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Abstract: This paper is concerned with the design of computer experiments when

there are two types of inputs: control variables and environmental variables. Con-

trol variables, also called manufacturing variables, are determined by a product

designer while environmental variables, called noise variables in the quality control

literature, are uncontrolled in the field but take values that are characterized by a

probability distribution. Our goal is to find a set of control variables at which the

response is insensitive to the value of the environmental variables, a “robust” choice

of control variables. Such a choice ensures that the mean response is as insensitive

as possible to perturbations of the nominal environmental variable distribution.

We present a sequential strategy to select the inputs at which to observe the re-

sponse so as to determine a robust setting of the control variables. Our solution is

Bayesian; the prior takes the response as a draw from a stationary Gaussian stochas-

tic process. Given the previous information, the sequential algorithm computes for

each untested site the “improvement” over the current guess of the optimal robust

setting. The design selects the next site to maximize the expected improvement

criterion.
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1. Introduction

Computer experiments are a relatively new type of empirical investigation in
the computer dependent world of the 21st century. Historically, physical experi-
ments were required to study processes in-vivo. The complexity of such systems
has sometimes made physical experiments prohibitive, if not impossible, due to
time constraints, physical constraints, or financial constraints. Complex systems
that lend themselves to mathematical modeling can be studied via computer
codes, i.e., by a computer model of the system. Such a computer code is able to
compute responses at arbitrary inputs using numerical methods, for example by
finite element models in many engineering applications, or by a simulation run
to the point of (essentially) no simulation error. Thus we are able to perform an
experiment of the process of interest by submitting arbitrary inputs to the code
to obtain one or more responses. As examples, Sacks, Welch, Mitchell and Wynn
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(1989) describe the use of computer codes to improve the quality of integrated
circuits; Chang, Williams, Notz, Santner and Bartel (1999) study the design of
an optimal hip prosthesis based on the implants’ proximal bone stress shielding
and its toggling motion; Haylock and O’Hagan (1996) use a computer model to
describe the dispersion of radioactive iodine in the human body.

Two difficulties of using computer experiments to study the input−output
relationship of a physical phenomenon are: the code can be very time consuming
to run, and the input can be (very) high-dimensional. This has led to the use
of stochastic process (random function) models as the basis for interpolating the
response with the corresponding predictions based on a small training sample of
computer runs. This approach is best regarded from the Bayesian perspective
with the deterministic computer code being treated as a realization of a stochastic
process prior whose properties are determined by the prior information about the
computer code (see Sacks, Welch, Mitchell and Wynn (1989) and Koehler and
Owen (1996)). Then the predictive interpolator is used in place of the computer
code to investigate the input–output relationship. For example, Jones, Schonlau
and Welch (1998) use such an interpolator to find the setting of the input variables
that optimizes the output of the computer code.

This paper considers settings where both control variables and environmental
variables are present. As one example, in the hip prosthesis problem of Chang,
Williams, Notz, Santner and Bartel (1999), the control variables described the
geometry of the prosthesis and the environmental variables described the (un-
controlled) patient bone material properties and patient activity. As a second
example, Welch, Yu, Kang and Sacks (1990) investigated the clock skew in the
design of a large scale integrated circuit where the control variables consisted of
the widths of the six transistors in the circuit, and the environmental variables
described the current driving capabilities of the transistors. In both of these
examples, the researchers were interested in finding a set of “optimal” values for
the control variables.

We propose sequential designs for determining a robust choice of control vari-
ables in a computer experiment that also has environmental variables. Section
2 reviews different methods of defining robustness and focuses on finding a set
of control variables at which the response is “insensitive” to the value of the
environmental variables. Section 3 presents our model for the response. Section
4 outlines a sequential expected improvement algorithm in the spirit of Jones,
Schonlau and Welch (1998) or Williams, Santner and Notz (2000) for finding a
robust control variable value while Section 5 illustrates the performance of these
algorithms with examples that involve several different experimental goals. Fi-
nally, Section 6 discusses some computational considerations for these algorithms
and areas for future research.
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2. Concepts of Robustness

Let y(·) denote the computer code output and x = (xc,xe) denote the
vector input, where xc is the vector of control variables and xe is the vector of
environmental variables. Also let F (·) denote the (tentative) joint distribution
of the environmental variables, Xe.

