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Abstract: This paper considers size estimation of a closed population using capture-

recapture models when the capture probabilities vary with time (or trapping oc-

casion) and behavior response. A unified approach via the Bayesian framework

is proposed to make inferences about the population size for four specific models.

Based on data augmentation considerations, we show how Gibbs sampling asso-

ciated with an adaptive rejection sampling technique can be applied to calculate

Bayes estimates in our setting. The prior distributions that we have chosen are all

noninformative except as regards the behavior response parameter. A simulation

study investigates the performance of the proposed procedure and compares it with

the maximum likelihood estimates derived by Chao, Chu and Hsu (2000). The es-

timates are also applied to capture data of deer mice discussed in the literature.

The results show that Gibbs sampling provides a useful inference procedure for

estimating population size, particularly when the capture probability is high or the

amount of recapture information is sufficient.
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1. Introduction

For ecological studies, the first problem usually encountered is the need to
know the sizes of various wildlife populations in a given study area. In order to
make precise inference of population sizes, a variety of capture-recapture sam-
pling methods are widely used. In this paper, we focus on the problem of size
estimation of a closed population using capture-recapture models when capture
probabilities vary with time (or trapping occasion) and behavior response. This
model is known as Mtb. There are three submodels of Mtb — namely, models
Mt, Mb and M0. Models Mt and Mb take into account capture probabilities
varying with time and behavior response, respectively. Model M0 assumes ev-
ery animal has the same capture probability on every capture occasion. These
capture-recapture models have been extensively discussed; for review see Otis,
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Burnham, White and Anderson (1978), White, Anderson, Burnham and Otis
(1982), Seber (1982, 1992), and Pollock (1991).

Within the literature analyzing M0, Mt and Mb, maximum likelihood esti-
mation (MLE) techniques have been derived; see Darroch (1958) for M0 and Mt

and Zippin (1958) forMb. Seber and Whale (1970) show that forMb the MLE of
population sizes exists only under special conditions. However, because animals
frequently exhibit a behavioral response to being captured, models Mb and Mtb

are both practical and important in biological and ecological applications. Un-
fortunately, there is relatively little literature on Mtb. Papers by Lloyd (1994),
Rexstad and Burnham (1991), and Lee (1996) are exceptions. Otis, Burnham,
White and Anderson (1978) shows that the MLE of Mtb does not exist since
it is unidentifiable without further assumptions on the parameters. A popular
assumption was considered by Otis, Burnham, White and Anderson (1978) and
Lloyd (1994); namely that the ratio of the recapture probability to the initial
capture probability is a constant. Moreover, Lloyd (1994) developed an estimat-
ing function to solve the problem. Recently, Chao, Chu and Hsu (2000) derived
the MLE under the same assumption. However, the MLE solution often fails
to converge when the data is sparse. Therefore, we concentrate on behavior re-
sponse and present the Bayesian approach using Gibbs sampling, a Markov chain
Monte Carlo method.

For the Bayesian approach, Roberts (1967) was the pioneer of population
size inference for M0. Castledine (1981) and Smith (1988, 1991) dealt with
the problem for model Mt. They developed numerical methods to calculate
the posterior mean of the population size and used normal approximation to
obtain the creditable interval. George and Robert (1992) were the first to use
the modern Bayesian technique of Gibbs sampling to estimate population size
for Mt. Lee and Chen (1998) applied Gibbs sampling to Mb and Mtb. Their
approach has the advantage of using the Bayesian framework to overcome the
identification problem for Mtb. However, their method does not use recapture
information and leads to unstable estimates. In other words, the performance of
their estimates often depends on the chosen prior distributions. In this paper,
a Bayesian framework using recapture information for Mtb is set up, and Gibbs
sampling is used for inference of the population parameters. When there is no
behavioral response by the captured animals, the proposed setup can be reduced
to the work of Castledine (1981) for M0 and George and Robert (1992) for Mt.
For related work based on the Bayesian approach, see Fienberg, Johnson and
Junker (1999) and Basu and Ebrahimi (2001). The major advantage of the
Bayesian method via the Gibbs sampling technique is that it can provide sufficient
information about the parameters in addition to the point and interval estimates.
This is because the posterior distribution samples are available to the user. For
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details of Gibbs sampling and discussion of the estimation procedures, see Geman
and Geman (1984), Tanner and Wong (1987), Gelfand, Hills, Rancine-Poon and
Smith (1990), Tanner (1994), and Gilks, Richardson and Spiegelhalter (1996).

Section 2 formulates the time variation and behavior response models and
the Bayesian framework. Section 3 examines real capture-recapture data as an
illustrative example. Simulation results are presented to show the performance
of the proposed estimators. We give a brief conclusion in Section 4.

