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S1 Simulation study

In this section, we illustrate the performance of our procedure for multivariate re-

newal processes by means of a simulation study. Related simulations in addition to a

variety of data examples for partial sum processes have been conducted by Eichinger

and Kirch (2018); Meier et al. (2019) and for univariate renewal processes by Messer

et al. (2014, 2017).

More precisely, we analyze three-dimensional renewal processes with T = 1600,

where the increments of the inter-event times for each component are Γ−distributed

with intensity changes at 250, 500, 900 and 1150, where the expected time µ between

events is given by 1.3, 0.9, 0.6, 0.8 and 1.3. We use a bandwidth of h = 120 and

the parameter η = 0.75. Smaller values of η as suggested by Meier et al. (2019) for

partial sum processes tend to produce duplicate change point estimators by having



CLAUDIA KIRCH AND PHILIPP KLEIN

two or more significant local maxima for each change point if the variance is too

large (as can be seen in Table 2 below), while larger values of η lead to slightly worse

detection rates. For a single-bandwidth MOSUM procedure as suggested here, this

should be avoided but can be relaxed if a post-processing procedure is applied as e.g.

by Cho and Kirch (2021b) for partial sum processes.

In contrast to partial sum processes, it is natural for renewal processes that

the variances change with the intensity. Therefore we consider the following three

scenarios: (i) standard deviations of constant value 0.7 (referred to as constvar),

(ii) standard deviations being 5/6µ (referred to as smallvar) and (iii) multivariate

Poisson processes (referred to as Poisson).

We consider both the case of independence and dependence between the three

components. In the latter case, we generate for each regime i an independent (in

time) sequence of Γ−distributed inter-event-times Yj = Y
(i)

j , j = 1, 2, 3, with a

correlation of 0.2 (for all pairs) as Yj = Xj+X4, where Xj ∼ Γ(s, λ) for j = 1, 2, 3 and

X4 ∼ Γ(s/4, λ) for appropriate values of s and λ (resulting in the above intensities

and standard deviations for each regime).

In the simulations, we use a threshold as in Remark 1 with αT = 0.05. By

Section 2.2 and (3.8) it holds that Σt = Cov ((Y1, Y2, Y3)′) /E (Y1)3 while we use the

following choices for the matrix Ât as in (3.7): (A) Diagonal matrix with locally

estimated variances Σ̂t(j, j) on the diagonal, j = 1, 2, 3, (B) with the true variances
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(a) constvar: Constant standard deviation of 0.7, η = 0.75.

Change point at 250 500 900 1150 spurious duplicate

independent, type (A) 1 0.9998 0.9434 1 0.0251 0.0024

independent, type (B) 0.9974 0.9789 0.6271 1 0.0035 0.0007

dependent, type (A) 0.9998 0.9991 0.9219 1 0.0344 0.0027

dependent, type (B) 0.9916 0.9610 0.6351 0.9997 0.0074 0.0008

dependent, type (C) 0.9522 0.8485 0.3670 0.9984 0.0055 0.0019

(b) smallvar: Standard deviation of 5/6 the expected time between events, η = 0.75.

Change point at 250 500 900 1150 spurious duplicate

independent, type (A) 0.9831 1 0.9735 1 0.0313 0.0033

independent, type (B) 0.9368 1 0.9309 0.9999 0.0038 0.0004

dependent, type (A) 0.9711 0.9999 0.9556 0.9998 0.0386 0.0055

dependent, type (B) 0.9207 0.9986 0.9094 0.9987 0.0073 0.0018

dependent, type (C) 0.7494 0.9890 0.7210 0.9908 0.0052 0.0017

(c) Poisson-distributed inter-event times, η = 0.75.

Change point at 250 500 900 1150 spurious duplicate

independent, type (A) 0.9054 0.9971 0.8710 0.9983 0.0445 0.0077

independent, type (B) 0.7366 0.9852 0.7188 0.9885 0.0028 0.0014

dependent, type (A) 0.8818 0.9924 0.8418 0.9939 0.0528 0.0091

dependent, type (B) 0.7166 0.9764 0.6978 0.9761 0.0054 0.0020

dependent, type (C) 0.4602 0.8934 0.4289 0.9007 0.0048 0.0013

Table 1: Detection rates for each change point as well as the average number of spurious and

duplicate estimators for different distributions of the inter-event times.
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duplicate, duplicate, duplicate, duplicate, duplicate, duplicate,

constvar constvar smallvar smallvar poisson poisson

η = 0.4 η = 0.75 η = 0.4 η = 0.75 η = 0.4 η = 0.75

independent, type (A) 0.0798 0.0024 0.1046 0.0033 0.1559 0.0077

independent, type (B) 0.0484 0.0007 0.0496 0.0004 0.0526 0.0014

dependent, type (A) 0.1057 0.0027 0.1505 0.0055 0.1880 0.0091

dependent, type (B) 0.0779 0.0008 0.0814 0.0018 0.0755 0.0020

dependent, type (C) 0.0512 0.0019 0.0494 0.0017 0.0349 0.0013

Table 2: Comparison of the average number of duplicate estimators for η = 0.4 and η = 0.75.

