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Abstract: In multicategory classification, an estimated generalization error is often

used to quantify a classifier’s generalization ability. As a result, quality of estimation

of the generalization error becomes crucial in tuning and combining classifiers. This

article proposes an estimation methodology for the generalization error, permitting

a treatment of both fixed and random inputs, which is in contrast to the conditional

classification error commonly used in the statistics literature. In particular, we

derive a novel data perturbation technique, that jointly perturbs both inputs and

outputs, to estimate the generalization error. We show that the proposed technique

yields optimal tuning and combination, as measured by generalization. We also

demonstrate via simulation that it outperforms cross-validation for both fixed and

random designs, in the context of margin classification. The results support utility

of the proposed methodology.
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1. Introduction

In classification, the generalization error is often used as a means to mea-

sure a classifier’s accuracy of generalization. Estimating the generalization error

therefore becomes important in tuning as well as combining classifiers in order to

maximize the accuracy of classification. The central topic this article addresses

is estimation of the generalization error when inputs can be both random and

fixed.

In statistics, estimation of the conditional prediction error given fixed in-

puts has been extensively investigated, c.f., Efron (1983, 1986, 2004) and Shen

and Huang (2005) for some discussions, but that of the generalization error for

random inputs has not yet received much attention at all. In the context of lin-

ear regression, Breiman and Spector (1992) argued that ignoring randomness in

design variables could lead to highly biased estimation of the prediction error, al-

though the regression estimates remain unchanged regardless of random designs

or not. Evidently, special attention is necessary with regard to random inputs in

estimation of the generalization error.
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Conventional techniques for estimating the generalization error are mainly

based on cross-validation (CV), which uses one part of data for training while re-

taining the rest for testing. It is well known that CV has high variability resulting

in instable estimation and selection (Devroye, Gyorfi and Lugosi (1996)). Efron

(2004) showed that a covariance penalty is more accurate than CV in that it has

a smaller variance while having essentially the same amount of bias when a con-

ditional loss is used. In this article, we further develop the concept of covariance

penalty in the context of estimating of the generalization error.

In our framework, we derive a random covariance penalty for a general classi-

fier, together with a correction term that accounts for random inputs, where the

correction term automatically reduces to zero when inputs are fixed. Further-

more, we derive a method that jointly perturbs input-output pairs to estimate

both the random covariance penalty and the correction term. We show that the

estimated generalization error based on the covariance penalty and the correc-

tion term is asymptotically optimal in generalization. This, together with our

simulation, suggests that our random version of estimated covariance penalty is

again more accurate than CV, which achieves our goal in optimal tuning and

combination.

This paper is organized as follows. Section 2 formulates the problem of esti-

mating generalization error, and proposes a data perturbation methodology. Sec-

tion 3 establishes an optimality property of the proposed methodology. Section 4

applies the proposed technique to yield optimal tuning and optimal combination

of large margin classifiers, followed by some numerical results. Section 5 discusses

the methodologies. Technical details are given in Section 6.

2. Estimating Generalization Error

For k-class classification, a classifier (learner) φ is trained via a training sam-

ple (Xi, Yi)
n
i=1, independent and identically distributed according to an unknown

P (x, y), where φ maps from Rd → {0, . . . , k− 1}, with k > 1 and d is the dimen-

sion of X. To analyze a learning scenario, accuracy on inputs outside the training

set is examined. This is performed through an error function that measures the

ability of generalization, and is known as the generalization error (GE). For any

classifier φ, GE is defined as

GE(φ) = P (Y 6= φ(X)) = E(I(Y 6= φ(X))), (1)

where I(·) is the indicator, (X,Y ) is independent and identically distributed

according to P (x, y), and independent of (Xi, Yi)
n
i=1. The empirical version of

GE, called the empirical generalization error (EGE), is defined as

EGE(φ) =
1

n

n∑

i=1

I(Yi 6= φ(Xi)). (2)



ESTIMATION OF GENERALIZATION ERROR 571

In training, the classifier φ often involves a tuning parameter C, vector or

scalar, whose value controls the trade-off between fitting and generalization. In

what follows, we write φ as φ̂C to indicate its dependency on (Xi, Yi)
n
i=1 and C.

The quantity GE(φ̂C ) compares classifiers indexed by different values of C.

If P (·, ·) were known, we could select an optimal classifier by minimizing GE(φ̂C)

over the range of tuning parameter C or, equivalently, over a class of classifiers.

In practice, P (·, ·) is unknown, so GE(φ̂C ) needs to be estimated from data.

2.1. Motivation: Binary case

For motivation, we first examine the case with Y ∈ {0, 1}, and then generalize

it to the multicategory case. Our basic strategy of estimating GE(φ̂C ) is to seek

the optimal loss estimator in a class of candidate loss estimators that yields an

approximately unbiased estimate of GE(φ̂C ). Note that there does not exist an

exact unbiased estimate of GE(φ̂C ). Naturally, one might estimate GE(φ̂C ) by

EGE(φ̂C), the empirical version of GE(φ̂C). However, EGE(φ̂C) suffers from

the problem of overfitting, in contrast to GE(φ̂C). This is evident from the fact

that the tuning parameter C yielding the smallest training error usually does

not give the optimal performance in generalization or prediction. To prevent

overfitting from occurring, we introduce a class of candidate loss estimators of

the form:

EGE(φ̂C ) + λ(Xn, φ̂C), (3)

where Xn = {Xi}
n
i=1, and λ is an overfitting penalty function that is to be

determined optimally. For optimal estimation of GE(φ̂C), we choose to minimize

the L2-distance between GE and (3),

E[GE(φ̂C ) − (EGE(φ̂C ) + λ(Xn, φ̂C))]2, (4)

where the expectation E is taken with respect to (Xn, Y n) = (Xi, Yi)
n
i=1. Min-

imizing (4) with respect to λ(Xn, φ̂C) produces optimal λo(X
n, φ̂C), given ex-

pression in Theorem 1.

Theorem 1. The optimal λo(X
n, φ̂C) that minimizes (4) over λ(Xn, φ̂C) is

λo(X
n, φ̂C) = 2n−1

n∑

i=1

Cov (Yi, φ̂C(Xi)|X
n) +D1n(Xn, φ̂C) +D2n(Xn), (5)

where D1n(Xn, φ̂C)=E(E(E(Y |X)−φ̂C(X))2−n−1
∑

i(E(Yi|Xi)−φ̂C(Xi))
2|Xn),

and D2n(Xn) = E(Var (Y |X)) − n−1
∑

i Var (Yi|Xi).