2. Bayes Estimates for Models Mtb, Mb, Mt and M0

Let i = 1, . . . , N index the animals in a closed population, j = 1, . . . , t index
the trapping samples, and Pij be the capture probability of the ith animal in the
jth trapping sample. Animals are assumed to act independently. If the animals
exhibit a behavior response, then Pij depends on the capture history of the first
j − 1 samples and can be expressed as

Pij =

{
P ∗

ij if the ith animal has not been caught before the jth sample;
b∗ij if the ith animal has been caught before the jth sample.

(1)

Let Xij equal 1 if the ith animal is caught in the jth sample and 0 otherwise.
The likelihood function of the capture-recapture experiment is as follows:

L(N,P |D) =
N∏

i=1

t∏
j=1

P
Xij

ij (1− Pij)1−Xij

=
N∏

i=1

t∏
j=1

P
∗XijI[(

∑j−1

k=1
Xik)=0]

ij b
∗XijI[(

∑j−1

k=1
Xik)>0]

ij

×(1− P ∗
ij)

(1−Xij )I[(
∑j−1

k=1
Xik)=0](1− b∗ij)

(1−Xij)I[(
∑j−1

k=1
Xik)>0], (2)

where I(·) is the usual indicator function, P = (Pij , i = 1, . . . , N ; j = 1, . . . , t),
and D = {Xij , i = 1, . . . , N ; j = 1, . . . , t}.

In this model, information about N is difficult to extract from the data be-
cause there are so many parameters. Therefore, the parameter space must be
restricted. The most common assumptions are Pij = Pj or Pij = P , indicating no
behavior response with or without time variation. These models are designated
Mt or M0, respectively, in Otis, Burnham, White and Anderson (1978). Further-
more if there is a behavior response, an intuitive restriction is that P ∗

ij = Pj and
b∗ij = bj . However the parameters are unidentifiable in this situation, as indicated
by Otis, Burnham, White and Anderson (1978). We therefore need additional
restrictions in order to estimate the parameters. In this paper, we consider one
of

Pij = Pjφ
I(
∑j−1

k=1
Xik>0), (3)
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Pij = PφI(
∑j−1

k=1
Xik>0), (4)

where φ represents the behavior response effect. The definition in (3) is equivalent
to bj = φPj and (4) is equivalent to P ∗

ij = P and b∗ij = b = φP . If φ > 1 the
response is trap-happy, if φ < 1 the response is trap-shy; we denote (3) and (4)
by Mtb and Mb, respectively. If φ = 1, these models are Mt and M0 as proposed
by Darroch (1958). In the reminder of this section, we give a unified inference
procedure for size estimation of a closed population using the Bayesian technique
and Gibbs sampling.

2.1. Model Mtb

We consider the case that all animals which have not been caught before
the jth sample have the same capture probability Pj in the jth sample. The
recapture probability for all animals in the jth sample is φPj , where φ is the
behavior response effect. The structure of Pij can be expressed as (3). The
likelihood function for this model reduces to

L(N,P , φ|D) ∝ N !
(N −Mt+1)!

t∏
j=1

P
uj

j (1− Pj)N−Mj+1

t∏
j=2

(φPj)mj (1− φPj)Mj−mj

=
N !

(N −Mt+1)!

{ t∏
j=1

P
nj

j (1− Pj)N−Mj+1(1− φPj)Mj−mj

}
φm., (5)

where P = (P1, . . . , Pt), m. = m2+ · · ·+mt, Mj+1 = u1+ · · ·+uj is the number
of distinct animals captured prior to the (j + 1)th sample, nj = uj +mj is the
total caught in the jth sample, and mj and uj are the number of marked and
unmarked animals captured in the jth sample, respectively.

For the Bayesian approach, we need to assign a joint prior distribution for
the parameters. We consider an independent prior distribution of the form
π(N,P , φ) = (

∏t
j=1 π(Pj))π(φ)π(N). Such a prior leads to conditional poste-

riors as follows:

π(N | P , φ,D) ∝ N !
(N −Mt+1)!


 t∏

j=1

(1− Pj)N

π(N), (6)

π(Pj | P (−j), N, φ,D) ∝ P
nj

j (1− Pj)N−Mj+1(1− φPj)Mj−mjπ(Pj), (7)

for j = 1, . . . , t and

π(φ | N,P ,D) ∝ φm.
t∏

j=2

(1− φPj)Mj−mjπ(φ), (8)
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where P (−j) denotes the vector P with Pj deleted. The conditional posterior
distribution of N in (6) is the same as that proposed by George and Robert
(1992) for Mt.