Σt(j, j) on the diagonal and (C) in case of dependent components (non-diagonal) true

covariance matrix Σt. While only (A) is of relevance in applications, this allows us to

understand the influence of estimating the variance on the procedure. For dependent

data, the distinction between (B) and (C) is important for applications, because a

good enough estimator (resulting in a reasonable estimator for the inverse) is often

not available for the full covariance matrix as in (C) for moderately high or high

dimensions, while it is much less problematic to estimate (B). In (A) the variances

at location t are estimated as

Σ̂t(j, j) = min
{

σ̂2
j,−(t)

µ̂3
j,−(t) ,

σ̂2
j,+(t)

µ̂3
j,+(t)

}
, (S1.1)
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where σ̂2
j,±(t) and µ̂j,±(t) are the sample variance and sample mean respectively based

on the inter-event times of the j-th component within the windows (t − h, t] for ′−′

respectively (t, t + h] for ′+′. The first and last inter-event times that have been

censored by the window are not included. Using the minimum of the left and right

local estimators takes into account that the variance can (and typically will) change

with the intensity which has already been discussed by Meier et al. (2019) in the

context of partial sum processes.

The results of the simulation study can be found in Table 1, where we consider

a change point to be detected if there was an estimator in the interval [ci − h, ci + h].

Additional significant local maxima in such an interval are called duplicate change

point estimators, while additional significant local maxima outside any of these in-

tervals are called spurious.

The procedure performs well throughout all simulations with high detection rate,

few spurious and very few duplicate estimators. The results improve further for

smaller variance, in which case the signal-to-noise ratio is better.

When the diagonal matrix with the estimated variance is being used, the detec-

tion power is larger in all cases than when the true variance is being used. In case of

the changes at location 900 this is a substantial improvement, such that the use of

this local variance estimator can help boost the signal significantly. This comes at

the cost of having an increased but still reasonable amount of spurious and duplicate
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change point estimators.

This effect stems from using the minimum in (S1.1), which was introduced to

gain detection power if the variance changes with the intensity. Additionally, the use

of the true (asymptotic) covariance matrix leads to worse results than only using the

corresponding diagonal matrix, which is due to the fact that the theoretical signal

term is smaller when using the true (asymptotic) covariance matrix in this example.

From a statistical perspective this is advantageous because the local estimation of

the inverse of a covariance matrix in moderately large or large dimensions is a very

hard problem leading to a loss in precision, while the diagonal elements are far less

difficult to estimate consistently.

However, in other examples using the full covariance matrix can also lead to

better behavior, namely if the theoretical signal term is bigger in that case. The

results for one such example can be found in Table 3. Here, the inter-event times are

Yj = Xj + ∑
1≤k<j Xk,j − ∑

j<k≤3 Xj,k j = 1, 2, 3 where the Xj = X
(i)
j are sequences

of independent in time Γ(s, λ)-distributed random variables. The Xj,k = X
(i)
j,k are

sequences of independent in time N (0, s2
1)-distributed random variables with s, λ, s1

appropriately chosen such that the distributions of the inter-event-times have the

above average intensities, standard deviations and correlations.

Furthermore, we illustrate the performance of our procedure in the case that

Assumption 2 that the bandwidth is less than half the distance to the next change
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(a) constvar: Constant standard deviation of 0.7, η = 0.75, h = 120.

Change point at 250 500 900 1150 spurious duplicate

dependent, type (A) 1 1 0.9764 1 0.0666 0.0068

dependent, type (B) 0.9997 0.9936 0.6515 1 0.0037 0.0007

dependent, type (C) 1 0.9999 0.9539 1 0.0049 0.0004

(b) smallvar: Standard deviation of 5/6 the expected time between events, η = 0.75.

