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MOMENT BOUNDS FOR DERIVING TIME SERIES CLT’S
AND MODEL SELECTION PROCEDURES
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Abstract: We establish a 2pth moment bound (p > 1) for quadratic forms, and a pth
moment bound for an important ratio of such forms, for vector time series having es-
timated regression mean functions and stationary, square summable autocovariances.
The mean-centered series are assumed to have a Joint linear representation in terms of
a martingale difference sequence with bounded conditional 4pth moments. Applica-
tions discussed include a quite general Central Limit Theorem for sample covariances
and the derivation of several model selection methods for stochastic regression, among
them methods concerned with multi-step-ahead forecasting performance.
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1. Introduction

Let X*(¢) and Y*(t) be vector-valued time series whose mean functions are
linear functions of vector sequences Zx(t) and Zy(t) respectively,

EX™(t) = AxZx(t), EY™(t) = Ay Zy (t). (1.1)
We assume that the mean zero series
X(t)= X*(t) — AxZx(t), Y(t)=Y*(t) - Ay Zy (t), (1.2)

are jointly covariance stationary. If the coefficients in (1.1) are unknown, we shall
be concerned only with the situation in which they are estimated by ordinary least
squares, perhaps as a prelude to investigating the strength of a linear relation
between the unobserved series X (t) and Y (¢), such as the relation

Y(t) = DX(t) + E(t), (1.3)
with D = Ty xI'y)y, where Dy x = EY(t)X(t) and Txx = EX(t) X (¢, assuming

detI'xx > 0. (1.4)



454 DAVID F. FINDLEY AND CHING-ZONG WEI

Such least squares estimation gives rise to quadratic forms Ef,t:l z(s)q(s,t)y(t)
in entries z(t), y(t) of X(t) and Y (t) with nonrandom q(s,t). In this paper we
derive and apply 2pth absolute moment bounds (p > 1) such as

T 2p T 2\ p
| 3 {s(erats 0wt - Eaate,y}| < Mp{e] 3 &(dals 050 v,
s,t=1 s,t=1

in which M, is a constant not dependent on T or on the coefficients q(s,t), and
Z(t) and §(t) denote mutually independent time series having the same mean and
autocovariances as z(t) and y(t) respectively. This result, which is reformulated
as (2.6) below, makes it possible to obtain a moment bound like (1.10) and a
Central Limit Theorem like Theorem 3.1 for covariance statistics of regression
residuals.

Throughout the paper, I’ denotes the transpose of a matrix I' and, when r
is square, ['" denotes its Moore-Penrose inverse. Define, for T = 1,2,..., the
ordinary least squares Ax-estimator

A T T -+
Ax(T) = S X ()2 (1) [2 zx<t>zx<t>'] (1.5)
t=1 t=1

and the associated estimator of X (%),
X(T) = X7 (1) — Ax(T)Zx (1),

for 1 <t < T. As no confusion is Alikely to result, we shall abbreviate X(t;T) by
X (t). Define Ay(T) and Y (t) = Y (t; T) similarly, and also the estimates

) T . ) T . ) +
Iy = SYOR [Z X(t)X(t)'] (1.6)
t=1 t=1

and
E@:T) = Y(t) - D)X (1),

the latter to be abbreviated E(t).

Let z(¢) and y(t) denote coordinate entries of X(t) and Y(t), and let £(t)
and 7(t) denote entries of the weakly stationary process E(t). Also, let #(t),
§(t), Ty, Ten, (1), 7i(t) denote the corresponding entries of X(@), Y(t), Ty,
Tge = EER)E(L), E(t), and let A.(T) denote the row of Ax(T) corresponding
to z(t), etc. Thus, for example, &(t) = z(t) — A (T)Zx(t). For a variety of
purposes, including model selection theory, it is useful to have information about
the boundedness in T of absolute moments of the covariance statistics

T
(1) = T2 3 (8(£)§(2) — Ty (1.7)
t=1
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and

fen(T) = T2 Z (6(1)A(t) - Ten). (1.8)

For our basic results, such as (1.10) and (1.11) below, we only require the
spectral density functions of the coordinate processes to be square integrable,

(d)\<oo/ 2 (A)dA < o0, (19

-7

or, equivalently, the autocovariance sequences I';z(j), I'yy(7), 7 = 0,%£1,..., to
be square summable. Thus, some long-memory processes are covered. For any
real number p > 0, let ||-||, denote the pth absolute moment norm, defined for
every random variate v by ||v|l, = {€|v|P}}/P. We shall assume z(t) and y(t) have
linear representations in terms of a conditional-covariance stationary martingale
~ difference sequence with bounded conditional 4pth' moments (see (M1-3) below),
and prove two general moment-bound results, presented in Sections 2 and 4. We
use these to establish the bound

1/4
sup (Dl < Mp{ [ f0ax- [* s N)ar} (110
T>1

for some finite constant M,, and also that

sup ||7en(T)lp < oo, (1.11)
T>1

holds, both with no restrictions on the mean-regressor functions Zx(t) and Zy (t)
in (1.1).

One consequence of (1.11) is the weak consistency of a natural estimator of
I'eg,

E®)E@) 2 Igg. (1.12)

||M»~1

This provides the foundation for a model selection procedure for comparing X (t)
with other regressors for Y(t) as we explain in Section 6. A generalization of the
linear regression version of the hypotheses testing procedure of Vuong (1989) to
the case of non-i.i.d. data is also presented there, as a corollary of a Central Limit
Theorem for 7,. This CLT follows from a quite general CLT for sample serial
covariances which is derived in Section 3, using results related to (1.10) and
(1.11). Section 5 considers how (1.10) is affected by linear filtering, especially
by multistep-ahead-forecasting with ARMA models, an analysis which helps to
justify the forecast-model selection procedure utilized in Findley (1991a).
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The stochastic nature of the generalized inverse factor in D(T) is what causes
the moment-order to be lower in (1.11) than in (1.10) (p versus 2p) and makes
it difficult to find an upper bound with a simple expression. For convenience of
later reference, we close this section by stating, in general form, the basic least
squares formula from which the role of these inverse terms becomes apparent.