In this paper, we consider the prior distribution of P to be π(P ) =
∏
π(Pj),

where π(Pj) = U(0, 1) and U(0, 1) denotes a uniform distribution. The prior
distribution of φ is π(φ) = U(α, β), where U(α, β) denotes a uniform distribution
with range in (α, β) assumed to be specified in this study. It follows that (7) and
(8) reduce to

π(Pj | P (−j), N, φ,D) ∝ P
nj

j (1− Pj)N−Mj+1(1− φPj)Mj−mj , (9)

for j = 1, . . . , t and

π(φ | N,P ,D) ∝ φm.
t∏

j=2

(1− φPj)Mj−mjI(α < φ < β). (10)

Taking the prior distribution of N as a Jeffrey’s prior π(N)=1/N , the conditional
posterior distribution of N is

P (N=n | P , φ,D) =

(
n− 1

Mt+1−1

)(
1−

t∏
j=1

(1−Pj)

)Mt+1
(

t∏
j=1

(1−Pj)

)N−Mt+1

, (11)

where n = Mt+1,Mt+1 + 1, . . .. It is easy to recognize that the conditional
posterior of N is a negative binomial with parameter (Mt+1, 1 − ∏

(1 − Pj)).
Alternatively, for the constant prior of N , the conditional posterior of N is a
negative binomial with parameter (Mt+1+1, 1−∏(1−Pj)). Notice that the prior
distributions of all parameters that we have chosen here are all noninformative
except in the case of φ. If we have more prior information about the parameters,
we can make a more informed choice of prior distributions. For example, we may
take π(Pj) to be a Beta distribution with parameters γ1 and γ2 when we have
more information about the capture probability. In this situation, the conditional
posterior distribution of Pj becomes

π(Pj | P (−j), N, φ,D) ∝ P
nj+γ1−1
j (1− Pj)N−Mj+1+γ2−1(1− φPj)Mj−mj . (12)

It is trivial that (9) is a special case of the above equation since U(0, 1) is a
Beta distribution with γ1 = 1 and γ2 = 1. Interested readers may refer to Smith
(1991) to find examples of other choices.

The prior distribution of φ that we have chosen is a constant prior distri-
bution, but it is not a noninformative prior since we need to specify its range.
The motivation for this choice was twofold. First, it is theoretically justifiable to
take a noninformative prior distribution, a constant prior, for φ; however, this
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leads to numerical complications in the implementation of the Gibbs sequence.
Thus, in practice, it is necessary to restrict the range of φ to be between α to β
in advance. Such restrictions are not unsual, and there is a common technique
for dealing with this limitation. For example, Norris and Pollock (1996) took
twice the true population size as the upper limit of the population size estimate
in their simulation study. In other words, by taking α small and β large enough,
the prior of φ can be regarded as noninformative in practice. Second, we also
tried a lognormal distribution as the prior of φ in the simulation in Section 3.
The performance of estimates was slightly inferior to those under the uniform
prior given the same prior mean and variance. The advantage of assigning a
lognormal prior distribution is that no restriction of φ is necessary; however, at
least to us, it is a little unnatural to specify the prior mean and variance of φ.

We now state the Gibbs sampling procedure in the capture-recapture model.
We first generate the initial values of P (0) and φ(0) from their prior distributions.
Then we generate a value of N (0) from (11) with P and φ replaced by P (0)

and φ(0). Starting with an initial value of N (0), we produce a ‘Gibbs sequence’
{P (k), φ(k), N (k)}, k = 0, 1, . . ., with iteratively simulated sampling from (9),
(10) and (11). However, the conditional densities of Pj and φ are not identified.
We therefore employ adaptive rejection sampling (see Gilks and Wild (1992))
to generate P and φ. We only state how to generate φ for simplicity. Let f(φ)
denote the conditional densities in (10), suppressing the conditioning variables for
simplicity. It is easy to check that f(φ) is a log-concave function in the range (a, b)
where a = α and b = min{ 1

P1
, . . . , 1

Pt
, β}. The range is defined by the prior limit of

φ and the restriction that φPj < 1 for j = 1, . . . , t. Let Sn = {φ1, . . . , φn}, where
φ1 < · · · < φn denotes a current set of abscissa in the range (a, b) (see below for
an example). We then define a piecewise linear function gn(φ) from the tangent
at Sn to ln f(φ), that is, gn(φ) = min{ln f(φj) +

f ′(φj)
f(φj)

(φ − φj), j = 1, . . . , n}.
Because ln f(φ) is a concave function, this implies that gn is a convex envelope
of ln f(φ). The adaptive rejection sampling employed works as follows.
STEP 1. Specify initial n and Sn.

STEP 2. Generate a point φ∗ from the distribution proportional to exp(gn(φ)).
STEP 3. Accept φ∗ with probability f(φ∗) / exp(gn(φ∗)); otherwise let Sn+1 =

Sn
⋃{φ∗} and go back to STEP 2.