If F (·) is known, we typically focus attention either on determining the dis-
tribution of y(xc,Xe) (“uncertainty analysis”, see O’Hagan and Haylock (1997)
or O’Hagan, Kennedy and Oakley (1999) for examples) or on determining some
summary of this distribution such as its mean

µF (xc) = EF {y(xc,Xe)} (1)

(see, for example, Williams, Santner and Notz (2000)).
If F (·) is unknown (either completely or up to a finite vector of parameters)

then even the summary quantity µF (xc) may not be meaningful if its value is
“sensitive” to the assumed F (·). To illustrate, consider the response y(·) plotted
in the upper left-hand panel of Figure 1; this y(·) depends on a single real-valued
control variable xc, 0 ≤ xc ≤ 1, and a single real-valued environmental variable
xe, 0 ≤ xe ≤ 1. The upper right-hand panel of Figure 1 displays four Xe density
functions whose associated µF (xc) are pictured in the bottom panels of the figure.
Suppose that it is desired to find the xc that minimizes µF (xc); this minimizer
depends on F (·). If the Xe distribution is #2 then x�

c ≈ 0.22 minimizes µF (xc),
but if the Xe distribution is #4, then x�

c ≈ 0.82 minimizes µF (xc).
This paper proposes sequential designs for a computer experiment to deter-

mine a “robust” choice of control variables xc using a Taguchi-like approach.
Suppose interest lies in the mean µF (xc). If y(xc,xe) is relatively “flat” in xe

for a given xc value, then the mean of y(xc,Xe) will be relatively independent of
the choice of F (·) (and thus be robust to misspecification of F (·)). To apply this
idea, suppose that small values of µF (xc) are desirable. Then a robust value of
xc minimizes µF (xc) among xc’s for which y(xc,xe) is “flat” in xe. We quantify
the flatness of y(xc,Xe) by

σ2
G(xc) = VarG[y(xc,Xe)], (2)

where G(·) is a distribution on Xe selected by the user. For example, one could
take G(·) to be a uniform distribution on Xe or even allow G(·) to vary over
a set of distributions. Taking G = F , the bottom right panel of Figure 1 plots
σ2

F (xc) for each of the four Xe distributions. The variance σ2
F (xc) varies greatly

over the four F (·) distributions for xc near 0.22 but is relatively invariant to F (·)
for xc near 0.85. This suggests y(0.85, xe) is flatter than y(0.22, xe), which can
be verified visually in this simple example.



574 JEFFREY S. LEHMAN, THOMAS J. SANTNER AND WILLIAM I. NOTZ

Figure 1. True y(xc, xe) (top left panel), and true µF (xc) (bottom left panel)
and σ2

F (xc) (bottom right panel) for four Xe distributions (top right panel).

Motivated by this observation, we define xM
c to be M -robust if xM

c minimizes
µF (xc) subject to a constraint on σ2

G(xc). Alternatively, and perhaps more in
keeping with the quality control concept of having a “target” mean, we define
xV

c to be V -robust if it minimizes σ2
G(xc) subject to a constraint on µF (xc).

These formulations bear similarities to the constrained optimization problem for
computer experiments with bivariate outputs where the interest is in optimiz-
ing one output, y1(·), subject to input constraints defined by a second output,
y2(·). Schonlau, Welch and Jones (1998) and Williams, Lehman, Santner and
Notz (2003) address this problem using stochastic process models for (y1(·), y2(·))
where the former assumed the yi(·) come from independent Gaussian processes
while the latter assumed the Yi(·) were dependent so that, say, large values of
one function could (stochastically) be associated with small values of the other.
In contrast, here we consider two functions, µF (·) and σ2

G(·), defined for a single
computer output and optimize one subject to constraints on the other. In Sec-
tion 4, we propose sequential designs of computer experiments that can be used
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to find M -robust and V -robust control variables. For notational convenience,
beginning with Section 3 the remainder of this paper will assume that G = F

but the algorithms proposed here can be modified in an obvious way if G �= F is
desired in (2).

Before sketching these algorithms we note briefly two other senses that the
statistical literature has used to quantify the notion of a robust choice of control
variables. When the goal is minimization of the response, the minimax approach
to defining robustness Huber (1981) assumes that a family G of distributions can
be specified that contains the unknown F (·). We define xG

c to be G-robust if

max
G∈G

µG(xG
c ) = min

xc∈Xc

max
G∈G

µG(xc).

Minimax robusness adopts a pessimistic viewpoint because it attempts to guard
against the worst-case scenario among all Xe distributions in G. A more Bayesian
approach to robustness focuses on the mean

µΠ(xc) =
∫

G∈G
µG(xc)dΠ(G), (3)

over the possible Xe distributions in G; here Π(·) is a prior distribution on G. A
xΠ

c that minimizes (3) is said to be Π-robust.
Both the minimax and Bayes notions of robustness require extra information

−either the specification of the class G and possibly a prior Π(·). They also
require the possibly difficult calculation of a max or average over this class. The
Taguchi formulation of robustness has the practical advantages that it requires
neither extra information nor a maximum/integral calculation.