Given vectors u(t), v(t), w(t), t = 1,...,T, define the least squares regression
coefficients
) T T +
Cul(T) = Zu(t)w(t)'[zw(t)w(t)']
t=1 t=1
and
. T T +
Eu(T) = 3 v(t)w(t) [Zw(t)w(t)'] |
=1 t=1

t
Then, for any matrices Cy and C, having the same dimensions as these, we have
the algebraic identities

T !
S (ul) - Cuw(t)) (vt) - va(t))
t=1

(u(t) - Cultyu(®)) (v(1) - CuTyu(®)’

T
t=1

= (6u(T) - €) S witn(®) (GuT) - G

B

t

It
NA

T

_ { > (u(d) —Cuw(t)>w(t)'}[ ST; w(t)w(t)'] +{ 3 w()(v(t)- c,,w(t))'}, (1.13)

t=1 t=1 t=1
the last equality arising from the reflexive property, +*I'Tt = I'", of Moore-
Penrose inverses (see Rao (1973, p.26)).
2. The First Moment Bound Theorem and the Proof of (1.10)

We shall always assume that all entries z(t) and y(t) satisfy (1.9) and have
linear representations

o= 3 alialt-7)

= (2.1)
W)= 3 BB )

j=—oo

in terms of the same F;-measurable random vectors a(t) and §(t) of dimensions
d(a) and d(B), respectively, where Fy, —oo <t < 00 is an increasing sequence of
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o-fields of events. Further, we assume a(t) and B(¢) have the martingale difference
property (M1) below as well as the conditional moment properties (M2)-(M3),
all with probability 1:

(M1). E{a(t)|Ft-1} = 0; E{B(t)|Fr-1} = 0.

(M2i). There is a constant d(a) x d(8)-matriz £ = (Li;) such that

E{a(®B(t)|Fir} = 2.

(M2ii). The conditional variance matrices E{a(t)a(t)'|Fi-1} and E{B(t)B(t)'|Fi-1}
are the identity matrices I, and Iz of their respective orders,

£{a(t)a(t)’|Ft_1} = I,

(2.2)
E{BHB(EY|Fir } = Ip.
(M3). There is a finite constant Cp such that (2.3) holds for some p > 1,
sup £{(e/(Da(t)) PPt } < G
—oo<t<oo (2.3)
sup  £{(8'(1B(1))*|Fe-1} < Cp
—00<t<00

Remark. The essential part of (M2) is the assumption that the conditional co-
variances are constant. As Hannan (1987) has discussed, this is not an entirely
natural assumption, unless a(t), 8(t) are independent of a(s), B(s) for s # ¢, but
it is commonly made, because it helps to ensure that sample second moments
have a limiting normal distribution whose covariance matrix has a relatively sim-
ple form. Assumption (M3) permits random conditional 2pth moments, but its
boundedness requirement is somewhat restrictive.

When p > 1, the assumptions (M1)-(M3) will be shown to imply that upper
bounds of higher-than-second moments of 7z,(T) can be obtained from second
moments calculated under the simplifying assumption that the series z(t) and
y(t) are independent. We first present such results for general quadratic forms.

Consider a constant-coefficient quadratic form in z(t), y(¢),t=1,---,T,

T
Q=) z(s)qs, )y(2).

s,t=1

If we set Ty (j) = Ez(t)y(t - 5), 5 =0,=£1,..,, then the mean of Q is given by

T
£Q=3" q(s,t)Tay(s — 1). (2.4)

s,t=1
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Observe that the 2pth moment norm of Q satisfies

1Qll2p <1EQI+[1Q ~ Q2 (2.5)

Let Q denote the variate obtained by replacing z(t) and y(t) in Q with series
Z(t) and §(t) which have the same spectral densities as these series but which
are independent of one another. Our first theorem establishes the existence of a
constant K, such that

1Q = £Qll2p < KplIQll2- (2.6)

Bounds for ||Q||2, then follow from (2.4-6) and are given in the following theorem,
whose proof can be found in the Appendix.

First Moment Bound Theorem. Suppose the processes a(t) and B(t) satisfy
(M1) - (M3), with p > 1 in (2.3). Then there ezists a constant K,, depending
only on p,d(e),d(B), L and Cyp, such that (2.6) holds. Consequently, for all time
series z(t), y(t) with representations (2.1), and for all choices of non-random
coefficients q(s,t), 1 < s, t < T, there is a constant K, such that

.
> a(s,){2(s)y(t) - Tay(s - 1)}

s,t=1 2p
T 1/2
< Kp{ Z q(s,t)q(u, v)Tzz(s —u)Fyy(t~v)} ) (2.7)
s,tyu,u=1 v

and

S gl el

s t=1 2p

T 1/2

<| S atetlats - 0f+5{ S o000 arts - - ) 25)

s,t=1 s,tyu,v=1

2.1. Useful special cases

As a first application of (2.7) and a step toward (1.10), we note that for
-
Tay(T) = T2 Y {a(t)y(t) - Ty }, | (2.9)
t=1
it follows from (2.7) with g(s,t) = T-1/2§,, (Kronecker’s delta) that

T 1/2
el < Kn{T™ 3 Lee(t = Wt - )

t,u=1
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T-1 1/2
S B R lEa ) WY
k=—(T-1)
0o 00 1/4
< {3 the X M)
k=—00 k=—00

- (271')1/2Kp{/_: fgm(,\)d,\-/_trij(,\)d,\}m, (2.10)

by Cauchy-Schwarz and Parseval. This is (1.10) for the special case in which
Zx(t) = 0, Zy(t) = 0 for all t. It can be used to verify some of the uniform
integrability conditions required for a rigorous derivation of the bias properties
of Akaike’s AIC criterion, see Findley (1985) and Findley and Wei (1993).

One can apply (2.10) with p = 1 within a straightforward adaptation of the
subsequence argument on pp 184-185 of Hall and Heyde (1980) to show that the
variate T~V 27, (T) = T~ S, z(t)y(t) — T2y converges to 0 with probability
one. (Strong Law) :

Our applications of (2.8) come by way of the following corollary, in which we
use |¢||? to denote the inner product c’c of a vector with itself.