In (5), n−1
∑

i Cov (Yi, φ̂C(Xi)|X
n) is averaged over covariances between Yi

and its predicted value φ̂C(Xi) at each observation (Xi, Yi), which evaluates the
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accuracy of prediction of φ̂C on Xn. Note that Cov (Yi, φ̂C(Xi)|X
n) depends

on the scale of Yi. Thus the generalized degree of freedom of the classifier φ̂

is defined as n(
∑

i Var (Yi|Xi))
−1

∑
i Cov (Yi, φ̂C(Xi)|X

n), which measures the

degree of freedom cost in classification as well as tuning and combining.

The term D1n can be decomposed as a difference between the true model

errorE(E(Y |X)−φ̂C(X))2 and its empirical version n−1
∑

i(E(Yi|Xi)−φ̂C(Xi))
2.

The disparity between these two errors comes from potential randomness of X,

when sampled from an unknown distribution. In the situation of fixed design,

D1n is identical to zero, since the empirical distribution Xn is the same as that

of X. In the situation of random design, D1n is usually non-zero and needs to

be estimated, in view of the result of Breiman and Spector (1992) and Breiman

(1992) in a different context.

The term D2n, on the other hand, is independent of φ̂C . For the pur-

pose of comparison, it suffices to use the comparative GE, which is defined

as CGE(φ̂C) = GE(φ̂C) − D2n(Xn), as opposed to the original GE. With

GE replaced by CGE in (4), we find the optimal λo(X
n, φ̂C) for CGE to be

2n−1
∑

i Cov (Yi, φ̂C(Xi)|X
n) +D1n(Xn, φ̂C).

2.2. Estimation

Using (3) and (5) in Theorem 1, we propose to estimate CGE(φ̂C) by

ĈGE(φ̂C) = EGE(φ̂C ) + 2n−1
n∑

i=1

Ĉov (Yi, φ̂C(Xi)|X
n) + D̂1n(Xn, φ̂C), (6)

with Ĉov the estimated covariance, and D̂1n the estimated D1n. In the situ-

ation of fixed design, D1n ≡ 0, and (6) reduces to ĈGE(φ̂C) = EGE(φ̂C ) +

2n−1
∑

i Ĉov (Yi, φ̂C(Xi)|X
n).

There are two major difficulties in estimating CGE in (6). First, there does

not exist an exact unbiased estimate of
∑

i Cov (Yi, φ̂C(Xi)|X
n), because Yi fol-

lows a Bernoulli distribution. Second, only one realization of data is available

for estimating the unobserved
∑

i Cov (Yi, φ̂C(Xi)|X
n) and D1n. Consequently,

a resampling method of some type is required. However, it is known that the

conventional bootstrap may not work when classification involves tuning and

combining with discontinuity, c.f., Denby, Landwehr and Mellows (2004).

To overcome these difficulties, we propose a novel data perturbation tech-

nique based on swapping values of inputs and outputs (labels) to estimate∑
i Cov (Yi, φ̂C(Xi)|X

n) and D1n. The learning accuracy of the classifier based

on perturbed data estimates the sensitivity of classification, which yields an es-

timated GE.
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First perturb Xi, i = 1, . . . , n, via its empirical distribution F̂ , followed by

flipping the corresponding label Yi with a certain probability given the perturbed

Xi. This generates perturbations for assessing accuracy of generalization of a

classifier. More precisely, for i = 1, . . . , n, let

X∗
i =

{
Xi with probability 1 − τ ,

X̃i with probability τ ,
(7)

where X̃i is sampled from F̂ . This step can given an X-fixed design. A perturbed

Y ∗
i is

Y ∗
i =

{
Yi with probability 1 − τ ,

Ỹi with probability τ ,
(8)

where 0 ≤ τ ≤ 1 is the size of perturbation, and Ỹi ∼ Bin(1, p̂i(X
∗
i )), with p̂i(X

∗
i )

an initial probability estimate of E(Yi|X
∗
i ), obtained via the same classification

method that defines φ̂C , or logistic regression if the classification method does

not yield an probability estimate, such as in the case of support vector machine.

For simplicity, denote by E∗, Var ∗ and Cov∗ the conditional mean, vari-

ance, and covariance with respect to Y ∗n = {Y ∗
i }

n
i=1, given (X∗n, Y n), with

X∗n = {X∗
i }

n
i=1. The perturbed Y ∗

i has the following properties: (1) its con-

ditional mean E∗Y ∗
i = (1 − τ)Yi + τE(Ỹi|X

∗
i ) = (1 − τ)Yi + τ p̂i(X

∗
i ), and (2)

its conditional variance Var ∗(Y ∗
i ) = E∗(Y ∗2

i ) − (E∗(Y ∗
i ))2 = τVar ∗(Ỹi) + τ(1 −

τ)(Yi −E(Ỹi|X
∗
i ))2 = τ p̂i(X

∗
i )(1 − p̂i(X

∗
i )) + τ(1 − τ)(Yi − p̂i(X

∗
i ))2.

We now provide some heuristics for our proposed estimator. To esti-

mate Cov (Yi, φ̂C(Xi)|X
n), note that it equals Var (Yi|Xi)[Cov (Yi, φ̂C(Xi)|X

n)/

Var (Yi|Xi)]. Then we can estimate Cov (Yi, φ̂C(Xi)|X
n)/Var (Yi|Xi) by Cov∗

(Y ∗
i , φ̂

∗
C(X∗

i )|X∗n)/Var ∗(Y ∗
i ). Additionally, Var (Yi|Xi)/Var ∗(Y ∗

i ) is estimated

by 1/K(Yi, p̂i(X
∗
i )) with K(Yi, p̂i(X

∗
i )) = τ + τ(1− τ)(Yi − p̂i(X

∗
i ))2/[p̂i(X

∗
i )(1−

p̂i(X
∗
i ))], when Var (Yi|Xi) is estimated by Var ∗(Ỹi) = p̂i(X

∗
i )(1− p̂i(X

∗
i )). This

leads to our proposed estimator

Ĉov (Yi, φ̂C(X∗
i )|X∗n) =

1

K(Yi, p̂i(X∗
i ))

Cov ∗(Y ∗
i , φ̂

∗
C(X∗

i )|X∗n), i = 1, . . . , n,

(9)

where φ̂∗C is an estimated decision function via the same classification routine

applied to (X∗
i , Y

∗
i )ni=1.