Change point at 250 500 900 1150 spurious duplicate

dependent, type (A) 0.9955 1 0.9905 1 0.0772 0.0077

dependent, type (B) 0.9741 1 0.9628 1 0.0042 0.0006

dependent, type (C) 0.9995 1 0.9989 1 0.0045 0.0003

(c) Poisson-distributed inter-event times, η = 0.75.

Change point at 250 500 900 1150 spurious duplicate

dependent, type (A) 0.9535 0.9994 0.9192 0.9998 0.1187 0.0203

dependent, type (B) 0.7781 0.9964 0.7433 0.9973 0.0054 0.0012

dependent, type (C) 0.9824 1 0.9776 1 0.0059 0.0008

Table 3: Detection rates for each change point as well as the average number of spurious and

duplicate estimators for different distributions of the inter-event times.
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point is violated: We analyze three-dimensional renewal processes with T = 1600,

where the increments of the inter-event times for each component are Γ−distributed

with intensity changes at 250, 500 and 600, where the expected time µ between

events is given by 1.3, 0.9, 0.6 and 0.8. We use bandwidths of h = 60, 90, 120 and

the parameter η = 0.75. While for the change point at 250 all bandwidths fulfill the

assumption, this is true for neither of the other two change points with the bandwidth

h = 120 being larger than the distance between these two points.

We use the same three scenarios for the standard deviations of the inter-event-

times as above. We assume independence between the components and for the matrix

Ât, we consider only choice (A) – a matrix with locally estimated variances Σ̂t(j, j)

on the diagonal, j = 1, 2, 3. The results of the simulation study can be found in

Table 4, where we consider a change point to be detected if there was an estimator

in the interval [ci − min {h, (ci − ci−1)/2} , ci + min {h, (ci+1 − ci)/2}].

Clearly, the procedure is performing well even when the model assumptions are

mildly violated, as for h = 60 and h = 90 and the last two change points. For

h = 120, the detection rates for the change point at 500 slightly increases but the

average distance of the estimator to the true change point becomes much larger. For

the change at 600, additionally the detection rate clearly decreases. On the other

hand, as long as Assumption 2 holds (as for the first change point) or is only mildly

violated (as for the last two change points and the two smaller bandwidths), the
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detection rate increases with larger bandwidth while at the time the average distances

between the estimator and the corresponding true change point decreases. This is

due to an increased signal-to-noise ratio due to the larger bandwidths (corresponding

to a larger sample size in classical two-sample testing).

In the above situation the changes are homogeneous in the sense that the smallest

change in intensity is still large enough compared to the smallest distance to neigh-

boring change points (for a detailed definition we refer to Cho and Kirch (2021b),

Definition 2.1, or Cho and Kirch (2021a), Definition 2.1). In particular, this guaran-

tees that all changes can be detected with a single bandwidth only.

In some applications with multiscale signals, where frequent large changes as well

as small isolated changes are present, this is no longer the case as Figure 1 shows.

In such cases, several bandwidths need to be used and the obtained candidates are

pruned down in a second step (see Cho and Kirch (2021b) for an information criterion

based approach for partial sum processes as well as Messer et al. (2014) for a bottom-

up-approach for renewal processes). Similarly, if the distance to the neighboring

change points is unbalanced MOSUM procedures with asymmetric bandwidths as

suggested by Meier et al. (2019) may be necessary.
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(a) constvar: Constant standard deviation of 0.7, η = 0.75.

Change point at 250 500 600 spurious duplicate Dist. 500 Dist. 600

h=60 0.9847 0.9690 0.6528 0.2436 0.0073 5.52 8.47

h=90 0.9996 0.9970 0.7957 0.1044 0.0025 4.92 8.16

h=120 1 0.9984 0.6368 0.0561 0.0002 9.94 21.43

(b) smallvar: Standard deviation of 5/6 the expected time between events, η = 0.75.

Change point at 250 500 600 spurious duplicate Dist. 500 Dist. 600

h=60 0.7534 0.9592 0.6476 0.2689 0.0100 5.28 7.55

h=90 0.9273 0.9978 0.8461 0.1025 0.0054 4.89 7.28

h=120 0.9846 0.9987 0.7237 0.0546 0.0020 10.01 19.66

(c) Poisson-distributed inter-event times, η = 0.75.