Corollary. For each 1 < T < oo, let ¢(t;T) and d(t;T), 1 <t < T be vector
sequences such that

T T
SlleDI? < Ko, YNl T)I? < Ka (2.11)
t=1 t=1

hold, for some constants K. and Kq. Then under the assumptions of the theorem,
the inequality

T ¢ T
”T-lﬂ[Zc(s;T)z(s) Z d(t; T)y ()]
s=1 t=1
™ 1/4
< (27rKch)1/2(Kp+1){ 2axr- [ y()\)d)\} (2.12)

is valid for all T, where K, is the constant occurring in (2.7).
Alternatively, if the spectral density functions are essentially bounded,

f:c:c()‘) S M:m fyy()‘) S My (’\“a‘e') (2'13)

then the multiplier T~Y/? in (2.12) can be dispensed with, in the sense that (2.14)
holds:
T

0 T
> el TIX(6)] [gdu;ﬂy(w]

s=1

< om(K KgMo M) 2 (K, +1). (2.14)
2p
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Proof. By Cauchy-Schwarz, the quantity on the left in (2.12) is bounded above
by

T o 11/2 T o11/2
“T—1/2 > e(t; T)z(t) T2 S d(t; T)y(t)
t=1 2p t=1 2p
By the symmetry of the roles of z(t) and y(t), we can establish (2.12) by verifying
1/2
IT“1/2 S et T)a t)” < (22K (K, + 1){ / ffz()\)d/\} (2.15)
t=1

This follows by setting y(s) = z(s) and g(r,s) = T~/ 2¢(s; T) c(t; T) in (2.8)
and then observing, via Cauchy-Schwarz and Parseval, that ‘

lT—l/2 ZT: c(s;T) e(t; T)Tpu(s — t)‘

s,t=1

Z le(t; T)||2} {T— Z re. }1/2

s,t=1

<

T 1/2
< en K fﬁz(/\)d/\} -

Setting d = dimc(¢, T'), the final assertion (2.14) follows similarly with the aid of

ZT: c(8;T) c(t; T)Pzz(s — t)‘
s,t=1
T
_ / Z S ¢t T)ett fm(,\)dA
Jj=1"t=1

< 27M, Z le(t; T)|? < 2nK M,
t=1

2.2. Proof of (1.10)

Conditions under which (1.10) is valid are given in the following theorem.

Theorem 2.1. Under the conditions (1.4), (1.9) and (M1)-(M3) on the coordi-
nate entries of the processes X (t) and Y (t), the bound (1.10) holds for all of the
entries 7oy (T) of T2 L (X ()Y (t) —Txy), and for all1 < T < co.

Proof. For an arbitrary vector sequence Z(t) of dimension d(Z), let the matrices
S(T) be such that

S(T)'S(T) =

T -
) Z(t)zw']
t=1
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and define
ct; T)=S(T)zZ(t), (1<t<T).
Then, with tr denoting trace, we have

T

T
Yot T et T) = Y Z'()S(T)S(T)Z(2)
t=1

t=1
= tr{

so (2.11) is satisfied, with K, = d(Z). From (2.12), we conclude that the variates

T T +
> 22| |3 202 ] } < d(2), (216)
t=1 t=1

T T ++ T
Rayiz(T) = ;wa)Z(t)'H;za)Z@)’] ;Z“)y(t)]
- [ic(s;T)x<s>]'[icu;my(t)] (2.17)
s=1 t=1

satisfy

sup |[77/* Rayz (T,

™ ™ 1/4
< @02+ 0] [ moa [ gma) . @as)
For later reference, we note that, if (2.13) holds, then (2.14) yields

sup || Roy:z (T) 29 < 2nd(Z) (Mo My) *(Kp + 1). (2.19)

Now (1.10) is within easy reach. Since

'fzy(T)“h < ay(T) — Tmy(T)”2pa
it follows from (2.10) and (2.18) that we have only to verify

2y (T) = Tay(T)ll2p

| Rugez (1)

the R-variates on the right being defined as in (2.17).
Using the identity
2(1)9(t) — =(D)y(1)
= (&(t) — =(t))(@(t) — y(1)) + z()(G(2) — y(t)) + (2(2) — =(2))y(2),

Tmy(T)”zp +

TI/2

1/2
+

<

Rozizx ()] Reyizx (D), + |Revzy (D), (2:20)

2p 2p
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we obtain via special cases of (1.13) that
TH2{ 70 (T) = 70 (T) }

T !
=Y (4. -4 +(T)) Zx () Zy (2) (4y - 4 y(T))

o+
[

, . T
s 2(t) 2y (t) (Ay = Ay(D)) + (4e = 4o(T)) 3 Zx ()y(2)
t=1

t=1

(Ae = Ae(D) Zx (0 2y (1) (Ay = Ay(T)) = Bayizy (1)~ Rayiz (T). (2.21)

M’ﬂ

o+
i

1

By Cauchy-Schwarz, first for vector inner products and then for moment
norms, the 2p-norm of the summation term in this last expression is bounded
above by

(Note that, because A, and A, (T) are row vectors and Zx () is a column vector,
Ryz:2x 1s a nonnegative real number, and the same is true of Ry,.z,.) Therefore
(2.20) follows from (2.21) and (2.22). This completes the proof of (1.10).

1/2

”1/ (2.22)

”Ryy ZY

Reoz ()|,

R/%, (DR (D) <|
2p

Tx.Zx yy: 2y

3. Joint Representation and Central Limit Theorems

The use of differently designated processes a(t) and 3(t) in (2.1) was helpful
for the formulation of the First Moment Bound Theorem, but for other pur-
poses it is useful to note that there is no loss of generality in assuming that
a(t) = B(t). More specifically, under (M1-3), (a(t)’ B(t)') is also a covari-
ance stationary, Fi-adapted martingale difference sequence, and one can always
find non-random matrices Do, Dg and D,g with the properties that the process
6(t) = Dog(a(t)’ B(t)") is such that a(t) = Dyé(t), B(t) = Dsé(t) and also such
that, with probability one, §(t) satisfies

E{§(t)|Fi-1} =0, (3.1)

and

B{6)8(t)|Fir } = I (3.2)

where Is; denotes the identity matrix of order d(6) = dimé(¢). Clearly, with*
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A(j) = a(j)Dqo and B(j) = b(j)Dp, we can write

o(t)= Y At -J)

= (3.3)
y(t) = > B(5)é(t - j)-
j=—o0

Further, with probability one,
E{(8(t)8(1))*|Fi-1} S N (DigDas) E{ (e (t)a(t) + B ()B(£)* | Fir |
< (2Amax(DisDap))” Cp-

In other words, there is a finite constant Csp such that

E{(6(t)6(2)*|Fi-1} < Cop (3.4)

holds for all ¢t with probability one.