To estimate D1n, note that E(E(Y |X) − φ̂∗C(X))2 can be estimated by

n−1
∑

i(p̂(Xi) − φ̂∗C(Xi))
2 when E(Y |X) = p(X) is estimated by p̂i(X), while

(E(Yi|Xi)− φ̂(Xi))
2 may be estimated by (p̂i(X

∗
i )− φ̂∗C(X∗

i ))2 when E(Yi|Xi) is
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replaced by p̂∗i (X
∗
i ), i = 1, . . . , n. This leads to

D̂1n(Xn, φ̂C)

= E∗
(
n−1

n∑

i=1

(p̂i(Xi) − φ̂∗C(Xi))
2 − n−1

n∑

i=1

(p̂∗i (X
∗
i ) − φ̂∗C(X∗

i ))2|X∗n
)
, (10)

where φ̂∗C is trained via (X∗
i , Y

∗
i )ni=1, and p̂∗i (X

∗
i ) is an estimated E(Y ∗

i |X
∗
i ).

Based on (9) and (10), we obtain ĈGE(φ̂C) in (6). Note that the pro-

posed estimator ĈGE(φ̂C) is constructed based on perturbed data, and can be

generally computed via Monte Carlo (MC) approximation. In some situations,

however, ĈGE(φ̂C) can be computed analytically without recourse to MC meth-

ods, permitting fast implementation, as in Fisher’s linear discrimination. For

problems considered in this article, we use a MC numerical approximation for

implementation. First, generate D perturbed samples {X ∗l
i }n

i=1 according to (7),

l = 1, . . . , D. Second, for each sample {X∗l
i }n

i=1, generate D perturbed sam-

ples {Y ∗lm
i }n

i=1 according to (8), m = 1, . . . , D. For l,m = 1, . . . , D, i = 1, . . . , n,

compute Ĉov
∗
(Y ∗

i , φ̂
∗
C(X∗

i )|Xn) = (D2 − 1)−1
∑

l,m φ̂∗lmC (X∗l
i )(Y ∗lm

i −Y
∗
i ), where

φ̂∗lmC is trained via {X∗l
i , Y

∗lm
i }n

i=1, and Y
∗
i = D−2

∑
l,m Y ∗lm

i . Now (9) is approx-

imated by the corresponding sample MC covariance, i.e.,

Ĉov (Yi, φ̂C(Xi)|X
n)

≈
1

D2 − 1

D∑

l,m=1

1

K(Yi, p̂i(X∗l
i ))

φ̂∗lmC (X∗l
i )(Y ∗lm

i − Y
∗
i ); i = 1, . . . , n, (11)

while (10) is approximated as

D̂1n(Xn, φ̂C)

≈
1

n(D2 − 1)

n∑

i=1

D∑

l,m=1

(
(p̂i(Xi) − φ̂∗lmC (Xi))

2 − (p̂∗i (X
∗l
i ) − φ̂∗lmC (X∗l

i ))2
)
. (12)

The estimated CGE in (6) is now MC-approximated, with approximated

Ĉov and D̂1n given in (11) and (12). By the Law of Large Numbers, (11) and

(12) converge to (9) and (10), respectively, and hence MC-approximated CGE

converges to (6), as D → ∞. In practice, we recommend that D be at least n1/2

to ensure the precision of MC approximation.

2.3. Sensitivity with respect to τ and initial probabilities

Our proposed estimator of CGE in (6) depends on the value of 0 < τ < 1,

with τ = 0.5 recommended in implementation based on our limited numerical
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experience. This dependency on τ can be removed by a data-driven selection

routine that may be computationally intensive. One proposal is to employ CV,

or our proposed method once again, to seek the optimal τ by minimizing CV

or (6) with respect to τ ∈ (0, 1). For the problem considered in this article, we

fix τ = 0.5 for simplicity and ease of computation. A sensitivity study of our

proposed method with respect to τ is summarized in Section 4.1.

The initial probability estimation for pi(xi) and p∗i (xi) may be also important

for in (6). The dependency of initial probability estimation may be removed at

the expense of additional computational cost. Specifically, suppose that different

probability estimation methods are indexed by θ, the optimal θ can be obtained

by minimizing the estimated Kullback-Leibler (KL) loss between the true and

estimated probabilities, over θ,

K̂(p, p̂(θ)) = −n−1
n∑

i=1

logL(Yi|p̂i(θ))+n
−1

n∑

i=1

Ĉov (log(p̂i(θ))−log(1−p̂i(θ)), Yi),

(13)

where L(Yi|p̂i(θ)) is the likelihood function with parameter p̂(θ), c.f., Shen et

al. (2004) for details. In this article, for simplicity, we use logistic regression to

estimate the initial probabilities pi(xi) and p∗i (xi), i = 1, . . . , n, which is sensible,

as shown in a sensitivity study in Section 4.1.

2.4. Multicategory case

To treat the multicategory case, we introduce a mapping t : {0, . . . , k−1} →

{0, 1}k , which permits a treatment of the multicategory case via the result in the

binary case. Precisely, t(j) is defined as (0, . . . , 0︸ ︷︷ ︸
j

, 1, 0, . . . , 0︸ ︷︷ ︸
k−j−1

) for j ∈ {0, . . . , k −

1}. With this mapping, Y and φ̂C(X) are converted to vector representations,

denoted by t(Y ) and t(φ̂C(X)). Now let Z = (Z (0), . . . , Z(k−1)) = t(Y ), and

the corresponding classification rule be φ̂t
C = (φ̂

t(0)
C , . . . , φ̂

t(k−1)
C ) = t(φ̂C). By

definition, {φ̂C , (Xi, Yi)
n
i=1} maps one-to-one onto {φ̂t

C , (Xi, Zi)
n
i=1}, with Zi =

t(Yi). Therefore, GE(φ̂C) = GE(φ̂t
C) = P (Z 6= φ̂t

C(X)). More importantly,

under this new setting, GE(φ̂C) can be written as a sum of the GE’s of k binary

problems.