3. Modeling

The approach adopted here is Bayesian. The prior model for the true re-
sponse y(·) is hierarchical with first stage

Y (x) = f�(x)β + Z(x), (4)

where the linear model f�(·)β represents the (nonstationary) global mean of
the Y (·) process with f(·) a k-vector of known regression functions and β ∈ R

k

a vector of unknown regression parameters, and Z(·) is a covariance station-
ary Gaussian stochastic process having mean zero, positive definite correlation
function R(·), and unknown variance τ2 > 0. The specification of the model is
completed by assuming the (non-informative) second-stage prior [β, τ2] ∝ 1/τ2

for the parameters (β, τ2), and that R(·) = R(·|γ) is a known parametric corre-
lation function. As would occur often in practice, the examples below allow γ to
be unknown and set γ equal to its posterior mode wherever calculations involve
known γ.
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Assume that the joint distribution of the environmental variables, F (·), is
discrete on {xe,j}ne

j=1 with probabilities PF{Xe = xe,j} = wj . Denote the mean
and variance of y(xc,Xe) by

µF (xc) = EF{y(xc,Xe)} =
ne∑

j=1

wjy(xc,xe,j) = w�yne
(xc), (5)

σ2
F (xc) = VarF [y(xc,Xe)] =

ne∑
j=1

wj(y(xc,xe,j) − µF (xc))2

= yne
(xc)�Ayne

(xc), (6)

where A = (Ine − 1new
�)�diag(w)(Ine − 1new

�), w = (w1, . . . , wne)�, yne
(xc)

= (y(xc,xe,1), . . . , y(xc,xe,ne))�, In is the n × n identity matrix, 1n is an n × 1
vector of ones, and diag(w) is an ne×ne diagonal matrix with the elements of w

down the diagonal. These are the specific expressions corresponding to (1) and
(2) in Section 2.

The prior model induces the distributions of MF (xc) =
∑ne

j=1 wjY (xc,xe,j)
for the mean µF (·), and VF (xc) =

∑ne
j=1 wj(Y (xc,xe,j) − MF (xc))2 for the vari-

ance σ2
F (·). For the remainder of this paper, we suppress the dependence of

σ2
F (xc) and µF (xc) on F (·), writing σ2(xc) as the measure of “flatness” and

µ(xc) as the mean of y(xc,Xe) over F (·).

4. Sequential Algorithms

4.1. Overview

We propose sequential algorithms for determining the M -robust and V -
robust control variables. Our algorithms are based on the concept of expected
improvement (see Schonlau (1997) and Jones, Schonlau and Welch (1998)).
Williams, Santner and Notz (2000) proposed a sequential expected improvement
algorithm for choosing input sites at which to run the computer code when the
goal is minimization of µ(·). The algorithms presented here differ from those
in Williams, Santner and Notz (2000) in three basic ways. First, we are not
only interested in µ(xc), but also in σ2(xc) = Var[y(xc,Xe)], the variance of the
distribution of y(xc,Xe). Second, we impose constraints on the feasible control
variable values; when the goal is optimization of µ(xc), the feasible control vari-
able region is defined by constraints on σ2(xc), and when the goal is optimization
of σ2(xc), the feasible control variable region is defined by constraints on µ(xc).
Finally, we propose a different method of selecting values of the environmental
variables in Step 3 below. The steps of the algorithms reflect these differences.

Both algorithms are initialized by choosing an n-point initial design, de-
noted by Sn = {xtr

1 , . . . ,xtr
n }, at which to evaluate y(·). In our examples we
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used ACED (Welch (1985)) to generate a maximin distance design within the
set of Latin Hypercube designs, a space-filling design, although there are other
possibilities such as Sobol´ or Niederreiter sequences (see Niederreiter (1992) and
Owen (1995)). Let Y n = [Y (xtr

1 ), . . . , Y (xtr
n )]� represent the vector of responses

associated with the initial design sites in Sn. In outline, the update steps of both
sequential algorithms share the following elements.

1. Estimate the covariance parameter vector by γ̂, the mode of the posterior
density of γ given Y n from (15).

2. Choose the next control variable site x∗
c by an improvement criterion that

depends on whether a M -robust or V -robust design is desired.
3. Choose the environmental variable site x∗

e, corresponding to x∗
c , to maximize

the distance between (x∗
c ,x

∗
e) and the point in Sn that is closest to (x∗

c ,x
∗
e),

i.e., so that
x∗

e = argmax
xe∈Xe

D[(x∗
c ,xe),Sn],

where d(x1,x2) is a distance measure and D(x,Sn) = min{d(x,xtr
c,i) : 1 ≤

i ≤ n}.
4. Determine if the algorithm should be stopped. If not, set Sn+1 = Sn

⋃ {(x∗
c ,

x∗
e)}, compute the response y(x∗

c ,x
∗
e) and return to Step 1. If the stopping

criterion is met, then the optimal robust setting for xc is obtained using
traditional optimization techniques with the posterior means of M(·) and
V (·) substituted for µ(·) and σ2(·).
In Section 4.2 we present the criteria for adding points when the goal is to

find the V -robust control variable values or the M -robust control variable values.
For both criteria, the control variable portions of the input vectors in Sn will be
denoted by SC

n = {xtr
c,1, . . . ,x

tr
c,n}. For a given control variable value xc we let

Y ne(xc) = [Y (xc,xe,1), . . . , Y (xc,xe,ne)]� and note that the random variables
corresponding to (5) and (6) can be written as

M(xc) = w�Y ne(xc), (7)

V (xc) = Y ne(xc)�AY ne(xc), (8)

where A = (Ine − 1new
�)diag(w)(Ine − 1new

�)�. Finally, let Mn = [M(xtr
c,1),

. . . ,M(xtr
c,n)]� be the vector of values for the mean response associated with SC

n .