In the jointly Gaussian case, a representation with these properties exists if
the (square integrable) spectral density matrix of the joint process (X (t) Y (1))
has the same (non-zero) rank at almost all frequencies. Then the representing
process §(t) can be chosen to have dimension equal to this rank (see Rozanov
(1967, pp. 41-2)).

Suppose that p > 1 and that () satisfying (3.1-4) is also fourth-order sta-
tionary. In the following subsections, CLT’s for the statistics under considera-
tion will be obtained with the only additional requirement that the coordinate
entries of §(t) satisfy the following fourth-moment “mixing” condition: There s
a summable, positive sequence G, such that

5lf{5£(t1)5j(t2)5k(t3)5z(t4)|Ft1—m} — E6;(1)6;(t2)0k(t3)6¢(ta)| = O(am) (3.5)
holds uniformly in t1, where t; <t3 <t3 <ty, form=1,2,....

3.1. CLT’s for 74y(T) and 7, (T)

In this subsection, we shall explain how (1.10) can be applied to verify a
Lindeberg condition which leads to a corrected and generalized version of the CLT
Theorem 2.2 of Hosoya and Taniguchi (1982) for the serial covariance statistics
72y (T') under our assumptions on §(t). Then CLT’s for 7zy(T") and 7¢,(T") follow
from conditions which imply, respectively,

Foy(T) — Toy(T) £ 0, (3.6)
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and ‘
Fen(T) = Ten(T) = 0, (3.7)

conditions established below in Theorem 3.2. Hannan (1976) appears to have
been the first to demonstrate that square integrability is the only condition re-
quired of the spectral density functions in order to obtain the classical Gaussian
limiting distribution for 7., (T) (and 74y(T"), when Zx(T) and Zy(T) are con-
stant). Hosoya and Taniguchi (1982) avoided the strict stationarity and ergodicity
assumptions used by Hannan and endeavored to obtain a CLT under weaker as-
sumptions on the representing process. Theorem 3.1 below achieves this, apart
from our use of p > 1 in (3.4) in place of Hannan’s p = 1, although not in quite
the manner Hosoya and Taniguchi envisioned. (Our moment bound results per-
mit p = 1, but other conditjons than those we use below are required to obtain
a CLT for this case.) Our main use for Theorems 3.1 and 3.2 is the derivation
in Section 6 of a test statistic for regressor selection, comparing two non-nested
regressor processes X (t) without the requirement that one of the processes X (t)
be correct. However, we also show in subsection 3.2 that these theorems yield a
CLT for the regression coefficient estimator D(T).

The variance matrices in the limiting distributions referred to in the following
theorem are described by the usual formulas, (see Hannan (1976) for example),
which will not be repeated here. It suffices for our purposes to mention that,
in the case of the 7, (T") for example, the joint variance matrix is 27 times the
spectral density matrix of the covariance stationary process vec(X (¢)Y (t)' — I'zy)
evaluated at the frequency A = 0.

Theorem 3.1. If the coordinate entries of X(t) and Y(t) have linear represen-
tations (3.3) in terms of a sequence 6(t) satisfying (3.1-2), (3.4) with p > 1, and
(3.5), then the coordinate covariance statistics 74,,(T) defined by (2.9) converge
jointly in distribution as T — oo to a zero-mean Gaussian variate, as do the
analogous statistics Ten(T') associated with E(t). Under either of the additional
assumptions (i) or (ii) of Theorem 3.2 below, the sequence 74y(T) (respectively
Ten(T)) has the same limiting distribution as 74y(T) (respectively 7c,(T)).

Proof. The only part of the proof of Hannan (1976) that needs to be modified to
yield this theorem is that which concerns the CLT for the special case of 74y (7)
obtained when

M
z(t)= > A(G)s(t - j)
j=—M
and

M
y(t)= Y B()s(t-j)

j=—M
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for fized, finite M > 0, which we now consider. To show joint asymptotic nor-
mality of the 74, (T)’s, it suffices to establish the asymptotic normality of linear
combinations ¥, , ¢zyTzy(T). These can all be written as T2 Y1, v(t + M),
for v(t) of the form

M d5)
v(t) = Z Z cijke{(sk(t - M —)b(t — M — j) - 5ij5k£}
1,j=—M k=1
where 6;; = 1 or 0, according to whether i = j or i # j, etc. The variates v(t)
so defined satisfy the hypotheses of the CLT Lemma below, with (i) following
from (1.10). This lemma yields the joint asymptotic normality of the 75 (T) in
the special case M < oo being considered. Thus it completes the proof of the
theorem.
We shall have occasion to use the largest-singular-value matrix-norm, ||T'|| =
AY2(I'T). I T is random, we define | T|l, = {€|[T||P}!/? for any p > 0.

CLT Lemma. Suppose that v(t) is a d-variate, covariance stationary, zero-mean
time series whose autocovariance sequence I'(j) = Ev(t)v(t —j), §=0,%1... is
summable. Assume that for some p > 1,

(i) sups, IT=12 T v(to + t)ll2p < o0 holds.

Assume further that there is an increasing sequence of o-fields {F;} such that v(t)
is Fy-measurable, and

(ii) sup; E|E{v(t + k)| E}|| = O(k~Y/27¢) for all k > 1, for some € > 0.

(iii) For all1 < j <k, :

5“€{v(t + ot + k) |Fe} — Ev(t + vt + k)

= O(aj),

where aj, j > 1 is a summable, positive sequence.

Then the sequence & = T~1/2 ST, v(t) is asymptotically normal, with mean
zero and covariance matriz 3 io _ o T'(J).
Proof. By the usual argument, it suffices to consider the case d = 1. We establish
the asserted result by verifying the hypotheses of Theorem 4.1 of Serfling (1968).
Set S(t,T) = Y#-; v(t + k). Under our assumptions, we only have to show (3.8)
and (3.9):

Sl.tlp E\E{S(t, T)|F:}| = O(T*/*~%) for some § > 0, (3.8)

SLtlpE_]f{S2(t,T)|Ft} — ES%(t,T)| = o(T). (3.9)

By (ii), there is a constant K > 0 such that

T
EIE{SH,T)FY < D ElE{v(t+ k)| R}
k=1
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T
< KZ k—l/?-—s — O(Tl/z_e).