In the example and simulation study of this paper, we take the initial value
of n as 5 and S5 = {φ3− 1

10 (b−a), φ3− 3
100 (b−a), φ3, φ3+ 3

100(b−a), φ3+ 1
10(b−a)},

where φ3 = m.∑t

j=2
MjPj

. The initial value of φ3 is chosen because E(m.) =

φE(
∑t

j=2MjPj) and this value is close to the mode of f . Given this setup, the
iteration steps for the adaptive rejection procedure usually take one or two steps.
We employ a similar method for the parameters Pj . Note that the distribution
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proportional to exp(gn(φ)) is a piecewise exponential distribution and can be
easily simulated.

The Gibbs sequence forms a Markov chain. According to the Ergodic Theo-
rem, if the chain length is sufficiently large, then the sample mean will converge
to the posterior mean. Hence, we can estimate the population size and other
parameters by the sample mean. We can also use the quantile interval of the
simulated data to estimate the creditable intervals of interesting parameters.
The initial process is generally unstable due to the wide range of choices for the
starting values. In order to avoid the influence of the starting value, we discard
the first k terms as the burn-in period and use the remaining terms to estimate
the parameters. Therefore, we need to determine the lengths of the process and
burn-in period. This is also called the convergence diagnostic, and there are
many methods available to achieve this (see Cowles and Bradley (1996)). In
this study, we use the multiple chains method developed by Gelman and Rubin
(1992). This method, both quite reasonable and easy to handle, is as follows.

First we simulate m parallel chains, each with length 2k, from different
starting points. Then we discard the first k numbers of each chain as the burn-
in period and use the remaining part to estimate R, the ratio of between-chain
variation to within-chain variation. If the ratio R̂

1
2 is high, then we believe that

further iteration will be necessary. When R̂
1
2 approaches one, some authors agree

that we can continue untill R̂
1
2 is less than 1.1 (see Gelman (1996)), and we can

then terminate the iteration. Finally, we use the sample mean of the remaining
part to estimate the parameters and the quantile interval of the remaining part
to estimate the creditable interval.

2.2. Model Mb

In this model, we assume that all animals have the same capture probability
P in the first capture and the same recapture probability φP after the first
capture. The likelihood function becomes

L(N,P, φ|D) ∝ N !
(N −Mt+1)!

Pn.(1− P )tN−M.−Mt+1φm.(1− φP )M.−m. , (13)

where M. = M2 + · · · +Mt and n. = n1 + · · · + nt. Taking N , P and φ to be a
priori independent, the conditional posterior distributions are

π(N | P, φ,D) ∝ N !
(N −Mt+1)!

(1− P )tNπ(N), (14)

π(P | N,φ,D) ∝ Pn.(1− P )tN−M.−Mt+1(1− φP )M.−m.π(P ), (15)

π(φ | N,P,D) ∝ φm.(1− φP )M.−m.π(φ). (16)
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We choose π(P ) = U(0, 1) and π(φ) = U(α, β). Subsequently, (15) and (16)
reduce to

π(P |N,φ,D) ∝ Pn.(1− P )tN−M.−Mt+1(1− φP )M.−m. , (17)

π(φ|N,P,D) ∝ φm.(1− φP )M.−m. . (18)

Taking the prior of N to be a constant or a Jeffrey’s prior in (14), the conditional
posterior of N follows a negative binomial distribution with parameters (Mt+1 +
1, 1 − (1 − P )t) or (Mt+1, 1 − (1 − P )t), respectively. Moreover, the logit model
on P and b = φP can be described as α = ln(P/(1 − P )) ∼ N(µ, σ2) and
β = ln(b/(1 − b)) ∼ N(ν, σ2). In this case, the conditional posterior of α is

π(α | N,β,D) ∝ exp(αMt+1 − 1
2(

α−µ
σ )2)

(1 + eα)tN−M. , (19)

a log-concave function of α. Therefore, we can also simulate α via adaptive
rejection sampling. Based on these conditional posterior distributions, Gibbs
sampling can be readily implemented.