4.2. Improvement criterion for finding robust designs

Formally, we define x∗
c to be V -robust if it satisfies x∗

c = argminxc∈Xc
σ2(xc)

subject to either

µ(x∗
c) ≤ min

xc∈Xc

µ(xc) + c, or µ(x∗
c) ≤ c. (9)
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In words, the goal is to find x∗
c that minimizes σ2(·) subject to µ(x∗

c) being close
to the global µ(·) minimum minxc∈Xc µ(xc), or satisfying a given constraint. The
constraint equation (9) and the constraint parameter c are chosen to reflect the
research objective. Use the left hand constraint with c = 0 to select an xc that
is a global minimizer of µ(·). Use the right hand constraint if a set of possible
mean values are to be considered, for example let c = 5 if any xc with µ(xc) < 5
is scientifically acceptable.

Alternatively, we define x∗
c to be M -robust if it satisfies x∗

c = argminxc∈Xc

µ(xc) subject to
σ2(x∗

c) ≤ a × min
xc∈Xc

σ2(xc) + c, (10)

where a ∈ {0, [1,∞)}, and c ≥ 0. In words, the goal is to find x∗
c that minimizes

µ(·) subject to σ2(x∗
c) being close to minxc∈Xc σ2(xc) (c ≥ 0 and a ≥ 1) or

satisfying a given constraint (c > 0 and a = 0).
To complete specification of the algorithms, we need to define the improve-

ment criterion for selecting the next control variable value (Step 2). For the
V -robust algorithm, we choose the next control variable x∗

c to maximize the
expected improvement

I(xc) = E{max{0, vmin,f − V (xc)} | Y n,γ} × P{ constraint |Y n,γ}, (11)

where the constraint is one of

M(xc) ≤ Mn,min + c, (12)

M(xc) ≤ c. (13)

The random variable Mn,min is the minimum of Mn, the vector of M(·) values
at control variable sites in SC

n , and the constant vmin,f is the current best guess
at the constrained minimum of σ2(·); vmin,f is the minimum of the posterior
expectations of V (·) for control variable values in SC

n that appear to be in the
feasible region. Formally, we let Mn,min = min{M(xtr

c,i) : 1 ≤ i ≤ n}, and
define the constant vmin,f to be the minimum of E[V (xc)|Y n,γ] for xc ∈ Cn,
where Cn = {xtr

c,i ∈ SC
n : M.025(xtr

c,i) ≤ constraint} and M.025(xtr
c,i) is the lower

2.5th percentile of the posterior distribution of M(xtr
c,i) given Y n and γ (see the

Appendix). Thus, we choose x∗
c such that x∗

c = argmax xc∈Xc
I(xc).

Alternatively, for the M -robust algorithm, we choose the next control vari-
able site x∗

c to maximize

I(xc) = E[max{0,Mmin,f − M(xc)} | Y n,γ] × P [ constraint |Y n,γ], (14)

where the constraint is V (xc) ≤ a × vn,min + c. The constant vn,min is the
minimum of the posterior expected values of V (·) for control variable values
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in SC
n , and the random variable Mmin,f is the minimum of M(·) at control

variable values in Sc
n that appear to be in the feasible region. Formally, we

let vn,min = min{E[V (xtr
c,i)|Y n,γ] : 1 ≤ i ≤ n}, and Mmin,f = min{M(xtr

c,i) :
E[V (xtr

c,i)|Yn,γ]≤a×vn,min+c}. Thus, we choose x∗
c such that x∗

c =argmaxxc∈Xc

I(xc).
The intuition behind these criteria is as follows. We choose the next control

variable value site x∗
c to maximize the improvement in the objective function

(either V (·) or M(·)) over the current minimum of the posterior expected values
of the objective function (V (·) or M(·)) for control variable sites in the current
design that potentially satisfy the constraint. We multiply this improvement by
the probability that the constraint is satisfied so as not to “waste” observations
in the infeasible region of the control variable space. The calculations necessary
to determine (11) and (14) are outlined in the Appendix.

4.3. Posterior of γ given Y n

In the calculations of Steps 2 and 3 of both algorithms all distributions are
given up to the unknown correlation parameter (vector) γ. We adopt an empirical
Bayes strategy and proceed with the algorithm by setting γ equal to its posterior
mode (Step 1). The posterior density function of γ given Y n satisfies

p(γ|Y n) ∝ p(γ) |R33|−1/2
∣∣∣F�

n R−1
33 F n

∣∣∣−1
[τ̂2](n−k)/2, (15)

where p(γ) is the prior distribution on the permissible range of values for γ (see
Handcock and Stein (1993)). The quantities F n and R33 are the regression and
correlation matrices associated with the vector Y n (see the Appendix for more
explanation), and τ̂2 is the posterior estimate of τ2 given Y n and γ (see (20)). In
Step 1 of the algorithms, we maximize (15) with p(γ) ∝ 1 although other choices
are possible.