This proves (3.8). For (3.9), let m = m(T) < T be a sequence such that m(T)
— oo and m(T') = o(T). We consider individually the terms of the decomposition
of S?(t,T) obtained by squaring the identity S(¢,T) = S(t,m)+ S(t+m,T —m),

S2(¢,T) = S2(t,m) + 28(t,m)S(t + m,T —m) + S* (t + m,T —m).  (3.10)
First, note that,

sup £(E{S%(t,m)|R}) = sup £S%(t,m)

m-1
=m 3y (1-]jl/mIQ)=0(m)=o(T). (3.11)

j=—(m-1)

Next, using Cauchy-Schwarz, observe that

EIE{S(t,m)S(t + m,T — m)|F:}| + £|S(t,m)S(t + m, T — m)|
< 2{E8%(t, m)YHES t + m, T — m)}? = O(mY?)O(TY?) = o(T). (3.12)

Because of (3.10-12), it remains only to verify (3.9) for S(t+m,T —m). For this
variate, there exists, by (iii), a constant C such that the left-hand side of (3.9) is
bounded above by

T
sup[ S EE(t+ §)|F) - Ev3(R)]
j=m+1
T k-1

+2 > > ElE{u(t+ )t + k)F} - Ev(t + j)v(t + k)|
k_m+2 j=m+1

cZaJ+2cZ ZaJ

j=m-+1 k=m+2 j=m+1

IA

< (2T +1) Z a; = o(T).
j=m+1

This completes the proof.

Remark 1. The above Lemma is a corrected and generalized version of Theorem
2.1 of Hosoya and Taniguchi (1982), having the additional hypothesis (i). Our
hypotheses (ii) and (iii) are weaker than their hypotheses

(i)’ sup ||E{v(t + k)| Fe}ll2 = O(k~17¢) for all k > 1, for some € > 0,
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and

(iii)’ Set a; = j~17¢ in (iii).

In fact, if (iii) in the Lemma is replaced by (iii)', then (i) can be replaced by a
weaker assumption

() sup [o(t)]zp < co.

The proof uses Theorem 5.1 of Serfling (1968) and the same arguments we used
above.

Remark 2. To see that an additional assumption such as (i) or (i)’ is required,
consider the sequence of independent variates w(t) in which the tth variate takes
only the values 0 and =(|t| + 1)}/2, each of the latter pair occurring with prob-
ability (2]t| + 2)~!. These variates have mean zero and variance one, and they
fulfill the hypotheses of Hosoya and Taniguchi’s Theorem 2.1, but since

71 i‘ s{w(t)2z[zl/2|w(t)| > T1/2]} —1/2,
t=1

the Lindeberg condition is not satisfied. (We use I[G] to denote the indicator
function of the event G.) Hence T~1/2 T, w(t) does not have a Gaussian lim-
iting distribution (see Loéve (1977, p.292)), which contradicts the assertion of
their theorem. (In their proof, Inequality (6.18) is erroneous.)

Theorem 3.1 above can play the role of Hosoya and Taniguchi’s incorrect
Theorem 2.2 in the proofs of the later CLT’s for general time series models in
their paper. That is, these CLT’s are justified if their hypotheses concerning the
representing white noise process are modified to include the assumptions of our
Theorem 3.1.

Now we turn to (3.6) and (3.7).

Theorem 3.2. Suppose that X(t) and Y (t) satisfy the assumptions of Theorem
3.1 with the possible ezception of (3.5). Then (3.6) and (3.7) hold if either of the
conditions below is satisfied:

(i) The mean function regressors Zx(t) and Zy(t) in (1.1) are constant.

(ii) All coordinate-entry spectral densities fzz(A) and fyy()) are essentially bounded
(condition (2.13)).

Proof. Hannan (1976, p.397) proves that (3.6) follows from (i), and (2.19-20)
show that it is also a consequence of (ii). The assertion (3.7) is a consequence of
(3.6) and the result (4.5) established below.

3.2. CLT’s for estimators of D

The preceding theorems yield CLT’s for D(T). Consider first the simpler
mean-zero-case estimator, D(T) = 7, Y()X (1) (X2, X (¢)X(t)")*. Observe
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that

T T +
TY*(D(T) - D) = {T—W ZE(t)X(t)’}{T’1 ZX(t)X(t)’}
—TY?D [Id(x)—<ZX(t )X (1) )(ZX t)X(t)) } (3.13)

Let A(T) denote the matrix in square brackets in this last expression. This is an
idempotent, positive semidefinite matrix, and we now show that it is zero with
probability tending to 1,

lim P({A(T) = 0}) = 1. (3.14)

Indeed, since trA(T) = rank(A(T)) takes on only integer values in [0, d(X)],
(3.14) will follow from A(T) =5 0, which is a consequence of

plim 7! Z X()X(t) = Txx, (3.15)

the latter being an implication of (1.10). From (3.14) we obtain the negligibility
of the final term in (3.13),
TY2DA(T) 25 0. (3.16)

For the other term, under the assumptions of Theorem 3.1, we have
T N
T1/2vec ( S E(t)X(t)’) dist A7(0, V), (3.17)
t=1

for some V. Using the identity vec(AB) = (B ® I) vecA (where I is the identity
matrix whose order is the row dimension of A), we conclude from (3.13) and
(3.16-17) that

TY/?vee(D(T) - D) <% N (0, (T3 ® Iux) )V (Txx ® luxy) ). (3:18)
The argument that TY/2(D(T) — D) has the same limiting distribution is com-
pletely analogous, with (3.17) replaced by
T

1/2vec<z ()X (t ')iis—t»./\/(O,V), (3.19)

t=1
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where E(t) = Y (t) — DX(t). To verify (3.19), one uses the fact that under (i) or
(i) of Theorem 3.2,

T‘W{ i EQX®) =Y E(t)X(t)'} 0.

t=1 t=1
In summary, we have

Theorem 3.3. Under the assumptions of Theorem 3.1, the limiting result (3.18)
holds for TY2(D(T) — D). If, further, either (i) or (ii) of Theorem 3.2 is valid,
then T~Y2(D(T) — D) has the same limiting distribution.

4. Second Moment Bound Theorem and the Proof of (1.11)

Our other general theorem concerns expressions like the final one in (1.13).
Its proof is given in the Appendix.