Lemma 1. We have

GE(φ̂C) = GE(φ̂t
C) = P (Z 6= φ̂t

C(X)) =
1

2

k−1∑

j=0

P (Z(j) 6= φ̂
t(j)
C (X)). (14)

In addition, EGE(φ̂C) = EGE(φ̂t
C ) = (1/2)

∑k−1
j=0 EGE(φ̂

t(j)
C ).
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Note that the φ̂
t(j)
C (X)’s in Lemma 1 are internally consistent, that is, if

φ̂
t(jo)
C (X) = 1, then φ̂

t(j)
C (X) = 0 for all j 6= jo. Therefore the decomposition in

(14) differs from the usual decomposition in multicategory classification with k

separate components, and is applicable to classifiers with different class codings,

such as one-vs-rest SVM with coding {1, . . . , k}, and multicategory SVM with

vector coding (Lee, Lin and Wahba (2004)).

An application of Lemma 1 and (6) yields the estimated GE of φ̂C as

ĜE(φ̂C) = EGE(φ̂C ) +
k−1∑

j=0

( 1

n

n∑

i=1

Ĉov (Z
(j)
i , φ̂

t(j)
C (Xi)|X

n) +
1

2
D̂1n(Xn, φ̂

t(j)
C )

+
1

2
D̂2n(Xn, Zn(j))

)
,

where Zn(j) = (Z
(j)
i )ni=1 and D̂2n(Xn, Zn(j)) = E(Var (Z(j)|Xn)) − n−1

∑
i Var

(Z
(j)
i |Xi), which leads to the corresponding comparative GE CGE(φ̂C), as well

as the estimator

ĈGE(φ̂C) = EGE(φ̂C )+
k−1∑

j=0

( 1

n

n∑

i=1

Ĉov (Z
(j)
i , φ̂

t(j)
C (Xi)|X

n)+
1

2
D̂1n(Xn, φ̂

t(j)
C )

)
,

(15)

where EGE(φ̂C) is the training error.

To compute Ĉov (Z
(j)
i , φ̂

t(j)
C (Xi)|X

n) and D̂1n in (15), we now modify the

data perturbation technique in the binary case. Let M(pi0(Xi), . . . , pi,k−1(Xi))

denote the conditional distribution of Yi given Xi, where pij(Xi) = P (Yi = j|Xi)

and
∑

j pij(Xi) = 1. Generate X∗
i , i = 1, . . . , n, as

X∗
i =

{
Xi with probability 1 − τ ,

X̃i with probability τ ,

where X̃i is sampled from the empirical distribution of Xn. Generate Y ∗
i , i =

1, . . . , n, as

Y ∗
i =

{
Yi with probability 1 − τ ,

Ỹi with probability τ ,

where Ỹi is sampled fromM(p̂i0(X
∗
i ), . . . , p̂i,k−1(X

∗
i )), with p̂ij(X

∗
i ) the estimated

P (Yi = j|X∗
i ).

Let Z∗
i = t(Y ∗

i ) be the transformed perturbed response, and φ̂t∗
C be the corre-

sponding transformed classifiers based on (X∗
i , Z

∗
i )ni=1. The MC approximations
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of Ĉov and D̂1n in (15) are given as

Ĉov (Z
(j)
i , φ

t(j)
C (Xi)|X

n)

≈
1

D2−1

k−1∑

j=0

D∑

l,m=1

1

K(Z
(j)
i , p̂ij(X∗l

i ))
φ̂

t∗lm(j)
C (X∗l

i )(Z
∗lm(j)
i −Z̄

∗(j)
i ); i = 1, . . . , n,

D̂1n(Xn, φ̂
t(j)
C )

≈
1

n(D2−1)

n∑

i=1

k−1∑

j=0

D∑

l,m=1

(
(p̂ij(Xi)−φ̂

t∗lm(j)
C (Xi))

2−(p̂∗ij(X
∗l
i )−φ̂

t∗lm(j)
C (X∗l

i ))2
)
,

where p̂ij(Xi) and p̂∗ij(X
∗l
i ) are estimates of P (Yi = j|Xi) and P (Y ∗

i = j|X∗l
i ),

respectively. Substituting these two approximations into (15), we obtain the

proposed MC approximated CGE in the multicategory case.

3. Theory

In this section, we develop a theory concerning the proposed data pertur-

bation technique. Particularly, we show that Ĉ minimizing (15) recovers the

ideal performance that knowledge of the true P (x, y) would have brought. That

is to say our proposed technique yields the optimal tuning parameter Ĉ, and

hence the optimal classification rule φ̂Ĉ against any other classifier in terms of

generalization. To establish the theory, the following technical assumptions are

made.

(C.1): (Integrability) For some δ > 0, E supτ∈(0,δ) |λ̂(Xn, φ̂C)| < +∞.

(C.2): (Loss and risk) limn→∞ supC |GE(φ̂C)/E(GE(φ̂C ))−1| = 0 in probability.

(C.3): (Consistency of initial estimates) For almost all X, p̂ij(X) → pij(X), as

n→ ∞; i = 1, . . . , n, j = 1, . . . , k.

(C.4): (Positive generalization error) Assume that infC E(GE(φ̂C )) > 0.

Assumption (C.1) which ensures that expectations and limits can be ex-

changed. Assumption (C.2) specifies the relationship between loss and risk, anal-

ogous to (2.4) of Li (1987). Assumption (C.3) requires that the initial probability

estimates of perturbation be sufficiently good. As a consequence, the perturbed

data approximately follows the same distribution as the original training data.

Assumption (C.4) secures the validity of the comparison ratios in (16) and (17).