2.3. Model Mt

Suppose all animals in the population have the same capture probability Pj

in the jth sample. This is model Mt, which has been studied by Darroch (1958),
Otis, Burnham, White and Anderson (1978), and George and Robert (1992). In
our model, we take φ = 1 in (5) and the likelihood function becomes

L(N,P |D) ∝ N !
(N −Mt+1)!

t∏
j=1

P
nj

j (1− Pj)N−nj . (20)

Using the uniform prior π(Pj) = U(0, 1), the conditional posterior of Pj given N
is

π(P |N,D) =
t∏

j=1

Beta(nj + 1, N − nj + 1). (21)

We emphasize that the above result can also be obtained from (9) by taking φ = 1.
The conditional posteriors of N given P under a Jeffery’s prior or a constant
prior are negative binomial distributions with parameter (Mt+1, 1 −∏(1 − Pj))
or (Mt+1 + 1, 1 −∏(1 − Pj)), respectively. Given the initial values of P (0) and
N (0), the Gibbs sequence {N (k),P (k)}, k = 1, 2, . . ., can be obtained from the
Beta and the negative binomial distribution. If we choose π(Pj) = Beta(γ1, γ2)
then the conditional posterior of Pj given N is

π(P |N,D) =
t∏

j=1

Beta(nj + γ1, N − nj + γ2). (22)
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Note that the above results are the same as those found by George and Robert
(1992), and can be derived from our proposed Mtb.

2.4. Model M0

Model M0 assumes that all animals in the population have the same capture
probability P for all sampling occasions. The model has been studied by Darroch
(1958), Otis, Burnham, White and Anderson (1978), and Castledine (1981). We
take φ = 1 in (15) and use a Beta prior for P ; the conditional posterior of P
given N is

π(P |N,D) = Beta(n. + γ1, tN − n. + γ2). (23)

The conditional posterior of N given P is the same as that for Mb assuming a
Jeffrey’s prior or a constant prior. Therefore P and N can be easily generated.

3. Example and Simulation

In this section, we illustrate the proposed procedure with a real example and
a brief simulation study, focusing on inference about the population size.

3.1. Real example

We consider deer mouse data as an illustrative example. These data were
collected by S. Hoffman and analyzed by Otis, Burnham, White and Anderson
(1978), Chao, Chu and Hsu (2000), and Huggins and Yip (2001). As shown in
Table 1, there are t = 5 capture occasions; the total number of distinct mice
captured is Mt+1 = 110 and the total number captured is n. = 283. We show
the results of the likelihood and the Bayesian approaches in Table 2.

The upper part of Table 2 presents the results for the likelihood approach
with two rows (UMLE and QMLE ) derived directly from Chao, Chu and Hsu
(2000). First, the unconditional maximum likelihood estimate (UMLE) is around
161 with a 95% bootstrap confidence interval from 121 to 283. Second, the con-
ditional maximum likelihood estimate (CMLE) is 174 with a 95% confidence in-
terval from 124 to 289. Finally, the quasi maximum likelihood estimate (QMLE)
is 152 with a 95% confidence interval from 119 to 229. Note that although the
above three estimators have been shown to be asymptotically equivalent when
the population size is large enough, their performance is still quite different in
this example.

The lower part of Table 2 presents the results for the Bayesian approach.
There are four different priors for φ chosen here. The prior for N is a Jeffery’s
prior and the prior for P is an i.i.d. uniform distribution. For each case, we
generate five parallel chains from different randomly selected starting points of
P , φ and N . Then, we compute R̂

1
2 (with respect to N and φ) to determine the
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burn-in period cutoff k. As we can see from Figure 1, R̂
1
2 becomes smaller than

1.1 after 100, 500, 500 and 1500 iterations in each case. We therefore fix k at
1500 for simplicity and record the remaining 1500 values in each chain. This way
the recorded 7500 values mimic the posterior distribution of N . Our estimate
depends on the choice of the prior for φ, which ranges from 127 to 155.

Table 1. Capture-recapture counts of deer mice.

occasion 1 2 3 4 5
had been caught (Mj) 0 37 68 77 98
newly caught (uj) 37 31 9 21 12
marked caught (mj) 0 23 49 44 57
total caught (nj) 37 54 58 65 69

Table 2. Estimates of deer mouse population size.

method N̂ ŜE 95% CI φ̂ 95% CI of φ
UMLE∗ 161 42.8 (121, 283) 3.19
CMLE 174 45.3 (124, 289) 3.63 (1.67, 7.37)
QMLE∗ 152 29.9 (119, 229) 2.87
(α, β)
(0.5, 2) 127 6.0 (116, 139) 1.76 (1.36, 1.99)
(0.8, 3) 138 11.6 (119, 164) 2.25 (1.54, 2.94)
(1, 5) 150 21.4 (121, 203) 2.61 (1.64, 4.51)
(1, 8) 155 32.3 (122, 251) 2.99 (1.65, 6.16)

* indicates results derived from Chao, Chu and Hsu (2000) directly.