Change point at 250 500 600 spurious duplicate Dist. 500 Dist. 600

h=60 0.5904 0.8494 0.4698 0.3807 0.0129 7.05 9.36

h=90 0.7838 0.9702 0.6696 0.1457 0.0077 6.65 9.29

h=120 0.9070 0.9807 0.5798 0.0724 0.0046 11.43 20.76

Table 4: Detection rates for each change point, average number of spurious and duplicate estimators

for different distributions of the inter-event times as well as the average distances of the change

point estimators closest to the true change points in the intervals [ci − min {h, (ci − ci−1)/2} , ci +

min {h, (ci+1 − ci)/2}] for ci = 500, 600, respectively.
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Figure 1: MOSUM statistics with bandwidths of h = 30, 60, 90, 120 (top to bottom) for a three-

dimensional renewal process with multiscale changes with increasing distance between change points

in combination with decreasing magnitude of the changes in intensity. The dashed vertical lines

indicate the location of the true changes, while the solid lines indicate the change point estimators.

In this multiscale situation no single bandwidth can detect all changes: The changes to the left are

well estimated by smaller bandwidth, the ones in the middle by medium-sized bandwidths and the

one to the right by the largest bandwidth.
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S1.1 Further Examples

In this section, we give two more examples fulfilling the model assumptions of Sec-

tion 3.1 namely partial sum-processes as well as integrals of diffusion processes in-

cluding Ornstein-Uhlenbeck and Wiener processes with drift.

Partial-Sum-Processes

This first example extends the classical multiple changes in the mean model:

Let X(i)
1 , X(i)

2 , . . . be a time series with E
(
X(i)

1

)
= 0 and Cov

(
X(i)

1

)
= Ip and all

i = 1, . . . , P . Let

R(i)
t =

⌊t⌋∑
j=1

(
µ(i) +

(
Σ(i)

T

)1/2
X(i)

j

)
.

The upper panel in Figure 2 shows one such realization for illustrational purposes

where the noise is a sequence of i.i.d. standard normally distributed random variables.

The corresponding process fulfills Assumption 1 in a wide range of situations. For

example, Einmahl (1987) shows the validity in the case that X1, X2, . . . with Xj =(
X(1)

j , . . . , X(P )
j

)′
are i.i.d. with E

(
∥X1∥2+δ

)
< ∞ for some δ > 0. Additionally,

Kuelbs and Philipp (1980) state an invariance principle for mixing random vectors

in Theorem 4. For univariate processes there are many corresponding results under

different weak-dependency formulations.

For X(i) = X(1) (and Σ(i) = Σ(1)) for all i, then we are back to the classical

multiple mean change problem that has been considered in many papers in particular
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Figure 2: In the upper panel, a univariate partial sum process with 3 change points (i.e. 4 stationary

segments) and standard normally distributed noise are displayed. The gray and white regions mark

the estimated segmentation of the data while the red intervals mark the true segmentation.

In the lower panel, the corresponding MOSUM statistic with (relative) bandwidth h/T = 0.07

is displayed. The gray areas are the regions where the threshold (α = 0.05 as in Remark 1) is

exceeded (in absolute value). The blue solid lines indicate the change point estimates obtained as

local extrema that fall within the gray area (making them significant). The true change points are

indicated by the red dashed lines. The green horizontal lines denote ηh-environments around the

estimators.

0
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for the univariate situation, see e.g. the recent survey papers by Fearnhead and Rigaill

(2020) or Cho and Kirch (2021a). As a proof of concept, the lower panel in Figure 2

shows the corresponding MOSUM statistic with the true variances for Σt. Similarly

to Figure 2 in the main document for renewal processes the statistic fluctuates around

0 away from the change points while local maxima close to the changes are significant.

Diffusion processes

Clearly, switching between independent (or components of a multivariate) Brownian

motion with drift is included in this framework. Additionally, Heunis (2003) and

Mihalache (2011) derive invariance principles in the context of diffusion processes

including Ornstein-Uhlenbeck processes among others. Let (Xt)t≥0 be a stochastic

process in RN satisfying a stochastic differential equation

dXt = µ (Xt) dt + Σ (Xt) dBt

with respect to an n-dimensional standard Wiener process (Bt)t≥0 and let µ, Σ be

globally Lipschitz-continuous.

Under some conditions on f : RN → Rp, as given by Heunis (2003), relating to

µ, Σ, which in particular guarantee that the function f applied to the (invariant)

diffusion results in a centered process, there exists a p-dimensional Wiener process

(Wt)t≥0 and some η > 0 such that∥∥∥∥∥
∫ T

0
f(Xs) ds − WT

∥∥∥∥∥ = O
(
T 1/2−η

)
,
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Figure 3: In the upper panel, a univariate Wiener process with drift with 3 change points (i.e. 4

stationary segments) is displayed. The gray and white regions mark the estimated segmentation of

the data while the red intervals mark the true segmentation.

