* Estimates of the parameters y and ¢ may be obtained by the method of moments (M),

the estimating equations (2.18) and (2.19) (EE), or maximum likelihood (ML).



USE OF HISTORICAL CONTROLS IN TREND TEST FOR COUNTS 593

4. Small-Sample Evaluation of Test Statistics

In this section, the type I and type II error rates of the test statistics are eval-
uated using computer simulation under both the negative-binomial model and
the Poisson/negative-binomial model. For the historical control series, gamma
variates 8; (j = 2,...,s; s = 6 or 21) with mean u = 8, and p = 6 or 20 were gen-
erated using the IMSL (1987) subroutine RNGAM. These two values of p repre-
sent cases when the historical counts are moderately (p = 20) and highly (p = 6)
overdispersed relative to Poisson variation. Three Poisson variates X;;, X ;2 and
Xjs where then generated for each value of §; using IMSL subroutine RNPOI.
For the current study, k + 1 = 4 dose levels (dg = 0, d; = 1/4, d; = 1/2 and
ds = 1) were used, with n;; = 3 (¢ =0, 1, 2, 3) replicate counts for each dose. For
the negative-binomial model, 8; was generated in the same way as the historical
control response rates #;, whereas, for the Poisson/negative-binomial model, 6,
took the value p = 8. Poisson responses for the different dose groups were then
generated with means \;, = 6;eP%.

Table 6 shows the type I error rates for the different test statistics based
on 1000 simulations of the model described above with 8 = 0. The Cochran-
Armitage test appears to adhere to the nominal 5% significance level. Tarone’s
test produced type I error rates only slightly above the desired 5% level with 20
historical control groups, but was subject to type I error rates of almost 10% with
5 historical controls. This inflation of the type I error rate indicates the need to
take into account errors in parameter estimation, particularly with a small num-
ber of historical groups. The Kikuchi-Yanagawa test demonstrated error rates as
high as 8% with 20 historical control groups, and over 10% with 5 historical con-
trols. The different parameter estimation procedures (the method of moments,
the estimating equations (2.18) and (2.19), and maximum likelihood) produced
similar error rates for the Tarone and Kikuchi-Yanagawa tests. Tests based on
likelihood methods or estimating equations derived under the Poisson/negative-
binomial model (Zpo, Zpg and Zgg_p) produced slightly inflated error rates when
the assumed model is correct, but highly inflated error rates (13% — 19%) un-
der the negative-binomial model with 20 historical groups. On the other hand,
the tests based on the negative-binomial model (Zxpo, ZnBe, Zee-nBo and
Zgg-npe) adhered fairly closely to the nominal level under both models with 5
or 20 historical controls. For both models, the tests based on estimating equa-
tions had type I error rates similar to those of the corresponding likelihood-based
tests.

The powers of the test statistics, based on 1000 simulations under 8 = 0.5,
are presented in Table 7. The powers for those tests that produced unacceptable
type I error rates (those as high as 0.07 — about three standard errors above
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Table 6. Estimated type I error rates of tests for trend!

Negative-binomial model Poisson/negative-binomial model
Test statistic p=_8 p=20 u=8, p==6 u=8, p=20 u=8 p==~6
s — 1 =15 Historical control groups

ZcA 0.054 0.052 0.048 0.056
Zr (M) 0.082 0.070 0.060 0.073
(EE) 0.093 0.081 0.060 0.071
(ML) 0.096 0.083 0.064 0.076
Zxy (M) 0.089 0.081 0.068 0.088
(EE) 0.104 0.089 0.069 0.082
(ML) 0.104 0.090 0.071 0.085
Zpo 0.061 0.049 0.052 0.050
ZpE 0.068 0.065 0.053 0.063
ZEE-P 0.078 0.054 0.058 0.075
ZNBO 0.078 0.069 0.057 0.070
ZNBE 0.069 0.067 0.052 0.069
ZEE-NBO 0.064 0.048 0.050 0.062
ZEE—-NBE 0.068 0.052 0.054 0.068

s — 1 =20 Historical control groups

Zea 0.055 0.052 0.066 0.056
Zp (M) 0.064 0.050 0.056 0.052
(EE) 0.059 0.050 0.058 0.050
(ML) 0.067 0.053 0.056 0.051
Zxy (M) 0.079 0.062 0.064 0.063
(EE) 0.080 0.061 0.063 0.061
(ML) 0.084 0.066 0.064 0.062