Second Moment Bound Theorem. For each T > 1, let u(t) = u(t;T) and
v(t) = v(t;T) be scalar variates, and let w(t) = w(t;T) be vector variates, for
1<t <T, such that a finite constant M, not depending on T, and a nonsingular
matriz Ty exist for which the following conditions are satisfied for somep > 1:
T,
”T—l S u(t)? <M (4.1)
t=1 2p

T
+ HT'1 > w(t)?
t=1

2p

T
HT-I > (e ()| + ”T—1 i eyt (o) <M (42
s,t=1 s,t=1
HT‘”Z ET: (w(t)w(t)’ - wa) < M. (4.3)
t=1 2p

Then there is a finite constant M, not depending on T, such that (4.4) holds for
all T, and for every p satisfyingp/2 < p<p:

T

|2 utu(ey

t=1

T T

S wiuf] [T uwo)

t=1 t=1

T3@/P=2) <M,  (44)

p

This result, together with (1.10), enables us to prove a theorem affirming
(1.11).

Theorem 4.1. Under the conditions (1.4), (1.9) and (M1)-(M3) on the coor-
dinate entries of the processes X (t) and Y (t), the assertion (1.11) holds for the
entries 7en(T) of T~Y? ST (E(t)E(t) - TEE).
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Proof. Set E(t) = Y(t) - DX(t), le ( ) and 7(t) be the entries corresponding
to £(t) and 7(t), and define TE,,(T) =T-1V2T (e(t)A(t) — Den). We have

Fen(T) = Ten(T) + { Fen(T) = Fen(T) },
and it follows readily from (1.10) that

sup ern(T)”q < oo,
T>1

for all ¢ < 2p. Thus, to prove the boundedness of || ¢, (T)|lp, it suffices to demon-
strate (4.5) below, a result which also establishes (3.7) as a consequence of (3.6)
applied to Tep(T) — Ten(T).

sup T%(p/p"l)Hv‘m(T) - 7"5,7(T)“ < . (4.5)
T21,p/2<p<p P

To verify (4.5), observe via (1.13) that

T

> &t HZX(t)X(t)J [tz:f((t)ﬁ(t)]. (4.6)

t=1

%ET](T) - fen(T) T_l/z

Therefore, by the Second Moment Bound Theorem and the interchangeability of
g(t) and 7j(t), (4.5) will follow from (4.7-9):

T
sup |71 £(t)? < 00, 4.7
sup t; (t) . (4.7)
T ~ ~
sup |[T71 ) &(s)e(t)X (1) X (s)|| < oo (4.8)
T21 s,t=1 p
and
/2 ST
sup || T~1 Xt)X(t) -T ” < oo. 4.9
sup ;(o() Xx)zp 0o (4.9)

The condition (4.7) is verified by noting that the bracketed expression in

T T
T E'(HE®) = T"W{T"l/2 > (E'(t)E(t) - trFEE) } +trTgE

has bounded 2pth moments, by (1.10). Next, since £EE(t)X(t)’ = 0, the quantity
under consideration in (4.8) coincides with the sum of d(X) = dim X (¢) products

of pairs of variates of the form 7y, — z;ﬁ’f) D;j7z,z;. Finally, (4.9) concerns the
#42(T). Thus (4.7-9) all follow from the appropriate instances of (1.10).
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5. Filtering and Forecasting
5.1. General results

One of the attractive properties of the linear representation assumptions
(3.1-4) is that filtered versions of z(t) and y(t),

dy= 3 el)a-7), BT®= 3 alwE-7)

j=—oo j=—00

also satisfy these assumptions. The spectral density flx()\) of xT(t) is obtained
from the frequency response function Gg(e?) = D e —oo 9z(j)e”* by mean of

flz()\) = |Gz(e")|? fzz(A). Hence f_lz()\) will be square integrable under
because of (1.9), and will be essentially bounded under (2.12) if Gz(e™) is essen-
tially bounded,

Go(e™)| dA < o0 (5.1)

le(ei’\)} <M<oo (A—ae). (5.2)

Similar remarks apply concerning the spectral density ny()\) of yT (t). These
observations lead to filtered-series analogues of the results established earlier for
Tay(T), T2y(T) and 7¢,(T), provided that, in the estimated means case, the series
defining the filtered mean functions

i S ei)Zx(t-) 2= Y a()Zv(t-J)

j:——oo _7-———00

are defined for all . (Note that these are constant in t if Zx(t) and Zy(t) are
constant, assuming that 352 gz(j) and 352 o 9y(4) are convergent.)

5.2. Uniform convergence of moment estimates of multistep-ahead
forecast error '

We now present an application of the preceding observations which makes
explicit use of the bound in (1.10) and how it is transformed by a family of filters
having the same essential bound in (5.2) for their squared gain functions. Our
application is concerned with m-step-ahead forecasting (m 2 1) of a (for sim-
plicity) univariate, mean zero series y(t) for which (3.1)-(3.4) hold. We consider
forecasts obtained from not necessarily correct, invertible ARMA(g,r) models
for y(t), with g < go and r < ro, whose autoregressive and moving average poly-
nomials, ¢,(z) and 6,(z), with ¢4(0) = 6,(0) = 1, define innovation functions
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U(z) = 6,(2)/¢q(z) whose zeros and poles belong to {|z| > 1+ vy} for some
vo > 0. Tt is easy to see that, for fixed go, 70,0, every sequence Wn(z) of such

innovation functions has a subsequence which converges uniformly on each of the
disks {|z| £ 1+ v}, 0 < v < . It follows from this that for each 0 < v < vy,

there exists a positive constant M, such that
ML) < My (J2 <1+v) (5.3)

holds for all such innovation functions. It is well known (see Theorem 7.3 of
Rozanov (1967)) that if a model has innovation function

U(z)=1+ i ¥v(5)27, (5.4)
j=1

then its m-step-ahead prediction filter for estimating y(t) from y(s), —oo < s <
t —m, has the frequency response function (3°52,, ¥(j)e**)/ U(e**). Thus the m-
step-ahead prediction error filter has the frequency response function G[¥; m](e* M)
given by

G[¥;ml(z) = Z ¥(j)e’ [ ¥(z) ($(0) =1). (5.5)

Let F(M,) denote the set of functions of the form (5.4) which are analytic in
{|z] € 1+v} and satisfy (5.3). It follows from Cauchy’s inequality (see Titchmarsh
(1939, p.84)) that the coefficients ¥(j) satisfy

sup |9(j)| € M,(1+v)™7. (5.6)
YeF(M,)