In the lower panel, the corresponding MOSUM statistic with (relative) bandwidth h/T = 0.07

is displayed. The gray areas are the regions where the threshold (α = 0.05 as in Remark 1) is

exceeded (in absolute value). The blue solid lines indicate the change point estimates obtained as

local extrema that fall within the gray area (making them significant). The true change points are

indicated by the red dashed lines. The green horizontal lines denote ηh-environments around the

estimators.

0
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where (Xt)t≥0 either is a solution to the SDE with fixed starting value X0 = y0 or a

strictly stationary solution with respect to an invariant distribution.

Furthermore, in the case of a one-dimensional stochastic diffusion process, Mihalache

(2011) showed for some L2-functions fulfilling constraints depending on µ, Σ that

there exists a strong invariance principle for the integrals of diffusion processes with

a rate of O((T log2 T )1/4 √
log T ). Figure 3 illustrates our method for a univariate

Wiener process with changing drift, where we use the true variance for Σt. In general,

having suitable estimators for the covariance structure of a diffusion process is a non-

trivial problem – even more so in the presence of change points. Again the behavior

is very similar to Figures 2 in the main document and 2.

S2 Proofs

We first prove some bounds for the limiting Wiener process that will be used through-

out the proofs (for (i)) or are related to the bounds in Assumption 5 (for (ii) and

(iii)).

Proposition S2.1. Let Assumption 1 hold with a rate of convergence as in Assump-

tion 2 with the notation of Assumption 5. Let 0 < ξT ≤ hT and DT ≥ 1 be arbitrary

sequences (bounded or unbounded).
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(a) The following bounds hold for the Wiener processes as in Assumption 1:

(i) max
i=1,...,qT

sup
0≤t≤ξT

1√
ξT

∥W(θi+1)
θi

− W(θi+1)
θi±t ∥ = OP

(√
log 2qT

)
,

(ii) sup
DT

∥di∥2 ≤s≤hT

√
DT

∥∥∥W(θi)
θi

− W(θi)
θi±s

∥∥∥
s ∥di∥

= OP (1) ,

(iii) max
i=1,...,qT

sup
DT

∥di∥2 ≤s≤hT

√
DT

∥∥∥W(θi)
θi

− W(θi)
θi±s

∥∥∥
s ∥di∥

= OP

(√
log 2qT

)
,

where neither the rates, nor the constants depend on DT .

(b) The bound in (i) carries over to the centered increments of the original process:

max
i=1,...,qT

sup
0≤t≤ξT

1√
ξT

∥R̃(θi+1)
θi

− R̃(θi+1)
θi±t ∥ = OP

(√
log 2qT

)
.

The bound in (ii) carries over if a forward and backward invariance principle

as in Remark 2 exists starting in an arbitrary point θi. In this case (iii) carries

over if qT = O(1).

For a single change point (instead of taking the maximum over all) the bound in (a)

(i) and (b) is given by OP (1).

Proof. (a) Let B(j)
t = (Σ(j)

T )−1/2 W(j)
t . Then by the self-similarity of Wiener processes

it holds

max
i=1,...,qT

sup
0≤t≤ξT

1√
ξT

∥W(θi+1)
θi

− W(θi+1)
θi+t ∥

≤ O(1) max
j=1,...,P

∥(Σ(j)
T )1/2∥ max

i=1,...,qT

sup
0≤t≤1

∥B(θi+1)
θi

− B(θi+1)
θi+t ∥.
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By the uniform boundedness of the covariance matrices as in Assumption 1,

max
j=1,...,P

∥(Σ(j)
T )1/2∥ = max

j=1,...,P

√
∥Σ(j)

T ∥ = O(1).

The reflection principle in combination with tail probabilities for Gaussian ran-

dom variables shows that with appropriate constants D1, D2 (not depending on i) it

holds for all D ≥ 1

P

(
sup

0≤t≤1
∥B(θi+1)

θi
− B(θi+1)

θi+t ∥ ≥ D1

√
D log 2qT

)
≤ D2

2D qD
T

,

which in combination with subadditivity shows that

max
i=1,...,qT

sup
0≤t≤1

∥B(θi+1)
θi

− B(θi+1)
θi+t ∥ = OP

(√
log 2qT

)
.

The assertion without the maximum follows analogously.