It is not easy to chose a prior distribution if no other information is known.
Here we provide a naive trial-and-error procedure. When we adopt the Bayes
method to estimate the population size N and behavior response φ, we first limit
φ to range from 0.5 to 2 (a reasonable range in general situations) and we get
a 95% creditable interval for φ ranging from 1.36 to 1.99. Therefore the upper
limit of the creditable interval for φ (1.99) is too close to the value presumed
(2). Next, we adjust the prior for φ from 0.8 to 3 and the creditable interval is
found to range from 1.54 to 2.94. Again it is too close to the prior upper limit
of 3. We repeat this procedure until the range of the creditable interval is not
too close to either side of the prior limits of φ. It turn out this occurs with the
third choice of limits (φ between 1 and 5). If we release the prior limit of φ to
be from 1 to 8 (a very wide range for φ), we find that the outcome is similar but
the creditable interval is wider. Hence, for the deer mouse data, we believe the
population size is around 150 with a 95% creditable interval from 120 to 200.
Our result is similar to QMLE but with a narrower interval estimate.
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Note that such a trial-and-error method has no theoretical justification; the
judgement of whether or not the creditable interval limits are too close to the
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Figure 1. Plot of R̂
1
2 with respect to the Gibbs sequences of N (left hand

side) and φ (right hand side) under different prior distributions for φ. The
baseline (dotted line) is 1.1.

prior limits is highly subjective. However it seems to work well when the data is
rich enough (e.g., there is a high capture probability or wealth of recapture in-
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formation). In this situation, the data indicate the right direction of incremental
experimentation with prior limits. This phenomenon of subjective but educated
guesswork is not uncommon in empirical analyses.

3.2. Simulation study

In this subsection, we carry out a simulation study to observe the perfor-
mance of the proposed method and to compare it with the likelihood approach.
Here we focus on Mtb because the other three models are special cases of it. The
true population size N is fixed at 200 and there are t = 5 capture occasions. We
consider the following eight combinations of four time effects of P and two values
of φ; the four time effects of P are (0.17, 0.15, 0.12, 0.1, 0.12), (0.2, 0.17, 0.25, 0.15,
0.12), (0.3, 0.25, 0.15, 0.2, 0.3) and (0.38, 0.22, 0.34, 0.3, 0.44), in which the capture
probabilities range from low to high and E(Mt+1) ranges from 100 to 175, with
approximate increments of 25 animals. The two values of φ are 1.5 and 0.8
which represent trap-happy and trap-shy responses, respectively. These eight
combinations were taken from Chao, Chu and Hsu (2000). The prior for N is
a Jeffery’s prior and the prior for P is the i.i.d. U(0, 1). The prior for φ is a
U(α, β) distribution where (α, β) is selected as follows:

(α, β) =

{
(0.2, 1), (0.2, 2), (0.5, 1), (0.5, 2) for φ = 0.8;

(0.5, 2), (1, 2), (1, 3), (1, 5) for φ = 1.5.

Here we compare the likelihood approach studied by Chao, Chu and Hsu
(2000) with the Bayesian estimating procedure. Note that there are three esti-
mates (CMLE, UMLE and QMLE) derived in Chao, Chu and Hsu (2000). From
the extensive simulation study of Chao, Chu and Hsu (1998), CMLE had the
largest divergence rate among the three estimates. However, CMLE also had
the smallest bias and appropriate coverage probability in the case of low capture
probability. Moreover, all three estimates are similar in the case of high capture
probability. Hence we only continue comparison with CMLE in this study.

For each combination of time effect P and behavior response φ, 200 data
sets were generated. Then for each generated data set, the CMLE and the
Bayes estimates under four different sets of priors were calculated. The Bayes
estimates were given by Gibbs sampling of five parallel chains with 1000 iterations
generated but only the last 500 iterations kept. Here we fixed the burn-in period
cutoff at 500 for simplicity after observation of the performance of R̂

1
2 . The

resulting 200 estimates of population size were averaged to give the “Average
estimate” in Tables 3-10. Based on the 200 estimates, the sample s.e., the sample
root mean squared error (RMSE), and the coverage percentage of the true N
were calculated. We also calculated the average of the estimated s.e. and 95%
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confidence intervals (CI) for CMLE based on 200 bootstrap replications. The
average s.e. and 95% quantile creditable intervals (CI) of the marginal posterior
distribution for Gibbs sampling are presented. In addition, the CMLE divergence
rate is shown in the last column. Note that, when the CMLE fails to converge
(the solution is larger than 7Mt+1 or it doesn’t reach a stable value after 1000
iterations), then we generate another data set until 200 successful estimates are
completed. Tables 3-6 and Tables 7-10 show the simulation results for φ = 0.8 and
φ = 1.5, respectively. In both series of tables, we also list the average number of
distinct individuals captured (M̄t+1) and the total number of individuals captured
(n̄) in the experiment.