Theorem 2. For k-class classification with Y ∈ {0, . . . , k − 1} and k > 1, let Ĉ

be the minimizer of (15) with respect to C. Under (C.1) and (C.3),

lim
n→∞

(
lim

τ→0+
E(GE(φ̂Ĉ ))/ inf

C
E(GE(φ̂C ))

)
= 1. (16)
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If additionally, (C.2) holds, then

lim
n→∞

(
lim

τ→0+
GE(φ̂Ĉ )/ inf

C
GE(φ̂C )

)
= 1. (17)

There is an interesting connection between Theorem 2 and the Rao-Blackwell

decomposition of Efron (2004) for fixed designs. Similarly, our estimated co-

variance Ĉov (Yi, φ̂C(Xi)|X
n) in (6) has the same Rao-Blackwell decomposition,

which means that it has smaller variance while retaining the same bias. This

means that ĈGE(φ̂C) may yield substantially higher accuracy in estimating GE

in the finite sample situation, while retaining asymptotic optimality for both

fixed and random inputs.

4. Numerical Examples

The choice of C is crucial to many classifiers, such as penalized logistic

regression, a support vector machine (SVM, Cortes and Vapnik (1995)), and

ψ-learning (Shen et al. (2003)). Optimal estimation of C may be necessary to

minimize GE with respect to C. This section examines some examples, including

simulations and data, to illustrate accuracy of our proposed method with respect

to tuning and combining. The optimal Ĉ is obtained by minimizing (15), where

the regularization solution path of SVM (Hastie et al. (2004)) is used to reduce

computational cost. Experiments are performed in R 2.0.0.

4.1. Selection of tuning parameters

We investigate the effectiveness of our proposed method, denoted as GDF,

and compare it against cross-validation (CV) in the selection of tuning param-

eters. Here the crystal ball estimate(CB, Breiman (1996)) is used as a baseline

for comparison, estimating GE on a left-out testing sample. The performance of

a given method is measured by the testing error, averaged over 100 simulation

replications. The amount of improvement of GDF over CV is defined as

(T (CV ) − T (CB)) − (T (GDF ) − T (CB))

T (CV ) − T (CB)
,

where T (·) is the testing error for a given method, and T (·)− T (CB) ≥ 0 for all

methods.

Simulations are conducted for classifiers of three types: linear SVM, nonlin-

ear SVM with Gaussian kernel, and penalized logistic regression. The SVM in

the binary case can be obtained from

min
f

C

n∑

i=1

L(yi, f(xi)) +
1

2
J(f), (18)
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where L(yi, f(xi)) = (1 − yif(xi))+ is the so-called hinge loss, and J(f) = ‖f‖2
K

withK(·, ·) a kernel. In our context, K(x, y) is 〈x, y〉 in the linear case, or K(x, y)

is exp(−σ−2‖x− y‖2). For simplicity, σ2 is set to be the dimension of the input

matrix Xn, a default value in the “svm” routine of R. This is because C plays a

similar role as σ2, and it is easier to optimize with respect to C if σ2 is estimated.

Similarly, penalized logistic regression can be obtained from (18), with hinge loss

(1 − yif(xi))+ replaced by log(1 + e−yif(xi)) and K(x, y) by 〈x, y〉.

Two simulation are considered, together with four benchmark examples from

the UCI repository (Blake and Merz (1998)): Wisconsin Breast Cancer (WBC),

Diabetes, Iris and Wine. In each example, the optimal C is obtained by minimiz-

ing CB, GDF and 10-fold CV with respect to a discretized grid of C ∈ [10−3, 103],

via a grid search.

Example 1. Data {(Xi1, Xi2, Yi), i = 1, . . . , 1, 000} are generated as follows.

First, {Xi1, Xi2}, i = 1, . . . , 1, 000, are sampled according to the uniform distri-

bution over a unit disk {(X1, X2) : X2
1 + X2

2 ≤ 1}. Second, Yi = 1 if Xi1 ≥ 0

and −1 otherwise, i = 1, . . . , n. Third, a random choice of 10% of the sample

have their labels flipped to generate the nonseparable situation. A random 100

instances are selected for training, the remaining 900 instances are for testing.

Example 2. Data {(Xi1, . . . , Xi10, Yi), i = 1, . . . , 1, 000} are generated as fol-

lows. First, Xij , i = 1, . . . , 1, 000, j = 1, . . . , 10, are generated from the stan-

dard normal distribution. Second labels are assigned to each observation as

Yi = Sign(log((Xi1 + · · ·+Xi5)
2) + sin(Xi6 + · · ·+Xi10)). A random selection of

100 instances are for training, the remaining 900 instances are for testing.

Benchmarks. Four benchmark examples, WBC, Diabetes, Iris and Wine, are

examined. The first two are binary, while the last two use three categories All

data examples are randomly divided into halves, for training and testing. De-

scription of these data examples is given in Table 1.

Table 1. Description of all data examples in our simulations.

Data training testing # #

size size covariates categories

Example1 100 900 2 2

Example2 100 900 10 2
WBC 341 341 9 2

Diabetes 384 384 8 2

Iris 75 75 4 3

Wine 89 89 13 3
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Under the same setting, CB, GDF and CV are compared with respect to

the three types of classifiers. Their performances, averaged over 100 simulations

replications, are reported in Table 2.

Table 2. Averaged testing errors as well as the estimated standard errors (in

parenthesis) with respect to Ĉ via three selection methods over 100 simula-

tion replications. Here SVM G, SVM L and PLR represent Gaussian kernel

SVM, linear SVM, and penalized logistic regression, respectively.

Dataset Classifier CB GDF CV % Improv

Example1 SVM G 0.143(0.0020) 0.158(0.0024) 0.163(0.0023) 25.0%

SVM L 0.140(0.0028) 0.149(0.0033) 0.153(0.0026) 30.8%

PLR 0.148(0.0026) 0.152(0.0024) 0.153(0.0026) 20.0%

Example2 SVM G 0.320(0.0012) 0.336(0.0018) 0.341(0.0016) 23.8%
SVM L 0.337(0.0005) 0.342(0.0029) 0.354(0.0040) 70.6%

PLR 0.337(0.0005) 0.344(0.0027) 0.354(0.0034) 58.8%

WBC SVM G 0.029(0.0006) 0.033(0.0007) 0.037(0.0008) 50.0%

SVM L 0.026(0.0006) 0.033(0.0009) 0.034(0.0008) 12.5%

PLR 0.027(0.0006) 0.033(0.0007) 0.035(0.0007) 25.0%

Diabetes SVM G 0.233(0.0016) 0.244(0.0016) 0.245(0.0019) 8.3%

SVM L 0.223(0.0015) 0.231(0.0016) 0.232(0.0016) 11.1%

PLR 0.223(0.0016) 0.231(0.0017) 0.232(0.0017) 11.1%

Iris SVM G 0.033(0.0018) 0.047(0.0024) 0.052(0.0025) 26.3%
SVM L 0.021(0.0015) 0.042(0.0025) 0.045(0.0026) 12.5%

Wine SVM G 0.016(0.0013) 0.023(0.0015) 0.027(0.0017) 36.4%
SVM L 0.013(0.0012) 0.029(0.0017) 0.031(0.0017) 11.1%

Table 3. Sensitivity study. Averaged testing errors as well as the estimated

standard errors (in parenthesis) of GDF as a function of perturbation size

τ , based on 100 simulation replications.