Since Zg_ao(l +v)77 = v~} (1+v), it is a consequence of (5.3) and (5.6) that the
squared gain functions |G[¥;m](e ”\)|2 have the bound M(v) = M*v=2(1 + v)?,

sup |Gl m)(e™)]” < M),

YeF(M,) }

Letting B denote the backshift operator, we conclude that the spectral density
functions f[¥; m](A) of the m-step-ahead prediction error process associated with
¥ e F(M,),

e[W](t]t — m) = GI¥; m)(B)y(1),

are dominated by the spectral density fy,(X) of y(2),

7m0 = |G ml(e™)| fy (V) < M)V, (5.7)
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Setting o2[¥;m] = £{e*[¥](t|t — m)}, we conclude from (5.7) and (1.10) that
there is a constant K (v) such that

1 T

_ 1/2 2 U _ 2 P
oS (MU)(T m) ——T_mt:;le[ [(t]t = m) — o*[¥;m] .
- 1/2
< K<u>{ [ ijymdx} (5.8)

This is a uniform convergence result, but one that is often not of direct interest,
because the errors e|¥](t[t — m) are unobservable when they are functions of
infinitely many y(s), s < t —m. For t > m + 1, set e[¥](tt — m) = y(t) -
Eg{y(t)|y(t —m),...,y(1)}, where £¢{-|-} denotes conditional expectation for a
zero-mean Gaussian process whose spectral density is proportional to |W(e)|?.
Using results and arguments from Findley (1991b), it can be shown that there is
a constant K (v, m) such that

T
S (Mu)(T—m)'l/z tz%l{62[\11](t|t—m)—ez[\If](t|t—m)} y < K(v,m).
(5.9)

Combining (5.8) and (5.9), we obtain the uniform convergence in 2p-norm of
the observable moment estimator (T — m)™! St ms1 €2[¥)(t|t — m) to the mean
square forecast error o2[¥; m]. This fact is used in Findley (1991a) to motivate a
forecast-model selection procedure whose choices depend on the lead m. Rather
than describe this procedure here, we describe a similar procedure for regression
model selection in the next Section.

6. Two Regressor Selection Procedures

Suppose that there are two competing, possibly non-nested and incorrect,
regressor processes, X7 (t) and X;(t), for Y*(t), whose mean functions can be
expressed as a linear function of the vector functions Z(t) and Z(t) respectively,

EXI(E) = AiZi(t) (i=1,2).

Suppose also that the X;(t) = X} (¢) — Ai Z;(t) have square summable autocovari-
ance matrices TX (), 7 = 0,%1,..., with I'X(0) nonsingular (a different notation
from Section 1), and, together with Y (¢) (defined as in Section 1), have linear
representations in terms of a process §(t) satisfying (3.1) and (3.3-4) with p > 1.

For T >1and1 <t <Tandi=1,2, define D; = Y (t)X;(¢t)'T£(0)71,
E;(t) = Y(t) — D;X;(t), Tf = £E;(t)E;(t)’ and, further,

. T T +
A=Y X070 [T 2020
t=1 t=1
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><,

i(t) = X7(t) - A(T)Zi(1),

T

S Y ()Xi(t) EX X(t)}
t=1

Ei(t) =Y (t) - Di(T)Xi(t),

Di(T)

and, finally,

~

STy = 3 {Ba(t) Ba(t) - E‘g(t)'Eg(t)}.

t=1

It follows from (1.12) that

plim T71S4A(T) = trF — trTE. (6.1)

T—o00

We will use trT'? as a measure of misfit for the regressor process X;(t). In
the case in which the regressors X7 (t) and X;(t) do not have the same (mis)fit,

that is, when
trDF £ 1%, (6.2)

then we wish to determine which regressor process has the better fit (smaller
misfit). The result (6.1) suggests that this can be accomplished, when T is large
enough, by plotting

SO, T/2<T<T (6.3)

against 7', and looking for the (from (6.1)) expected approximately linear move-
ment of S(1 2)(T) which, if it has positive slope, reveals that trT'¥ > trT¥, and
hence that X3(t) is the preferred regressor, etc. This procedure is a regres-
sion analogue of the likelihood-ratio-based graphical model selection procedure
of Findley (1990). It includes the autoregressive case of the mean square m-step
ahead forecast-error-based procedure of Findley (1991a), because the regressors
X;(t) and Z;(t) could consist of values measured at, respectively designed for,
an earlier time ¢ — m, in which case the E;(t) are m-step ahead forecast errors.
The reader is referred to these references for examples of graphs corresponding
to (6.3) from competing models. The theoretical results discussed in these ref-
erences in support of their graphical procedures do not cover the case of models
with estimated mean functions, even though all of the examples given utilize
mean functions initialized by OLS estimates. Thus (6.1) helps to fill a gap in this
theory.

We will strengthen our assumptions to derive a hypothesis testing procedure

for testing
trl'EF = trT¥ (6.4)
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against the various alternatives associated with (6.2).
6.2. A hypothesis test for (6.4)

We assume now that Y (t), X1(t) and X(t) all have representations in terms
of a fourth-order-stationary martingale difference sequence satisfying (3.1-2),
(3.4) with p > 1, and (3.5). Then the same is true of the error processes Eq(t)
and E»(t), and the related processes F(t) + Ea(t) and E1(t) — E5(t) (see Section
5). Under (6.4), the process

§9(t) = E1(8) Ea(t) — Ba(t) Ba(t) = (Ex(t) + B2(8)) (Ba(t) — Ea(t))

has mean zero. In any case, it follows from Theorem 3.1 that
T
r0(T) = 772 {602(8) - (TF — 4Ty )}
t=1

has a limiting normal distribution with mean 0 and with variance v(12) given
by 27 times the value at frequency A = 0 of the spectral density of the process
§L2(t) — (trTF — tiTF). If we define

T
F0A(T) = 772 3 { Bu(t) Bu(t) - Ba(t) Ba(0) },

t=1

then, under (6.4) and the hypotheses of Theorem 3.2, we have #12)(T) —7(1L2(T)
— 0. Thus, if 31?)(T) is any weakly consistent estimator of v(1:2) then when
v(1:2) £ 0, we have

512)(1)"1/2:12) (1) L% pr(0, 1) (6.5)

under the null hypotheses (6.4). In general,
S02)(T)"1/2402)(T) = TH202(T) V2 {aDP — aT } + 0,(1).