Zpo 0.163 0.153 0.070 0.061
ZpE 0.154 0.137 0.069 0.059
ZgE-p 0.165 0.188 0.070 0.066
ZxnBo 0.059 0.050 0.058 0.051
ZNBE 0.060 0.062 0.053 0.049
ZEE-NBO 0.059 0.049 0.055 0.052
ZEE-NBE 0.073 0.064 0.054 0.050

t Based on 1000 simulations of an experiment with nominal significance level .05, dy = 0,
dy=1/4,dy =1/2,d3=1,n;=n;=3(t=0,1,...,k; j=2,...,s)and s—1=35
or 20 historical control groups. The standard errors of the estimated error rates range
from 0.007 to 0.012.
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Table 7. Estimated powers of tests for trend |

Negative-binomial model Poisson /negative-binomial model
Test statistic pu=28 p=20 pu=28, p==~6 u=8 p=20 pu=28 p==6
s — 1 =5 Historical control groups
ZcA 0.664 0.640 0.649 0.663
Zr (M) 0.707* 0.623* 0.781 0.732*
(EE) 0.710* 0.629* 0.782 0.750*
(ML) 0.713* 0.620* 0.794 0.735*
Zxy (M) 0.724* 0.649" 0.800 0.766*
(EE) 0.727* 0.648 0.804 0.784”
(ML) 0.722* 0.641* 0.808* 0.766*
Zpo 0.647 0.551 0.741 0.673
ZpE 0.681 0.579 0.777 0.730
ZEE-P 0.693* 0.618 0.801 0.769*
ZNBO 0.700* 0.629 0.773 0.725*
ZNBE 0.692 0.623 0.764 0.748
ZEE-NBO 0.685 0.616 0.762 0.722
ZEE-NBE 0.706 0.626 0.786 0.752
s — 1 = 20 Historical control groups

Zoa 0.672 0.621 0.672 0.672
Zr (M) 0.726 0.613 0.790 0.720
(EE) 0.732 0.610 0.785 0.723
(ML) 0.731 0.607 0.791 0.722
Zxy (M) 0.752* 0.648 0.815 0.761
(EE) 0.753" 0.643 0.815 0.761
(ML) 0.752* 0.644 0.820 0.763
Zpo 0.758* 0.594* 0.907* 0.846
ZpE 0.758* 0.586* 0.905 0.844
ZEE-P 0.761 0.600* 0.908* 0.853
ZNBO 0.727 0.610 0.791 0.720
ZNBE 0.738 0.611 0.819 0.764
ZEE_-NBO 0.727 0.607 0.786 0.717
ZEE—-NBE 0.739* 0.613 0.821 0.764

t Based on 1000 simulations of an experiment with nominal significance level .05, dy = 0,
dy=1/4,d,=1/2,d3=1,n;, =n; =3 (1=0,...,k; 5=2,...,8),s—1=50r 20
historical control groups, and 3 = 0.5. The standard errors of the power estimates range

from 0.009 to 0.016.
* Note that tests with results marked with asterisks had inflated (> 0.07) type I error

rates (see Table 6).
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0.05) are indicated by asterisks. The use of historical control data produced more
powerful tests than the Cochran-Armitage test in all cases except with only 5
historical control groups under the negative-binomial model with p = 6. The
powers of all tests that use historical control data were higher with p = 20 than
with p = 6 and were higher under the Poisson/negative-binomial model than
under the negative-binomial model with the same parameter values.

With 20 historical control groups, the tests based on the negative-binomial
model produced comparable power to Tarone’s test under the negative-binomial
model; however, Zypg and Zgg_npg were more powerful than Tarone’s test un-
der the Poisson/negative-binomial model. With p = 6 in the negative-binomial
model Zxy was the most powerful test, whereas the highest powers under the
Poisson/negative-binomial model were achieved by tests derived under this
model.

With 5 historical control groups, the powers of the tests that use the histor-
ical control data were reduced only slightly in most cases from those obtained
with 20 historical controls. Zgg_npr is the most powerful test statistic under
the negative-binomial model with p = 20 and also under the Poisson/negative-
binomial model with p = 6.