Dataset Classifier τ = 0.1 τ = 0.3 τ = 0.5 τ = 0.7 τ = 0.9

Example1 SVM G 0.161 0.160 0.158 0.162 0.164

(0.0024) (0.0025) (0.0024) (0.0026) (0.0031)

SVM L 0.150 0.150 0.149 0.149 0.149
(0.0021) (0.0032) (0.0033) (0.0031) (0.0035)

PLR 0.151 0.150 0.152 0.153 0.153

(0.0025) (0.0025) (0.0024) (0.0026) (0.0029)

Example2 SVM G 0.335 0.336 0.336 0.336 0.334

(0.0018) (0.0017) (0.0018) (0.0020) (0.0027)

SVM L 0.340 0.341 0.342 0.343 0.342

(0.0028) (0.0029) (0.0029) (0.0029) (0.0031)

PLR 0.344 0.344 0.344 0.345 0.345

(0.0026) (0.0027) (0.0027) (0.0029) (0.0029)
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Table 4. Sensitivity study. Averaged testing errors as well as the estimated
standard errors (in parenthesis) of GDF with and without adaptive estimated
initial probabilities, based on 30 simulation replications.

Dataset Classifier w/ adp. w/o adp.

Example1 SVM G 0.158(0.0023) 0.158(0.0024)

SVM L 0.148(0.0028) 0.149(0.0033)

Example2 SVM G 0.335(0.0011) 0.336(.0018)
SVM L 0.343(0.0026) 0.342(0.0029)

From Table 2, we note that GDF outperforms CV in all examples, with
improvement ranging from 8.3% to 50.0%. The amount of improvement, however,
depends on the examples and the type of classifiers. Furthermore, the choice of
C appears to be more critical to nonlinear classifiers.

We now investigate the sensitivity of the performance of GDF to the per-
turbation size τ and initial probability estimation, respectively, via a small sim-
ulation study. The simulation study is conducted in Examples 1 and 2, with
τ = 0.1, 0.3, 0.5, 0.7, 0.9, and initial probability estimation. As indicated in Table
3, the performance of GDF hardly varies as a function of τ , and τ = 0.5 seems to
be a good empirical choice in all situations. Similarly, Table 4 suggests that the
performance of GDF with initial probabilities estimated by the logistic regression
is close to that of GDF when they are estimated by adaptively minimizing (13)
with respect to different levels of penalization in penalized logistic regression.

Finally, we examine the accuracy of GDF and CV in estimating GE on a
randomly chosen training sample in Example 1. As illustrated in Figure 1, GDF
is closer to CB, and has lower variability compared to CV, although both GDF
and CV capture the trend of GE. Note that CB converges to the true GE when
the size of testing sample tends to infinity. Consequently, GDF yields a minimizer
that is closer to that of GE, whereas the minimizer estimated by CV is skewed
to the right of the true one.

4.2. Combining SVM’s

We now apply the proposed methodology to combine SVM classifiers with
different types of kernel to yield better performance than each individual classi-
fier. The idea outlined here may be useful for combining classifiers of any types.

Now consider, two SVM classifiers: linear SVM Sign(f̂1) and Gaussian kernel
SVM Sign(f̂2), where f̂1(X) = 〈ŵ1, X〉 + b1 takes a linear form, while f̂2(X) =
〈ŵ2, X〉K + b2 is defined by the Gaussian kernel K(x, z) as in Section 4.1. Our
goal is to seek the optimal weight 0 ≤ a ≤ 1 such that the combined decision

function f̂a = af̂1 + (1 − a)f̂2, equivalently, f̂C = a−1f̂a = f̂1 + Cf̂2, with
C = [(1 − a)/a] ∈ [0,∞], yields a classifier φ̂C = Sign(f̂C) that can outperform
both Sign(f̂i); i = 1, 2.
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Figure 1. Plot of the estimated GE, by GDF and CV, as a function of tuning
parameter C in Example 1. The solid line represents optimal approximate
of true GE via CB, the dash line represents the estimated GE by GDF, and
the dotted line represents the estimated GE by CV.

The estimated CGE for the combined classifier is given in (6). Minimization
of (6) with respect to C yields Ĉ, which is obtained via the same grid search as
described in Section 4.1. Our final combined classifier is Sign(f̂1 + Ĉf̂2), with Ĉ
is the minimizer of (6).

To examine effectiveness of the proposed combining strategy, we perform a
simulation study in the first four binary data examples. First, linear SVM and
Gaussian kernel SVM are trained with the optimal tuning parameters, obtained
via minimizing (6). Second, C is estimated respectively via GDF and CB. The
testing errors averaged over 100 simulation replications are used to evaluate the
performance, which are summarized in Table 5.

Evidently, the testing error of the combined classifier via GDF is closer to
that via CB, and smaller than that via any individual SVM classifier in Example 1
and the WBC example, whereas it approximates the best individual testing error
in Example 2 and the diabetes example. This empirical result shows that our
proposed technique achieves the goal of combining two classifiers to outperform
their component classifiers, or at least to do no worse than the best individual
one.
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Table 5. Average testing errors as well as the estimated standard errors (in
parenthesis). Here the combined classifier combines two SVM with the opti-
mal weights, estimated by GDF and CB respectively, where each individual
SVM is trained with the optimal tuning parameter.