Table 3 considers the case of a trap-shy response and a low capture prob-
ability. There are 102 distinct animals out of 127 captures on average. All
estimates underestimate the true population size because there is little recap-
ture information in this case. The first two estimates using the Bayes method
((α, β) = (0.2, 1), (0.2, 2)) are poor since the prior left hand limit of φ is too small.
As we increase the prior left hand limit of φ to 0.5, the performance improves.
As we see in Table 3, the last two Bayes estimates have both smaller RMSEs and
a more nearly accurate coverage probability than CMLE. Note that the CMLE
divergence rate in this case is over 40%.

Table 3. N = 200, P = (0.17 0.15 0.12 0.10 0.12), φ = 0.8, M̄t+1 = 102, n̄. = 127.

Average Sample Average* Sample Coverage 95%CI∗∗ Divergence
Method estimate SE SE RMSE (%) rate (%)
CMLE 156 48.31 39.73 64.98 69.5 101-226 43.18
BAYES
(0.2, 1) 126 11.57 19.16 74.40 17.0 105 - 177 -
(0.2, 2) 129 12.09 23.95 71.50 40.5 105 - 194 -
(0.5, 1) 164 20.09 25.95 40.99 77.5 127 - 228 -
(0.5, 2) 171 21.60 36.63 35.38 96.0 128 - 269 -
* indicates the average bootstrap s.e. for CMLE and the average sample pos-
terior s.e. for the Bayesian approach.

** indicates the average 95% bootstrap confidence interval for CMLE and the
average 95% equal-tails creditable interval for the Bayesian approach.

Table 4 considers the case of a moderately low capture probability. There
are 126 distinct animals out of 167 captures on average. The CMLE is nearly
unbiased but still has a divergence rate of nearly 20%. The Bayes estimates all
have a negative bias but smaller RMSEs than CMLE. From the performances of
the RMSE and the coverage probability, the last two Bayes estimates are superior
to CMLE.
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Tables 5 and 6 consider the case of high capture probabilities. The Bayes
estimates tend to be a little negatively biased but they all have smaller RMSEs
and shorter creditable intervals than the CMLE confidence intervals.

Table 4. N = 200, P = (0.20 0.17 0.25 0.15 0.12), φ = 0.8, M̄t+1 = 126, n̄. = 167

Average Sample Average Sample Coverage 95%CI Divergence
Method estimate SE SE RMSE (%) rate (%)
CMLE 199 60.03 48.76 59.89 90.0 128 - 285 19.03
BAYES
(0.2, 1) 153 12.09 19.31 48.33 56.0 129 - 202 -
(0.2, 2) 158 15.00 26.62 44.28 75.0 129 - 231 -
(0.5, 1) 172 12.90 20.38 29.93 89.0 144 - 222 -
(0.5, 2) 181 15.00 31.10 23.72 98.0 145 - 265 -

Table 5. N = 200, P = (0.30 0.25 0.15 0.20 0.30), φ = 0.8, M̄t+1 = 150, n̄. = 223.

Average Sample Average Sample Coverage 95%CI Divergence
Method estimate SE SE RMSE (%) rate (%)
CMLE 211 55.77 46.43 56.74 98.0 151 - 324 10.31
BAYES
(0.2, 1) 173 10.36 16.18 28.31 80.0 152 - 213 -
(0.2, 2) 179 14.25 24.61 24.65 90.0 152 - 246 -
(0.5, 1) 183 9.62 15.50 18.90 94.0 161 - 221 -
(0.5, 2) 193 13.11 26.25 14.79 99.0 162 - 264 -

Table 6. N = 200, P = (0.38 0.22 0.34 0.30 0.44), φ = 0.8, M̄t+1 = 175, n̄. = 303.

Average Sample Average Sample Coverage 95%CI Divergence
Method estimate SE SE RMSE (%) rate (%)
CMLE 209 35.32 33.42 36.59 96.0 176 - 301 0
BAYES
(0.2, 1) 192 8.96 10.24 11.87 89.5 177 - 215
(0.2, 2) 199 14.82 17.66 14.79 94.5 177 - 245
(0.5, 1) 193 8.51 9.95 10.78 92.5 178 - 216
(0.5, 2) 201 14.06 17.60 14.08 96.5 179 - 246

As indicated by a referee, in Tables 3 and 4 the Bayes estimates for the priors
U(0.2, 1) and U(0.5, 1) are significally different; that is also true for U(0.2, 2) and
U(0.5, 2). In other words, a small change in the left hand prior limit leads to large
discrepancies in the estimates. In the case of high capture probabilities (Tables 5
and 6) such discrepancies tend to diminish. This phenomenon again shows that
the choice of priors has a large impact when there is a low capture probability
or sparse data. We should be very careful about choosing prior distributions in
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such situations.
We next consider the trap-happy case in Tables 7-10. The performance of

CMLE in Tables 7-10 is better than in Tables 3-6 since there is more recapture
information. However, the existence of more recapture information does not
seem to improve the rate of divergence very much. Bayes estimates, on the other
hand, perform well once we are sure that the behavior response is larger than
1. It does not seem difficult in practice to decide whether a capture-recapture
experiment response should be considered trap-happy or trap-shy in models of
Mb and Mtb. Having already noticed the diminished sensitivity to the choice of
priors, the performance of estimates in the trap-happy case is otherwise similar
to that in the trap-shy case.