5. Examples

The following examples illustrate the performance of the M -robust and V -
robust sequential algorithms. All calculations are performed using Model (4)
for Y (xc,xe) with constant mean f�(x)β = β0, and product power exponential
correlation function for Z(·) given by

R(h) =
p∏

i=1

exp (−θi|hi|αi)

with individual scale and power parameters for each component of (xc,xe). Here
θi > 0 and 0 < αi ≤ 2, so that γ = (θ1, . . . , θp, α1, . . . , αp) is the unknown
correlation function parameter.
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5.1. V -robust 2-D example

We illustrate the algorithm for finding V -robust designs with a simple exam-
ple. Consider the hypothetical y(·) shown in Figure 1 that depends on a real con-
trol variable and a real environmental variable, each on (0, 1). We assume that Xe

has a discretized uniform distribution on the 20 points {0.025, 0.075, . . . , 0.975, 1}.
For this example we wish to minimize σ2(xc) subject to an absolute bound
µ(xc) ≤ −0.08.

The first step of the sequential algorithm involves choosing an initial set
of design points at which to observe y(·). We use a space filling design, and,
following the recommendations of Jones, Schonlau and Welch (1998), use 10 ob-
servations per input dimension. Figure 3 displays the 20-point maximin distance
Latin hypercube design (+’s) used as the starting design for this example. The
output y(·) is evaluated at each of the 20 points in the starting design, and the
posterior mode of γ is obtained using (15). Figure 2 displays the true µ(xc)
(left panel) and σ2(xc) (right panel), along with the posterior means of M(xc)
and V (xc) given the data from the starting design and the posterior mode of
γ. Note that the constraint µ(xc) ≤ −0.08 (dotted horizontal line in the left
panel) restricts xc to values in the approximate interval (0.176, 0.30). For this
constraint the optimal setting of xc is on the lower boundary of the feasible region
at xc = 0.176. If no points are added to the design and the posterior means of
M(xc) and V (xc) based on the initial design are optimized we choose xc = 0.811,
a value of xc that fails to satisfy the constraint of interest but appears to do so
based on the 20-point predictions.

Figure 2. True µ(·) (left panel) and σ2(·) (right panel) and their poste-
rior mean predictors based on the 20-point starting design for the V -robust
example.
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Figure 3. Locations of 39 points for the final design. +’s denote the 20
points in the initial design and the numbered sites are the sites added by
the V -robust sequential algorithm in that order.

Using the V -robust sequential algorithm, points are added to the starting
design until we reach a predefined stopping criterion. In general, we stop the
algorithm when there is minimal improvement in adding points and/or when
prediction in the feasible region is “accurate”. For this example, we choose
to stop the algorithm when a moving average of the improvement criterion is
“small.” The definition of “small” is problem specific since it is relative to the
values of σ2(·). One means of defining a small improvement is to require that the
improvement be a small fraction (e.g., a thousandth) of the range for the posterior
expected value of V (·) at the current stage. Here, we stop the algorithm when
a 5-point moving average of the improvement is less than 0.00001. Figure 3
displays the 19 points that the algorithm added, and Figure 4 displays the final
posterior means of M(·) and V (·) given the combined 39 (20 initial plus 19)
point set of training data. Note the behavior of the algorithm. It appears to
quickly recognize the region of the optimal xc (xc ≈ 0.2), and then begins to
sample a range of xe values for that xc. This is the desired behavior and, upon
termination of the algorithm, the V -robust optimal value based on the posterior
means matches the true V -robust optimal value of xc = 0.176 to three decimal
places.

5.2. M-robust 4-D example

We illustrate the M -robust sequential algorithm using the Branin function
of Dixon and Szego (1978). The Branin function is defined on X = [−5, 10] ×
[0, 15] by
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Figure 4. True µ(·) and σ2(·) and their posterior mean predictors based on
the 39-point final design (20 points in initial design and 19 points added by
the V -robust sequential algorithm).

z(x1, x2) =
(

x2 −
5.1
4π2

x2
1 +

5
π

x1 − 6
)2

+ 10
(

1 − 1
8π

)
cos(x1) + 10.

The true response function has four inputs and is defined to be

y(x1, x2, x3, x4) =
1
30

z(x1, x2)z(x3, x4) + (x1 − π)2

with x1 and x2 being the control variables, xc = (x1, x2), and x3 and x4 being
the environmental variables, xe = (x3, x4). Table 1 lists the assumed joint distri-
bution of the environmental variables and Figure 5 displays the true µ(xc) (left
panel) and the true σ2(xc) (right panel). We search for the M -robust control

Figure 5. Plot of true µ(xc) (left panel) and true σ2(xc) (right panel) for
4-d example.
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Table 1. Joint distribution of environmental variables in Section 5.2.

x3

-2 1 4 7
3.75 0.0375 0.0875 0.0875 0.0375

x4 7.5 0.0750 0.1750 0.1750 0.0750
11.25 0.0375 0.0875 0.0875 0.0375

variable setting that minimizes µ(xc) subject to σ2(xc) < 10000. The left panel
of Figure 6 plots the xc feasible region along with the global minimum of µ(xc),
which occurs at the point (π, 2.275) (denoted by � in the figure).