5. Discussion and Conclusions

In this article, two different models were used to describe data from a current
experiment as well as control data from historical experiments. The negative-
binomial model is intended to accomodate the extra-Poisson variation in control
response rates which arises, for instance, from inter-laboratory differences. Be-
cause extra-Poisson variation may not be considered pertinent in the analysis
of the experiment of interest, a Poisson/negative-binomial model in which only
Poisson variation is considered in the current experiment was introduced. Imple-
mentation of this latter model involved the assumption that the control response
rates from the historical experiments are centered on that of the current experi-
ment.

The tests proposed by Tarone and Kikuchi and Yanagawa both exhibit un-
acceptable type I error rates with 5 historical control groups. The trend tests
derived here under the assumption of Poisson variation in the current experiment
perform poorly in the presence of extra-Poisson variation. However, tests allow-
ing for overdispersion in the experiment at hand achieve type I error rates close to
the nominal 5% level, even under the Poisson/negative-binomial model. The use
of historical control data can result in increased sensitivity in comparison with
the Cochran-Armitage test used without historical controls. In particular, the
statistic Zgg_~BE based on estimating equations appears to provide high sensitiv-
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ity across a wide range of situations. The estimating-equation approach avoids
the parametric assumptions of the likelihood-based approach, while producing
a more powerful test. Tests based on estimating equations are also simpler to
implement and require much less computing time.

The tests for trend with historical controls proposed in this article are appli-
cable only when the historical control and current control data are compatible.
Specifically, the tests based on the negative binomial model are derived under
the assumption that the historical and current control response rates come from
the same distribution. Tests based on the Poisson/negative binomial model as-
sume that the expected historical control response rate is equal to the response
rate in the current control group. Krewski et al. (1988) have shown that the
type I error rates of these tests can be distorted when these assumptions are not
satisfled. Krewski et al. (1987) considered the use of preliminary statistical tests
to evaluate the compatibility of the historical and current controls: when the
historical and current controls are dissimilar, the historical data are not used in
testing for trend. A disadvantage of this latter approach is that the decision as
to whether to use the historical data may be sensitive to slight perturbations in
the experimental data. Further research on criteria to determine when histori-
cal data should be used in order to increase the efficiency of tests for trend is
desirable.

The tests considered here all assume that the variation among observations
obtained in an individual experiment corresponds to that of a Poisson distribu-
tion. Extensions to these procedures are required for application to situations
where extra-Poisson variation is present in an individual experiment.

Appendix 1: Observed Information
The negative-binomial model

The elements of the observed information matrix used in Equation (2.4) are

k k 2
tpg = fro(Po + X1)(Po + nafio) Z nlid? — o (po + nayfio)™? <Z nlidi) ;

k
Lo = Po(Bo + X1)(Po + nafio) ™D mud;,
1=0

K
tgp = —fo(X1 — mafio)(Po + mafio) 2 Y mudi,
gt

bpp = fig* Z [Xj — (X, + ﬁo)(njllo)z(ﬁo + n]ﬁ.o)—z] J

=1
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S
e ==Y (X, = n;fio)(fo + njfi)~%, and
j=1

s X]—'l
bop :Z Z (ﬁo+l)_2—njﬂoﬁgl(ﬁo"*‘”ﬂ%)_l“(Xj_njﬂO)(ﬁO‘*'nj/lo)_Q

=1 =0

The Poisson/negative-binomial model

The elements of the observed information matrix used in Equation (2.28) are

k
Lap = flo y_nydZ,

1=0

k
gy = Z nlidi’

1=0

b =000 S X+ Y [ X = (X + po)(njfio) (o + i) 2] 3,
£

S
e ==Y _n;i(X; = njfio)(Po + ;o) %, and
=2

s (X;-1
> (bo+1)"% =nsfk0fy * (Po+mfio) ™ — (X —1jfio) (Po+m ko) ~>
0

o~

)

°
H

‘Appendix 2: Asymptotic Distributions of Trend Test Statistics

The Cochran-Armitage statistic Zc, is asymptotically standard normal pro-
vided n; — oo and maxo<i<k(d; — d)?/s3 — 0, where s2 = Zny,(d; — d)? and
d = Ynyd;/n,, by the Lindeberg Central Limit Theorem. Tarone’s statistic
Zr is also asymptotically normal under the additional condition d/sy — 0, ei-
ther with a fixed set of historical experiments, or with an increasing number of
historical controls provided that the estimates 2 and p are consistent and p < co.