Clearly, (ii) follows from (iii) so we will only prove the latter. As above it

is sufficient to prove the assertion for {Bt}. Due to the self-similarity of Wiener

processes and its stationary and independent increments, it holds

max
i=1,...,qT

sup
DT

∥di∥2 ≤s≤hT

√
DT

∥∥∥B(θi)
θi+s − B(θi)

θi

∥∥∥
s ∥di∥

D= max
j=1,...,qT

sup
1≤t≤hT ∥dj∥2/DT

∥∥∥B(j)
t

∥∥∥
t

,

where {B(j)
t }, j = 1, 2, . . ., are independent standard Wiener processes. Similar asser-

tions hold for the other expressions. By the reflection principle and tail probabilities
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for Gaussian random variables it holds for any C > 4

P

(
sup
t≥1

∥Bt∥
t

≥
√

C log 2qT

)
≤
∑
l≥1

P

(
sup

2l≤t<2l+1

∥Bt∥
t

≥
√

C log 2qT

)

≤
∑
l≥1

P

(
sup

0≤t≤1
∥Bt∥ ≥ 2l

√
2l+1

√
C log 2qT

)
≤ O(1)

∑
l≥1

(O(1)2CqT )−2l

= O

(
1

4C2q2
T

)
,

which shows the assertion in combination with the sub-additivity.

(b) By the invariance principle and (a) (i) it holds

max
i=1,...,qT

sup
θi−hT <t≤θi+hT

∥∥∥Λt(R̃t)
∥∥∥ ≤ OP

(
T 1/2νT√

hT

)
+ max

i=1,...,qT

sup
θi−hT <t≤θi+hT

∥Λt(W)∥

= OP (
√

log 2qT ).

The other statement can be proven analogously. For the assertion in (ii) the invari-

ance principle starting in θi backward or forward applied from θi to θi ± hT yields a

rate of h
1/2
T νhT

, which is strong enough to prove the rate analogously to above.

S2.1 Proofs of Section 3.3

Proof of Theorem 1.

(a) Because Ât is symmetric and positive definite such that the minimal eigenvalue

of Â−1
t is given by 1/∥Ât∥ it holds

mtÂ−1
t mt ≥ 1

∥Ât∥
∥mt∥2 = 1

∥Ât∥
(h − |ci − t|)2

2h
∥di∥2.
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(b) By the invariance principle from Assumption 1 it holds by Assumption 2 that

sup
h≤t≤T −h

∥Λt − Λt(W)∥ = OP

(
T 1/2νT√

h

)
= oP

(√
log(T/h)

−1)
, (S2.1)

where Λt(Wt) is the MOSUM statistics defined in (3.1) with {Zt} there replaced by

{Wt}. Assertion (b)(i) follows immediately by the 1/2-self-similarity of the Wiener

process with Bt = Σ−1/2
t Wt.

For the sub-linear case as in (ii) we get by (S2.1)

a
(

T

h

)
sup

h≤t≤T −h

∥∥∥Σ−1/2
t Λt

∥∥∥ = a
(

T

h

)
sup

h≤t≤T −h
∥Λt(B)∥ + oP (1)

D= 1√
2

sup
0≤s≤ T

h
−2

∥Bs+2 − 2Bs+1 + Bs∥ + oP (1),

where (Λt)t≥0 is a stationary process. Assertion (b)(ii) follows by Steinebach and

Eastwood (1996), Lemma 3.1 in combination with Remark 1 with α = 1 and C1 =

. . . = Cp = 3
2 .

Replacing Σt by Σ̂t does not change any of the above assertions by standard

arguments.

(c) By splitting Λt(R̃) into increments of length at most 2h anchored at the

change points ci we get by Proposition S2.1(b)(i)

max
i=1,...,qT

sup
ci−h<t≤ci+h

∥∥∥Λt(R̃)
∥∥∥

= O(1) max
i=1,...,qT

sup
0≤t≤h

1√
h

∥R̃(ci+1)
ci

− R̃(ci+1)
ci+t ∥ + O(1) max

i=1,...,qT

sup
0≤t≤h

1√
h

∥R̃(ci)
ci

− R̃(ci)
ci−t∥

= OP

(√
log 2qT

)
.
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This shows that

max
i=1,...,qT

sup
ci−h<t≤ci+h

Λ′
tΣ−1

t Λt = OP (log 2qT ),

In combination with (b) and the fact that there are only finitely many regimes (c)

follows.

S2.2 Proofs of Section 4

We first prove consistency of the segmentation procedure.