Figure 6. Plot of xc feasible region (left panel) and 120 point final design
projected into the control variable space (right panel). The +’s indicate
initial design sites and the numbers indicate the additional design sites in
the order they were chosen.

We begin the M -robust sequential algorithm by computing the response on
a 40-point (again 10 observations for each dimension) maximin distance Latin
hypercube design, obtaining the posterior mode of γ from (15), and plotting the
posterior means of M(·) and V (·) based on the initial design in Figure 7. Using
the M -robust criterion defined above, 80 points are added to the initial design.
The right panel of Figure 6 plots the set of 120 (40 initial plus 80 added) final
design sites projected onto the control variable space, and Figure 8 plots the
posterior means of M(·) and V (·) based on the final 120 point design. Note the
improvement in accuracy of the final predictors over the initial predictors, and
note that the algorithm performs as desired by adding sites around the feasible
region and slowly zeroing in on the true M -robust value of (π, 2.275). Table 2
lists the value of the improvement and the predicted constrained minimizer as
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points are added. After 80 points are added, the final predicted M -robust value
is (3.15, 2.25), a relative error of 0.32% = 100%(̇3.15 − 3.14)/3.14 for the first
control variable and 1.1% = 100%(̇2.25 − 2.275)/2.275 for the second control
variable in locating the true robust value of xc.

Figure 7. Posterior mean predictors of µ(xc) (left panel) and σ2(xc) (right
panel) based on the initial 40 point design.

Figure 8. Posterior mean predictors of µ(xc) (left panel) and σ2(xc) (right
panel) based on the final 120 point design.

Table 2. Summary results for the 4-D example in Section 5.2.

# Points Added Improvement Predicted Minimizer
1 2.904673 (2.65, 0.00)
40 0.236627 (3.31, 2.02)
60 0.020322 (2.92, 1.98)
75 0.024939 (3.15, 1.97)
80 0.019231 (3.15, 2.25)
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6. Discussion

The numerical optimization in Steps 1 and 2 of both algorithms can be com-
putationally challenging, especially as the dimension of the input space increases.
In particular, for computational savings and for larger dimensional problems (i.e.,
> 10 dimensions for example) alternative choices may need to be made for this al-
gorithm to be computationally feasible. For example, correlation functions with
fewer parameters may be necessary, and/or updating of the correlation parame-
ter estimates in Step 1 could be completed only after adding groups of points to
the existing design and/or by using the previous correlation parameter estimates
as a starting point for the current stage’s numerical optimization. Additionally,
in Step 2, the algorithm calls for numerical optimization of the improvement to
obtain the value of the next control portion of the input at which to observe y(·).
Promising starting values for this optimization can be obtained by evaluating the
improvement criterion on a grid of points in Xc.

Step 3 of the algorithm presents a heuristic scheme for selection of the value
of the next environmental portion of the input at which to observe y(·). Space-
filling designs, such as Latin hypercubes (McKay, Beckman and Conover (1979))
or distance-based designs, are popular single stage designs in the computer exper-
iments literature. The intuition behind these designs is that observations should
be spread out in order to “cover” the input space. For this goal, space-filling
designs seem a natural choice, and for this reason, we suggest selection of xe

via a distance-based criterion that also attempts to “spread” out observations
by selecting xe so that the selected point (x∗

c ,xe) is not too “close” to points
that have already been observed. This criterion is simple to understand and to
implement; however, many other methods of choosing xe are reasonable and may
prove effective (see for example Williams et al. (2000)).

As seen in the examples, the stopping criterion for the algorithm is problem
specific. Generally, we want to stop the algorithm when our predictions are accu-
rate and/or the improvement is small. When optimizing, we suggest stopping the
algorithm when a moving average of the improvement is “small”. A moving av-
erage is used because the improvement need not be a strictly decreasing function
(the use of updated correlation parameter estimates and additional information
from the newly observed response can cause larger improvements in the current
cycle of the algorithm than those previously observed). The definition of “small”
improvement is problem specific since it depends on the scale of the objective
function. For the V -robust algorithm a “small” improvement may be determined
as a small fraction of the range of the posterior expected values of V (·), and for
the M -robust algorithm a “small” improvement may be a small fraction of the
range of the posterior expected values of M(·).
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Both the V -robust and M -robust sequential algorithms require a starting
design at which the responses are calculated. In the examples above, maximin
distance LHS designs were used as starting designs. However, any other space-
filling design may be appropriate for the goals presented here. Additionally,
allocation of runs to the initial design and subsequent sequential design is an im-
portant consideration. ”Too many” observations in the intial design will “waste”
observations, while too few may lead to poor correlation parameter estimates
and a larger number of sequential steps to find the optimum. Generating space-
filling designs and determining which are best suited to computer experiments
is an area of active research. Another promising area for future research is in
developing formal results for the choice of sample size in computer experiments.
In the examples, we use the Jones, Schonlau and Welch (1998) suggestion of 10
observations per input dimension, which we have found to be a reasonable rule
of thumb.