Table 7. N = 200, P = (0.17 0.15 0.12 0.10 0.12), φ = 1.5, M̄t+1 = 102, n̄. = 149.

Average Sample Average Sample Coverage 95%CI Divergence
Method estimate SE SE RMSE (%) rate (%)
CMLE 163 45.42 41.27 58.02 89.5 101 - 255 38.46
BAYES
(0.5, 2) 136 12.79 21.72 64.84 40.5 111 - 194 -
( 1 , 2) 173 18.05 25.78 32.27 92.5 136 - 236 -
( 1 , 3) 179 19.22 33.46 28.29 98.0 136 - 267 -
( 1 , 5) 183 20.45 40.42 26.23 98.0 137 - 292 -

Table 8. N = 200, P = (0.20 0.17 0.25 0.15 0.12), φ = 1.5, M̄t+1 = 126, n̄. = 205.

Average Sample Average Sample Coverage 95%CI Divergence
Method estimate SE SE RMSE (%) rate (%)
CMLE 209 57.35 51.35 57.94 95.5 134-325 18.37
BAYES
(0.5, 2) 163 14.42 21.58 39.30 75.0 135 - 217 -
( 1 , 2) 182 14.70 21.32 22.59 93.5 152 - 234 -
( 1 , 3) 189 16.24 28.64 19.63 98.0 153 - 264 -
( 1 , 5) 193 17.37 35.53 18.62 99.5 153 - 290 -

Table 9. N = 200, P = (0.30 0.25 0.15 0.20 0.30), φ = 1.5, M̄t+1 = 150, n̄. = 285.

Average Sample Average Sample Coverage 95%CI Divergence
Method estimate SE SE RMSE (%) rate (%)
CMLE 211 48.46 43.82 49.62 96.5 154 - 318 10.31
BAYES
(0.5, 2) 178 12.66 16.97 25.16 87.5 154 - 218 -
( 1 , 2) 188 10.48 15.86 15.88 98.5 165 - 225 -
( 1 , 3) 194 12.97 22.81 14.21 99.5 165 - 253 -
( 1 , 5) 197 15.03 28.40 15.27 99.0 165 - 276 -
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Table 10. N = 200, P = (0.38 0.22 0.34 0.30 0.44), φ = 1.5, M̄t+1 = 175, n̄. = 415.

Average Sample Average Sample Coverage 95%CI Divergence
Method estimate SE SE RMSE (%) rate (%)
CMLE 207 28.87 28.81 29.79 94.0 179 - 286 0.00
BAYES
(0.5, 2) 194 9.34 10.37 10.69 92.0 179 - 218 -
( 1 , 2) 196 8.75 10.21 9.53 95.0 180 - 219 -
( 1 , 3) 200 12.42 14.64 12.41 96.0 181 - 237 -
( 1 , 5) 211 31.31 26.57 33.29 95.5 182 - 279 -

4. Concluding Remarks

We have compared the results of the Bayesian approach with the likelihood
approach, a comparison not previously made for capture-recapture models. The
advantages of the Bayesian approach are the following.
1. The estimates do not diverge, as may be occur using MLE in situations of

either a low capture probability or sparse data.
2. As seen in the simulation study, our estimates performed well and required

only minimal prior information about φ.
3. If the prior is chosen appropriately, we may obtain a smaller RMSE and a

shorter CI than in found using MLE.
4. This method easily extends to more complex models, such as those considering

the latent structure in the aforementioned models or the open model.
The main reasons that the Bayesian approach is criticized relates to how the

prior distributions are selected. Opponents of the Bayesian approach argue that
the method of selecting prior distributions is too subjective. Proponents of the
Bayesian approach have proposed methods including the two-stage prior, empiri-
cal Bayes, Bayes empirical Bayes, and noninformative prior to avoid the problem
of making a subjective choice. In the capture-recapture models considered in this
paper, we select the noninformative prior approach. In fact, we merely assume
that φ is within a reasonable scope which can be determined by biologists or
from the experiences of experts. On the other hand, we may also employ the
trial-and-error method adopted in our example, at least in the cases of a high
capture probability or adequate recapture information, to discover a reasonable
range for φ. We can then use the method in this paper to improve estimation of
population sizes.
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