Hence, under (6.2) (and assuming v(1:2) =£ 0) the sign of this statistic will ulti-
mately be that of trT'¥ — tr['¥ | and its magnitude will be larger than is plausible
under (6.5). In this way it will reveal the better-fitting model. The construc-
tion of a provably consistent estimator #(12)(T) is a topic for further research.
However, the examples -presented for an analogous hypothesis testing procedure
in Findley (1990) suggest that a familiar robust spectrum estimator applied to
512(T) = E1(t) By (t) - EL(t)E,(t) usually yields reliable results. The hypoth-
esis testing procedure based on (6.5) is motivated by the somewhat analogous
procedure of Vuong (1989), who considered the case of nonlinear regression when
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the variates (Y (¢)' X1(¢t) X2(t)')', t = 1,2,... are independent and identically
distributed.

Remark. It X;(t) is nested in X5(t), then I'¥ < I'f. Therefore, under (6.4),
we must have ¥ = I'E hence also Ey(t) = E»(t) (a.s.), so that 6§12 (¢) = 0
(a.s.), and v(1¥) = 0. Thus the test based on (6.5) is not available for nested
comparisons.
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Appendix
A.1l. Proof of Moment Bound Theorem 1

Let ¢;(t), 1 < i < d(a) and B;(t), 1 < j < d(B) denote the entries of a(t)
and 3(t). The mean-centered quadratic form @ — £Q is a variate of the form

d(a) d(B)
5= > si (A1)
1i=1 j=1
in which each s;; can be written as
o) k—1
5= S DR ek)Bk) - S} + S |3 D080 auth
k=—o0 k=—o00 “f=—00
F 3 [T A nem]a. (42)

k=—00 “f=—00

where the c;;-coefficients are nonstochastic. We will use 5 to denote a variate
defined by the same coefficients in (A.2) but with £;; = 0 and with ai(k), 8;(k)
replaced by variates &i(k), B;(k) (having mean zero and variance one) from series
{@i(k)}—co<k<oo, 1 < i < d(a), {Bi(k)}-cock<oo, 1 < j < d(B), which are
statzstzcally independent of one another. Let us denote the sums on the right in
(A.2) by s; 1) s and s(J), according to the superscripts of the coefficients. The

‘lJ ’ ‘l.]
sum s in (A.1) clearly satisfies

d(a)d(B) 3

lsllzp < 57, (A.3)

i=1 j=1 n=1
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(n)

If we can demonstrate the existence of constants K, ', 1 < n < 3, depending
only on p, C, and I, such that (A.4) holds for all 7, j and n,

< KM

(")H (A.4)

2p —

then, setting K7 = max{K;(,l), Kﬁz), K,(,s)}, it follows from Cauchy-Schwarz, (A.3),
and the independence of the s( ™) that

d(a) d(B) 3 )
”3”2;0 < K; Z §ij “2
1=1 j=1n=1
d(e)d(B) 3 271/2
i=1 j=1n=1

= (3d(a)d(/3))1/2K;II§IIz,

the last equality being a consequence of the fact the s( ") are uncorrelated and
have mean zero. To establish (2.6), it therefore suffices to verify the special cases
(A.4).

We start with several observations, beginning with the formulas

(A.5)

(n—2 3).

-(n) ”

Now consider the case n = 1, noting that each process {ei(t)53;(t) — Zi; } —co<t<oo
is an Fi-adapated martingale difference sequence. By the convexity of the 2pth
power function and by (2.3), the 2pth conditional moments of this process are
almost surely bounded:

e{ (as®)B5(8) - B45) " [Fer } < 2% [£{ (eu) 85071 Fon } + 5]
< 9% [g{agp(t)m_l}E{ﬂ;”(k)m_l}]1/2 +2%5} < 2%°{C, + T}

holds for all ¢t with probability one. Therefore, Lemma 2 of Wei (1987) and (A.3)
yield (A.4) for this case.
For the case n = 2, set hg)(k) e—-oo cij(k, £)B;(£), so that

s = 5 KD k)ak).

k=-o00

~

b4
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Since h( )(Ic) is F\_;-measurable, the proof of Lemma 2 of Wei (1987, pp.1677-8)
shows that there is a constant B, depending only on p such that

@2 el o= (1@ )2
B, < @B 2 (W) “
< B Y [P,
=—00

because ||(h§f)(k))2|lp = ||hsj2)(k)||§p By the same reasoning

leading to (A.4) via (A.5) again. The same reasoning applies to the case n = 3,
so the proof of the theorem is complete.

YN Up = | D pf?
WG], < (CpBRMP 3 | (k0]
£=—o00

A.2. Proof of the Second Moment Bound Theorem

In conformity with (2.17), we denote the variate under investigation in (4.4)
by Ruv:w(T). By Cauchy-Schwarz, as in the derivation of (2.22), we have

| Ruwo (Tl p < 1 Rocao (T | Revwras (T,
Thus it suffices, by the symmetry of the roles of u and v, to verify

sup TP/?7PERP, .. (T) < oo. (A.6)
T>1,p/2<p<p

Since p < pand ||-||2p < |- ||2p, it follows from (1.13) and (4.1), assuming M > 1,
that

ER¥® (T) < T*M™ (A7)

uUIw

holds for all 7. For some 0 < § < Amin(Tww), consider the event

.

By Chebyshev’s inequality, this has probability satisfying

{”T“WZ( (B (t) = Tui) 2,,}

TP§?P

G(T) = {” 12 (w(yw(t) - Tun)

P(G(T)) < < M*(S*T)"P.  (A.8)
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On the complement G(T), clearly

T
Amin [Z wtwg} > T(Amin(I‘ww) - 5). (A.9)

t=1

We have, by (4.2), (A.7-9), and Cauchy-Schwarz,

E{ Rl (D)}

1

£{ 2\l ) - TIG(T)]} + E{Bhua(T) - TIG(T)]}
{5331;:11,(1“)}1/ * PG + { M/ min(Tw) = )}
< TP—P/2M2P5—P + {M/(Amin(l“ww) - 5)}p

IA

for all T, from which (A.6) follows. This completes the proof.
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