In this paper we have considered the case of a single deterministic response
y(·). Straightforward extensions of these concepts can be made for the case where
the response contains additive measurement error. Many computer experiments
involve multiple, related responses; for such situations, extensions of the above
algorithms and concepts may be appropriate following meaningful modeling of
the related responses as in Williams et al. (2003).
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Appendix

In the following we present the details of the calculations required in com-
puting the expected improvement for the V -robust algorithm (11). Parallel cal-
culations for the M-robust algorithm, (14), can be found in Lehman, Santner and
Notz (2002). Let Np(µ,Σ) denote the p-variate normal distribution with mean
µ and covariance matrix Σ. Additionally, let Tq(µ,Σ, ν) denote the q-variate T
distribution with mean µ and covariance matrix νΣ/(ν − 2) if ν > 2, i.e., the
q-variate random variable with density

Γ[(ν + q)/2]
|Σ|1/2(νΠ)q/2Γ[ν/2]

(
1 +

1
ν
(x − µ)�Σ−1(x − µ)

)−(ν+q)/2

(16)

for x ∈ R
q. The following lemma, appearing in O’Hagan (1992), is used through-

out the Appendix.
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Lemma A.1. Suppose U i for i ∈ {1, 2} denote qi ×1 random vectors having the
Gaussian distribution(

U1

U2

)
| β, σ2 ∼ Nq1+q2

[(
F 1

F 2

)
β, σ2

(
R11 R12

R�
12 R22

)]
,

where β ∈ R
k and σ2 > 0. Assuming that each of the elements of F i and Rij are

known, each F i has full column rank, the correlation matrix is positive definite
and the parameter vector β, σ2 has the noninformative prior [β, σ2] ∝ 1/σ2, the
posterior distribution of U1 given U2 is Tq1(m1|2, σ̂2R1|2, q2 − k) where m1|2 =

F 1β̂+ R12R
−1
22 (U 2 −F 2β̂), β̂ = (F�

2 R−1
22 F 2)−1F�

2 R−1
22 U 2, σ̂2 = [U�

2 R−1
22 U2 −

β̂
�
(F�

2 R−1
22 F 2)β̂]/(q2 − k) and R1|2 = R11 - R12R

−1
22 R�

12 + (F 1 −R12R
−1
22 F 2)

(F�
2 R−1

22 F 2)−1 (F 1 − R12R
−1
22 F 2)�.

We begin calculation of (11) with the joint distribution of (Y ne(xc), Y n,ne,
Y n) given β, τ2 and γ, where Y n,ne = (Y (xtr

c,1,xe,1), . . . , Y (xtr
c,1,xe,ne), . . .,

Y (xtr
c,n,xe,1), . . . , Y (xtr

c,n,xe,ne))� is the (n × ne) × 1 vector of responses at con-
trol sites in SC

n paired with each support point for the environmental variables.
From (4) the joint distribution of [Y ne(xc), Y n,ne , Y n] given (β, τ2,γ), is mul-
tivariate normal with mean (F�

ne
(xc), F�

n,ne
, F�

n )�β and variance-covariance
matrix τ2((Σpq)) for p, q ∈ {1, 2, 3}, where the components are defined next.
The vectors F ne(xc) = [f(xc,xe,1), . . . ,f(xc,xe,ne)]�, F n,ne = [f(xtr

c,1,xe,1), . . .,
f(xtr

c,1,xe,ne), . . . ,f(xtr
c,n,xe,ne)]� and F n = [f(xtr

1 ), . . . ,f(xtr
n )]� are the regres-

sion matrices for Y ne(xc), Y n,ne and Y n respectively. The indices p, q ∈ {1, 2, 3}
for the covariance matrices Σpq correspond to the three components Y ne(xc),
Y n,ne and Y n in this order, so that, for example, Cov[Y n,ne ,Y n] = τ2Σ23.