Proof of Theorem 2. Define for 0 < τ < 1 the following set

ST = S
(1)
T ∩ S

(2)
T ∩

qT⋂
j=1

(
S

(3)
T (j, τ) ∩ S

(4)
T (j, τ)

)
, (S2.2)

where

S
(1)
T =

{
max

j=1,...,qT

sup
|t−cj |>h

M′
tÂ−1

t Mt < β

}
,

S
(2)
T =

{
min

j=1,...,qT

M′
cj

Â−1
cj

Mcj
≥ β

}
,

S
(3)
T (j, τ) =

⌈ 1
τ

⌉−1⋂
k=1

{
sup

cj−h≤t≤cj−kτh
∥Mt∥ < ∥Mcj−(k−1)τh∥

}
,

S
(4)
T (j, τ) =

⌈ 1
τ

⌉−1⋂
k=1

{
sup

cj+kτh≤t≤cj+h
∥Mt∥ < ∥Mcj+(k−1)τh∥

}
.

On S
(1)
T there are asymptotically no significant points outside of h-environments of

the change points. On S
(2)
T there is at least one significant time point for each change
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point. On S
(3)
T (j, τ) ∩ S

(4)
T (j, τ) with τ < η/2, there are no local extrema (within the

h-environment of cj) that are outside the interval (cj − τh, cj + τh). Additionally, on

S
(2)
T ∩ S

(3)
T (j, τ) ∩ S

(4)
T (j, τ) the global extremum within that interval will be the only

significant local extremum within the h-environment of cj such that

{
max

i=1,...,min(q̂T ,qT )
|ĉi − ci| ≤ τh, q̂T = qT

}
⊃ ST .

We will conclude the proof by showing that ST is an asymptotic one set.

Indeed, P (S(1)
T ) → 1 by Theorem 1 (c) on noting that

M′
tÂ−1

t Mt ≤ ∥Â−1
t ∥ ∥Mt∥2

and P (S(2)
T ) → 1 by Theorem 1 (a) and (c).

Similarly, for ci − h ≤ t ≤ ci, we obtain that

∥Mci−(k−1)τh∥ − ∥Mci−kτh∥ ≥ ∥mci−(k−1)τh∥ − ∥mci−kτh∥ + OP

(√
log(T/h)

)

≥ τ√
2

√
h ∥di∥(1 + oP (1)),

where the oP -term is uniform in i. This shows that P
(⋂qT

j=1 S
(3)
T (j, τ)

)
→ 1. The

assertion P
(⋂qT

j=1 S
(4)
T (j, τ)

)
→ 1 follows analogously.

With the above proposition we are ready to prove the localization rates for the

change point estimators.
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Proof of Theorem 3. On ST as in (S2.2) it holds for any sequence ξT

{
ĉi − ci < −Cξ2

T /∥di∥2
}

=

 sup
ci−h≤t≤ci−Cξ2

T /∥di∥2
∥Mt∥2 ≥ sup

ci−Cξ2
T /∥di∥2≤t≤ci+h

∥Mt∥2


⊂

 sup
ci−h≤t≤ci−Cξ2

T /∥di∥2
2h

(
∥Mt∥2 − ∥Mci

∥2
)

≥ 0

 .

We will now show that the probability for the last set becomes arbitrarily small for

C sufficiently large with ξT = ωT as well as that the probability for the union of

these sets over all change points i = 1, . . . , qT becomes arbitrarily small for ξT = ω̃T .

An analogous assertion can be shown for ĉi > ci + Cξ2
T /∥di∥2, completing the proof.

For ci − h ≤ t < ci the following decomposition holds

Vt = ∥Mt∥2 − ∥Mci
∥2 = −(mci

− mt + Λci
− Λt)′ (mci

+ mt + Λci
+ Λt)

= − 1
2h

(D1,t di + N1,t)′ (D2,t di + N2,t) , (S2.3)

where D1,t = ci − t > 0, D2,t = 2h + t − ci ≥ h,

N1,t = (R̃(ci)
ci−h − R̃(ci)

t−h) + (R̃(ci+1)
ci+h − R̃(ci+1)

t+h ) − 2
(
R̃(ci)

ci
− R̃(ci)

t

)
N2,t = (R̃(ci+1)

ci+h − R̃(ci+1)
t+h ) + 2

(
R̃(ci+1)

t+h − R̃(ci+1)
ci

)
− (R̃(ci)

ci−h − R̃(ci)
t−h)

− 2
(
R̃(ci)

t − R̃(ci)
ci−h

)
.