The Poisson/negative-binomial model

The asymptotic normality of the test statistics based on the likelihood, Zpg
and Zpo, can be proved using standard likelihood-theory methods. In particular,
the results follow from a minor extension of Theorem 6.6.1 of Lehmann (1983),
which concerns several iid samples of data simultaneously. In our situation the
iid samples are indexed by the dose groups i = 0,..., k in the current experiment
and the subsets of historical controls with n; = n, for n = 1,..., N, where
N = max,<;<sn;. The extension of the theorem results from the observation that
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the proof does not require the Fisher information corresponding to each sample
to be positive-definite as assumed, but only that the total information, across
all samples, be positive-definite. This extension is necessary for our purposes
since the current experiment provides no information on p and the historical
controls provide no information on 3. The extended theorem applies to the
Poisson /negative-binomial model under the following conditions.

(A) n; — oo,

(B) nii/n1 — Ay,

(C) Sh(d: — Shidi)? > 0,

(D) s/ny — ¢ >0,

(E) s7*#{j : n; = n} — pnp, where B} p, = 1.

The test statistic (Zgg_p) based on estimating equations is easily shown to be
asymptotically normal as well. This result does not require the distributional
assumptions of the Poisson/negative-binomial model. Instead, we assume the
first and second moments which were used in the derivation of the test, and the
additional moment assumption

(F) B(X)) <M < oo, (j=2,...,5).

Conditions (A), (D) and (E) above are also used, but in place of (B) and (C),
the weaker assumptions given below are made:
/ 2
(B') maxdi/m —0,
(C)d— pg >0, s2/ny — 0 >0.

The first step in the proof establishes the consistency of fio, by showing that
the estimating equation for u has a consistent sequence of solutions. Noting
that ¢y can be written qZ)(ﬂo), the next step proves that d;(u) is 4/s-consistent
for fixed u. The same asymptotic distribution for Zgg_p holds with an arbitrary
\/s-consistent estimator J)(u) This is not surprising given the general result of
Liang and Zeger (1986) on the asymptotic distributions of estimators derived
from estimating equations.

The negative-binomial model

For this model, the asymptotic distributions of the likelihood-based test
statistics can be derived under the conditions (A), (B'), (C'), (D) and (E) given
above. As before, results for the test statistics based on estimating equations
require fewer assumptions; specifically, instead of the distributional assumptions,
we assume the first and second moments used in the derivation of the test, and
the additional moment assumptions (F) and
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(G) E(X}) = O(ny).

Each of the statistics derived under this model has numerator of the form

T Z—th - (X1+/J‘0/¢0) n1+¢ anz 7.

It can be shown that (T'—T)/sqa —p 0, where Tj is the numerator of Z¢,. Note
that Ty /s has an approximate N (0, 6;) distribution, conditional on #,. Also, the
estimators fio and ¢ (based on likelihood or estimating equations) are consistent
under the conditions stated above.

The asymptotic distribution of a particular test statistic depends on the
asymptotic behavior of the variance estimate used. Two cases arise. First, if
V/ s converges in probability to u, as for Zxpg and Zgg-ngE, then

T 84 [To T — TO]
=2

Vvie  yi/2

converges in distribution to Z where Z has the mixed-normal distribution given in
(2.10). In the second case, which applies to Zngo and Zgg-~nso, V/V converges
in probability to 1 unconditionally, where V/s% converges in probability to 6,

conditional on 6,. This implies that

Sd

Vi 1%
converges in distribution to the standard normal.

All of these test statistics, ZNBE, ZEE—NBE: ZNBO and ZEE—NBO, have the
same distribution under the Poisson/negative-binomial model as under the nega-
tive-binomial model. Because X, has smaller variance under the model with no
overdispersion in the current experiment, the same proofs apply. However, the
limiting distributions (if they exist) of Zgg_p, Zpg and Zpo under the negative-
binomial model are not easily determined. We cannot approximate the score
T = ¥ X,;d; — floxn,;d; by Ty as we did previously. The estimate [y will not be
consistent (or converge in probability to any constant), and we can expect there
to be additional variability in the limiting distributions of the test statistics. The
simulation results of Section 4 confirm this expectation.

T VNY2T sy Ty sq T—Tp
Vi/2 S4 + V1/2 Sq
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