Because Gaussian random vectors remain Gaussian under linear transforma-
tions we haveY ne(xc)

Mn

Y n

 |β, τ2,γ ∼ N


F ne(xc)

F̄ n,ne

F n

β, τ2

R11 R12 R13

· R22 R23

· · R33


 , (17)

where F̄ n,ne = (In⊗w�)F n,ne , R11 = Σ11, R13 = Σ13, R33 = Σ33, R12=Σ12(In

⊗w�)�, R23=(In ⊗ w�)Σ23 and R22=(In ⊗ w�)Σ22(In ⊗ w�)�.
To calculate E[max{0, vmin,f −V (xc)}|Y n,γ] we first compute the constant

vmin,f . From (8), V (xc) = Y �
ne

(xc)AY ne(xc) is a quadratic form in Y ne(xc) for
all xc. Using Lemma A.1, the posterior distribution of Y ne(xc) given Y n and γ

is

[Y ne(xc)|Y n,γ] ∼ Tne(m, τ̂2R, n − k), (18)
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where m = F ne(xc)β̂+R13R
−1
33 [Y n−F nβ̂], R = R11−R13R

−1
33 R�

13+(F ne(xc)−
R13R

−1
33 F n)(F�

n R−1
33 F n)−1 (F ne(xc) − R13R

−1
33 F n)�, and

β̂ = (F�
n R−1

33 F n)−1F�
n R−1

33 Y n, (19)

τ̂2 =
Y �

n R−1
33 Y n − β̂

�
(F�

n R−1
33 F n)β̂

n − k
. (20)

Applying the well known formula for expectations of a quadratic form we obtain

E[V (xc)|Y n,γ] =
n − k

n − k − 2
trace[τ̂2RA] + m�Am. (21)

We calculate (21) for each control variable value in Cn, set vmin,f as the min-
imum of these expected values, and compute E[max{0, vmin,f − V (xc)}|Y n,γ]
via Monte Carlo by generating Nv samples of Y ne(xc) from the distribution of
Y ne(xc) given Y n and γ.

A formula for the posterior probability of constraint (12) is obtained via
iterated expectations and Monte Carlo. We have

P [M(xc) ≤ Mn,min+c|Y n,γ]=EMn|Y n,γ [P (M(xc)≤Mn,min+c | Mn,Y n,γ)] .
(22)

To compute the inner expectation we apply a linear transformation and Lemma
A.1 to (17) and obtain

[M(xc)|Z2n,γ] ∼ T1(µM,1, τ̃
2σM,1, 2n − k), (23)

where Z2n = (M�
n ,Y �

n )�. Letting R1,23 = (R12,R13), F 2n =
(
F̄

�
n,ne

,F�
n

)�
and R2n = {Rij} for i, j ∈ {2, 3} (the 2n × 2n lower block of the correlation

matrix in (17)), we have τ̃2 = Z�
2nR−1

2n Z2n − β̃
�
(F�

2nR−1
2n F 2n)β̃/(2n − k), β̃ =

(F�
2nR−1

2n F 2n)−1F�
2nR−1

2n Z2n, and

µM,1 = w�F ne(xc)β̃ + w�R1,23(Z2n − F 2nβ̃), (24)

σM,1 = w�R11w − w�R1,23R
−1
2n R�

1,23w

+w�(F ne(xc) − R1,23R
−1
2n F 2n)(F�

2nR−1
2n F 2n)−1(F ne(xc)

−R1,23R
−1
2n F 2n)�w. (25)

Thus, the inner expectation is

P [M(xc) ≤ Mn,min + c | Mn,Y n,γ] = T2n−k

[
(Mn,min + c − µM,1)/

√
τ̃2σM,1

]
,

(26)
where Tν(·) is the univariate T cdf with ν degrees of freedom. The outer expec-
tation is obtained via Monte Carlo. We generate Nµ random samples from the
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distribution of [Mn|Y n,γ], and compute (26) for each sample. The value for
(22) is then obtained as the average of these Nµ quantities.

The distribution of [Mn|Y n,γ] is computed by applying Lemma A.1 to the
[Mn, Y n] portion of distribution (17). We have [Mn|Y n,γ]∼Tn(µMn

, τ̂2ΣMn ,
n− k), where µMn

= F̄ n,neβ̂ + R23R
−1
33 (Y n −F nβ̂), β̂ as in (19), τ̂2 as in (20),

and ΣMn = R22 − R23R
−1
33 R�

23 + (F̄ n,ne − R23R
−1
33 F n)(F�

n R−1
33 F n)−1(F̄ n,ne −

R23R
−1
33 F n)�.

A formula for the constraint P [M(xc) ≤ c | Y n,γ], the posterior probability
of (13) follows in a similar fashion. Applying a linear transformation to the dis-
tribution of [Y ne(xc),Y n] given (β, τ2, γ), and then applying Lemma A.1 to the
result gives [M(xc)|Y n,γ] ∼ T1(µM,2, τ̂

2σM,2, n− k), where the formulas for µM,2

and σM,2 are identical to formulas (24) and (25) for µM,1 and σM,1 with β̃ replaced
by β̂, R1,23 replaced by R13, Z2n replaced by Y n, F 2n replaced by F n, and R2n

replaced by R33. We obtain P [M(xc) ≤ c | Y n,γ] = Tn−k((c−µM,2)/
√

τ̂2σM,2),
where Tν(·) is the univariate T cdf with ν degrees of freedom. Analagous calcu-
lations for the M -robust improvement (14) can be found in Lehman et al. (2002).
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