Combined Combined

Dataset SVM G SVM L via GDF via CB

Example1 0.160(0.0026) 0.153(0.0030) 0.148(0.0028) 0.141(0.0025)

Example2 0.336(0.0019) 0.345(0.0019) 0.336(0.0023) 0.334(0.0010)

WBC 0.033(0.0006) 0.033(0.0008) 0.032(0.0007) 0.029(0.0006)
Diabetes 0.242(0.0019) 0.231(0.0016) 0.232(0.0016) 0.224(0.0014)

5. Summary and Discussions

This article studied a number of issues in estimating GE as well as its appli-
cations in tuning and combining. In contrast to most statistical methodologies,
assuming X-fixed designs and conditioning on X, we introduced a new frame-
work of estimation of GE and a technique of data perturbation, applicable to
both X-fixed and X-random designs. This framework permits more accurate
and efficient evaluation of any classifiers, binary or multicategory, margin-based
or likelihood-based.

An application of our framework to 1-norm SVM (Bradley and Mangasarian
(2000)) is also straightforward, which permits feature selection and classification
simultaneously.
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Appendix

Proof of Theorem 1. Note that E(GE(φ̂C ) − (EGE(φ̂C ) + λ(Xn, φ̂C)))2 =
E((GE(φ̂C )−EGE(φ̂C))−λ(Xn, φ̂C))2. Minimizing this with respect to λ yields
λ(Xn, φ̂C) = E(GE(φ̂C )|Xn) −E(EGE(φ̂C )|Xn), which can be simplified to

E(E(Y − φ̂C(X))2|Xn) −E(n−1
n∑

i=1

(Yi − φ̂C(Xi))
2|Xn)

= E(E(Y −E(Y |X))2|Xn) +E(E(E(Y |X) − φ̂C(X))2|Xn)

−E(n−1
n∑

i=1

(Yi −E(Yi|Xi))
2|Xn) −E(n−1

n∑

i=1

(E(Yi|Xi) − φ̂C(Xi))
2|Xn)

−E(2n−1
n∑

i=1

(Yi −E(Yi|Xi))(E(Yi|Xi) − φ̂C(Xi))|X
n),
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which yields the desired result in Theorem 1.

Proof of Lemma 1. It suffices to prove the last equation. It is easy to see

that {Z 6= φ̂t
C(X)} =

⋃k−1
j=0{Z

(j) 6= φ̂t
Cj(X)}. Let Aj = {Z(j) 6= φ̂t

Cj(X)}. By

the generating scheme of Z and φ̂t
C , the intersection of any three or more Aj’s is

empty. Therefore, we have

P{Z 6= φ̂t
C(X)} = P

( k−1⋃

j=0

{Z(j) 6= φ̂t
Cj(X)}

)
= P

( k−1⋃

j=0

Aj

)

=

k−1∑

j=0

P (Aj) −
∑

i6=j

P (Ai ∩Aj)

=

k−1∑

j=0

P (Aj) −
1

2

k−1∑

j=0

P (Aj)
∑

i6=j

P (Ai|Aj).

Note that {Ai|i = 0, . . . , k − 1; i 6= j} are exhaustive and mutually exclusive,

given Aj. Thus,
∑

i6=j P (Ai|Aj) = P (
⋃

i6=j Ai|Aj) = 1; 0 ≤ j ≤ k − 1, and the

result follows.

Lemma 2. Let V (Yi, pi(Xi)) be pi(Xi) when Yi = 0, and 0 when Yi = 1. Then

E(V (Yi, pi(Xi))|X
n) = Var (Yi|Xi) and Cov (Yi, φ̂C(Xi)|X

n) = E(V (Yi, pi(Xi))
∂

∂Yi
φ̂C(Xi)|X

n) = Var (Yi|Xi)
∂

∂Yi
φ̂C(Xi)

∣∣∣
Yi=0

, where

∂

∂Yi
φ̂C(Xi) =

{
φ̂C(Xi)

∣∣∣
Yi=1

− φ̂C(Xi)
∣∣∣
Yi=0

, if Yi = 0,

0, otherwise.

Assume that p̂i(Xi) → pi(Xi) as n→ ∞, a.s. Then p̂i(X
∗
i ) → pi(Xi) as n→ ∞,

τ → 0+. Furthermore,

lim
n→∞

lim
τ→0+

E
(( 1

K(Yi, p̂i(X∗
i ))

−
V (Yi, pi(Xi))

Var ∗(Y ∗
i )

)
Cov ∗

(
Y ∗

i , φ̂
∗
C(X∗

i )|X∗n)
)

= 0.

(19)

Proof of Lemma 2. We only prove (19). The proof for other parts is straight-

forward, and is omitted. By the definition of V (Yi, pi) and (C.1), the left hand

side of (19) becomes, after exchanging limit with expectation,

lim
n→∞

lim
τ→0+

E
(( Var ∗(Y ∗

i )

K(Yi, p̂i(X∗
i ))

− V (Yi, pi(Xi))
)Cov∗

(
Y ∗

i , φ̂
∗
C(X∗

i )|X∗n)

Var ∗(Y ∗
i )

)
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= lim
n→∞

lim
τ→0+

E
(( Var ∗(Y ∗

i )

K(Yi, p̂i(X∗
i ))

− V (Yi, pi(Xi))
) ∂

∂Y ∗
i

φ̂∗C(X∗
i )

∣∣∣
Y ∗

i
=0

)

= lim
n→∞

lim
τ→0+

E
(
E

( Var ∗(Y ∗
i )

K(Yi, p̂i(X∗
i ))

− V (Yi, pi(Xi))

∣∣∣∣ (Xn, X∗n)
)

∂

∂Y ∗
i

φ̂∗C(X∗
i )

∣∣∣
Y ∗

i
=0

)

= lim
n→∞

lim
τ→0+

E
((
E

( Var ∗(Y ∗
i )

K(Yi, p̂i(X∗
i ))

∣∣∣∣ (Xn, X∗n)
)
− pi(Xi)(1 − pi(Xi))

)

∂

∂Y ∗
i

φ̂∗C(X∗
i )

∣∣∣∣
Y ∗

i
=0

)
.