We will concentrate on the proof of (b), where the proof of (a) is done analogously

without the maximum over the change points and with the (possibly) tighter rate ωT

as in Assumption 5 (a) instead of ω̃T as in (b). Indeed, Assumption 5 (b) immediately
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implies that for any ϵ > 0 there exists a C such that for any y > 0 it holds

P

 max
i=1,...,qT

sup
ci−h≤t≤ci−Cω̃2

T /∥di∥2

∥N1,t∥
D1,t ∥di∥

≥ y


= P

 max
i=1,...,qT

sup
Cω̃2

T /∥di∥2≤ci−t≤h

√
Cω̃2

T

∥N1,t∥
∥di∥|ci − t|

≥
√

C y ω̃T

 ≤ ϵ.

Similarly, by Proposition S2.1 (b)(i), it holds

max
i=1,...,qT

sup
ci−h≤t≤ci−Cω̃2

T /∥di∥2

∥N2,t∥
D2,t ∥di∥

= OP

(√
log 2qT

h∥di∥2

)
= oP (1),

where the last statement follows by Assumption 2 on noting that qT ≤ T/(2h).

Combining the above assertions with P (Sc
T ) = oP (1) we obtain using the Cauchy-

Schwarz inequality

P
(
∥di∥2(ĉi − ci) < −Cω̃2

T for some i = 1, . . . , qT

)
≤ oP (1) + P

 max
i=1,...,qT

sup
ci−h≤t≤ci−

Cω̃2
T

∥di∥2

− D1,tD2,t∥di∥2

·
(

1 +
N′

1,tdi

D1,t∥di∥2 + d′
iN2,t

D2,t∥di∥2 +
N′

1,tN2,t

D1,tD2,t ∥di∥2

)
≥ 0



≤ oP (1) + P

 max
i=1,...,qT

sup
ci−h≤t≤ci−

Cω̃2
T

∥di∥2

∣∣∣∣∣ N′
1,tdi

D1,t∥di∥2 + d′
iN2,t

D2,t∥di∥2 +
N′

1,tN2,t

D1,tD2,t ∥di∥2

∣∣∣∣∣ ≥ 1



≤ oP (1) + P

 max
i=1,...,qT

sup
ci−h≤t≤ci−

Cω̃2
T

∥di∥2

∥N1,t∥
D1,t∥di∥

≥ 1
3

 ≤ ϵ

for C large enough (and ϵ arbitrary). This concludes the proof.
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Proof of Theorem 4. For 0 ≤ ci − t ≤ D/∥di∥2 it holds by Proposition S2.1 (b)

(i) (the result without the maximum over all change points) with the notation as in

(S2.3)

max
0≤ci−t≤D/∥di∥2

∥N1,t∥ = OP

(
1

∥di∥

)
, max

0≤ci−t≤D/∥di∥2
∥N2,t∥ = OP

(√
h
)

,

max
0≤ci−t≤D/∥di∥2

|D1,t| = O

(
1

∥di∥2

)
, max

0≤ci−t≤D/∥di∥2
|D2,t − 2h| = O

(
1

∥di∥2

)
.

Together with (S2.3) this shows

Vt = −∥di∥2|ci − t| − ∥di∥ N′
1,tui + OP

(
1√

h ∥di∥

)

By Assumption 2 it holds ∥di∥2h → ∞ such that with the substitution s = (t − ci)∥di∥2

with −D ≤ s ≤ 0 we get

Vs = −|s| + ∥di∥
(
Y(1)

D+s − Y(1)
D

)′
ui − 2∥di∥

(
Y(21)

D+s − Y(21)
D

)′
ui

+ ∥di∥
(
Y(3)

D+s − Y(3)
D

)′
ui + oP (1).

Similarly, for 0 ≤ t − ci ≤ D/∥di∥2 and the same substitution now leading to

0 ≤ s ≤ D we get

Vs = −|s| + ∥di∥
(
Y(1)

D+s − Y(1)
D

)′
ui − 2∥di∥

(
Y(22)

D+s − Y(22)
D

)′
ui

+ ∥di∥
(
Y(3)

D+s − Y(3)
D

)′
ui + oP (1).

Note that for ∥di∥2 |ĉi − ci| ≤ D it holds

∥di∥2(ĉi − ci) ≤ x ⇐⇒ max
−D≤s≤x

Vs ≥ max
x<s≤D

Vs.
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Now, first applying the functional central limit theorem from Assumption 6 and then

letting D → ∞ (in combination with Theorem 3, where now by assumption ωT = 1)

yields the result.
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