Note that K(1, p̂i(X
∗
i )) = τ(1 − τ + τ p̂i(X

∗
i ))/p̂i(X

∗
i ) and K(0, p̂i(X

∗
i )) = τ(1 −

τ p̂i(X
∗
i ))/[1 − p̂i(X

∗
i )], while Var ∗(Y ∗

i )|Yi=1 = (1 − τ + τ p̂i(X
∗
i ))(τ − τ p̂i(X

∗
i ))

and Var ∗(Y ∗
i )|Yi=0 = (1 − τ p̂i(X

∗
i ))τ p̂i(X

∗
i ). It thus can be verified that

lim
n→∞

lim
τ→0+

E
( Var ∗(Y ∗

i )

K(Yi, p̂i(X∗
i ))

∣∣∣∣ (Xn, X∗n)
)

= pi(Xi)(1 − pi(Xi)).

The result in (19) then follows.

Proof of Theorem 2. By Lemma 1, we only need to prove the binary case.

Note that when k = 2, (15) reduces to (6), and D2n is independent of φ̂C . It is

sufficient to show that

lim
n→∞

(
lim

τ→0+
E(CGE(φ̂Ĉ))/E(CGE(φ̂C̃ ))

)
≤ 1, (20)

where C̃ is any estimate of C. For any C, we have

E(CGE(φ̂C )) = E(EGE(φ̂C )) + λo(X
n, φ̂C)

= E(EGE(φ̂C ) + λ̂(Xn, φ̂C) + (λo(X
n, φ̂C) − λ̂(Xn, φ̂C))).

For any estimator C̃, EGE(φ̂C̃ )+ λ̂(Xn, φ̂C̃) ≥ EGE(φ̂Ĉ )+ λ̂(Xn, φ̂Ĉ). For (20),

it suffices to prove that lim
n→∞

lim
τ→0+

E[λo(X
n, φ̂C) − λ̂(Xn, φ̂C)] = 0 for any given

C. By (C.1), it follows from the Dominated Convergence Theorem that we may

interchange the limits and expectation in the following derivation. Assumption



586 JUNHUI WANG AND XIAOTONG SHEN

(C.3) together with Lemma 2 ensures that we may work on V (Yi, pi). Then

lim
n→∞

lim
τ→0+

E
(
2n−1

n∑

i=1

Ĉov (Yi, φ̂C(X∗
i )|X∗n)

)

= lim
n→∞

2n−1
n∑

i=1

lim
τ→0+

E
(V (Yi, pi(Xi))

Var ∗(Y ∗
i )

Cov ∗
(
Y ∗

i , φ̂
∗
C(X∗

i )|X∗n)
)

= lim
n→∞

2n−1
n∑

i=1

E
(
V (Yi, pi(Xi))E

∗ lim
τ→0+

∂

∂Y ∗
i

φ̂∗C(X∗
i )
V ∗(Y ∗

i , p
∗
i (X

∗
i ))

Var ∗(Y ∗
i )

)

= lim
n→∞

2n−1
n∑

i=1

E
(
V (Yi, pi(Xi))

∂

∂Yi
φ̂C(Xi)E

∗V
∗(Y ∗

i , p
∗
i (X

∗
i ))

Var ∗(Y ∗
i )

)

= lim
n→∞

2n−1
n∑

i=1

E(Cov (Yi, φ̂C(Xi)|X
n))

= lim
n→∞

E(2n−1
n∑

i=1

Cov (Yi, φ̂C(Xi)|X
n)).

Furthermore, the distribution of (X∗
i , Y

∗
i ) tends to the distribution of (Xi, Yi) as

τ → 0, therefore, limn→∞ limτ→0+ E(D̂1n(Xn, φ̂C)) is

lim
n→∞

lim
τ→0+

E
(
E∗

( 1

n

n∑

i=1

(p̂i(Xi)−φ̂
∗
C(Xi))

2−
1

n

n∑

i=1

(p̂∗i (X
∗
i )−φ̂∗C(X∗

i ))2

∣∣∣∣∣X
∗n

))

= lim
n→∞

E
(

lim
τ→0+

E∗
( 1

n

n∑

i=1

(p̂i(Xi)−φ̂
∗
C(Xi))

2−E(E(Y |X)−φ̂∗C(X))2 |X∗n
))

+ lim
n→∞

E
(

lim
τ→0+

E∗
(
E(E(Y |X)−φ̂∗C(X))2−

1

n

n∑

i=1

(p̂∗i (X
∗
i )−φ̂∗C(X∗

i ))2

∣∣∣∣∣X
∗n

))

= lim
n→∞

E
(
E

( 1

n

n∑

i=1

(p̂i(Xi) − φ̂C(Xi))
2 −E(E(Y |X) − φ̂C(X))2

∣∣∣∣∣X
n
))

+ lim
n→∞

E
(
E

(
E(E(Y |X) − φ̂C(X))2 −

1

n

n∑

i=1

(p̂i(Xi) − φ̂C(Xi))
2

∣∣∣∣∣X
n
))

= lim
n→∞

E
(
E

(
E(E(Y |X) − φ̂C(X))2 −

1

n

n∑

i=1

(E(Yi|Xi) − φ̂C(Xi))
2

∣∣∣∣∣X
n
))

= lim
n→∞

E(D1n(Xn, φ̂C)),

where the second to last equality follows from (C.3) and the one-sided Uni-

form Convergence Theorem in Vapnik and Chervonenkis (1991), by noting that
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0 ≤ E(E(Y |X) − φ̂C(X))2 ≤ 4. Combining the above two equalities, we have

limn→∞ limτ→0+ E(λ̂(Xn, φ̂C)) = limn→∞E(λo(X
n, φ̂C)). Therefore,

lim
n→∞

lim
τ→0+

E(CGE(φ̂Ĉ ))

= lim
n→∞

lim
τ→0+

E
(
EGE(φ̂Ĉ ) + λ̂(Xn, φ̂Ĉ) + (λo(X

n, φ̂Ĉ) − λ̂(Xn, φ̂Ĉ))
)

= lim
n→∞

lim
τ→0+

E(EGE(φ̂Ĉ ) + λ̂(Xn, φ̂Ĉ))

≤ lim
n→∞

lim
τ→0+

E(EGE(φ̂C̃ ) + λ̂(Xn, φ̂C̃))

= lim
n→∞

lim
τ→0+

E
(
EGE(φ̂C̃ ) + λ̂(Xn, φ̂C̃) + (λo(X

n, φ̂C̃) − λ̂(Xn, φ̂C̃))
)

= lim
n→∞

E(CGE(φ̂C̃)).

The result then follows.
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