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Abstract: In spatial statistics, a common objective is to predict values of a spatial

process at unobserved locations by exploiting spatial dependence. Kriging provides

the best linear unbiased predictor using covariance functions, and is often associated

with Gaussian processes. However, for nonlinear predictions for nonGaussian and

categorical data, the Kriging prediction is no longer optimal, and the associated

variance is often overly optimistic. Although deep neural networks (DNNs) are

widely used for general classification and prediction, they have not been studied

thoroughly for data with spatial dependence. In this work, we propose a novel

DNN structure for spatial prediction, where we capture the spatial dependence by

adding an embedding layer of spatial coordinates with basis functions. We show in

theory and simulation studies that the proposed DeepKriging method has a direct

link to Kriging in the Gaussian case, and has multiple advantages over Kriging for

nonGaussian and nonstationary data. That is, it provides nonlinear predictions, and

thus has smaller approximation errors. Furthermore, it does not require operations

on covariance matrices, and thus is scalable for large data sets. With sufficiently

many hidden neurons, the proposed method provides an optimal prediction in terms

of model capacity. In addition, we quantify prediction uncertainties based on density

prediction, without assuming a data distribution. Finally, we apply the method to

PM2.5 concentrations across the continental United States.

Key words and phrases: Basis function, deep learning, feature embedding, Gaussian

process, spatial prediction.

1. Introduction

Spatial prediction is at the heart of spatial and spatio-temporal statistics.

It is aimed at predicting values of a spatial process at unobserved locations

by accounting for the spatial dependence in the region of interest. Originally,

spatial prediction was applied in the fields of geological and environmental science

(Cressie (2015)), but has been been extended to other fields, such as the biological

sciences, computer vision, economics, and public health (Anselin (2001); Austin

(2002); Waller and Gotway (2004); Franchi, Yao and Kolb (2018)).
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The main spatial prediction methods are based on the best linear unbiased

prediction (BLUP), also referred to as Kriging (Matheron (1963)). Kriging pred-

iction is a weighted average of observed data, where the weights are determined

by the spatial covariance function or variogram of the random process. Under

the Gaussian assumption, Kriging also provides the full predictive distribution.

Applying Kriging requires estimating the spatial covariance function, which is

commonly assumed to be stationary. However, physical processes tend to be

nonGaussian and nonstationary. For instance, data on wind speed and fine

particle (PM2.5) exposures are positive, right-skewed, and sometimes heavy-

tailed (Hennessey Jr (1977); Adgate et al. (2002)), and the spatial covariance

typically varies across space, for example, in urban versus rural areas (Sampson

et al. (2013)). It is possible to derive the best linear prediction for certain

parametric nonGaussian processes (Xu and Genton (2017); Rimstad and Omre

(2014)) and certain nonstationary covariance structures (Fuentes (2002); Paciorek

and Schervish (2004); Li and Sun (2019)), but Kriging for more general spatial

processes remains an open problem. Another drawback of Kriging is that it

is computationally prohibitive for large spatial data sets, because it involves

inverting an N × N covariance matrix, where N is the number of observed

locations (Heaton et al. (2019)), and the computation requires O(N3) time

and O(N2) memory complexity, based on the typical Cholesky decomposition

approach.

Recently, deep learning and deep neural networks (DNNs) have become

powerful prediction tools for a wide range of applications, especially in computer

vision and natural language processing (LeCun, Bengio and Hinton (2015)).

DNNs are effective for predictions with complex features such as nonlinearity

and nonstationarity, and are computationally efficient when analyzing massive

data sets using GPUs (Najafabadi et al. (2015)). Although it appears promising

to apply DNNs to spatial predictions, classical DNNs cannot incorporate spatial

dependence appropriately. Spatial prediction applications with neural networks

usually simply include spatial coordinates as features (Cracknell and Reading

(2014)), which may not be sufficient. Recently, convolutional neural networks

(CNNs, Krizhevsky, Sutskever and Hinton (2012)) have claimed to successfully

capture the spatial and temporal dependencies in image processing using relevant

filters. However, the framework is designed for applications with a large feature

space, and often requires large numbers of training labels as the ground truth.

In many spatial prediction problems, only in-situ and sparse observations are

available.

To address the above-mentioned problems, we develop an effective DNN for

spatial prediction that

1) builds a direct link between DNNs and Kriging in spatial prediction;

2) models spatial dependence using a set of basis functions;
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3) does not require matrix operations and is scalable for large data sets;

4) provides a nonlinear predictor in covariates or generally in observations;

5) has a Gaussian process (GP) representation, and provides more flexible spatial

covariance structures than simply using the coordinates as features;

6) suits different data types, for example, nonGaussian or nonstationary data;

and

7) potentially measures uncertainty using predictive density functions, without

assuming a data distribution.

We call our method “DeepKriging”, which achieves optimal spatial predic-

tion, similar to the original use of Kriging (Cressie (1990)), but using DNNs. We

also conduct simulation studies and apply our approach to PM2.5 concentration

data from across the continental United States to show how DeepKriging performs

relative to Kriging and other naive DNN methods. The rest of our paper is

organized as follows. In Section 2, we construct our DeepKriging method, and in

Section 3, provide its theoretical properties. Section 4 presents simulation studies

that demonstrate the performance of the DeepKriging method. In Section 5,

we apply DeepKriging to predict the PM2.5 concentration in the United States.

Section 6 summarizes the main results and suggests directions for future work.

2. Methodology

2.1. Deep learning in spatial prediction

Suppose z = {z(s1), . . . , z(sN)}T are measurements observed at N spatial

locations from a real-valued spatial process {Y (s) : s ∈ D}, where D ⊆ Rd.
The goal of spatial prediction is to find the optimal predictor Ŷ opt(s0) of the

true process at an unobserved location s0, as a function of z. In decision theory,

Ŷ opt(s0) is the minimizer of an expected loss function or risk function (DeGroot

(2005)). That is,

Ŷ opt(s0) = argmin
Ŷ

E[L(Ŷ {s0), Y (s0)}] = argmin
Ŷ

R{Ŷ (s0), Y (s0)}, (2.1)

where L(·, ·) is a loss function and R(·, ·) is a risk function. Under the mean

squared error (MSE) loss, the optimal predictor is Ŷ opt(s0) = E{Y (s0)|z}, if

it is finite. This predictor has multiple good properties, such as unbiasedness

and asymptotic normality under regularity assumptions (Lehmann and Casella

(2006)). In particular, if Y (s0) and z are jointly Gaussian, the conditional mean is

a linear combination of z; if Y (s0) and z are not jointly Gaussian, the conditional

mean obtained based on a Gaussian assumption remains the BLUP, which is

called Kriging. However, as mentioned before, the Kriging predictor is sub-

optimal for nonGaussian data, and is not scalable for large data sizes.
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In this work, we use deep learning to approximate the optimal predictor

Ŷ opt(s0) in (2.1) using the output of the neural network. The optimal neural

network predictor is given by fopt
NN (s0) = argminfNN

R{fNN(s0), Y (s0)}, where

fNN(·) ∈ F can be any function in the function space F expressible by a family

of neural networks, and fopt
NN (·) is the best function in F in terms of minimizing

a certain risk R(·, ·). The inputs of the neural network can be relevant covariates

x(s0) and other features at s0. Typically, we write fNN(s;θ) as a parametric

model with unknown parameters θ, which include the weights and biases in

the neural network. Note that the optimal neural network predictor fopt
NN (s0) is

practically unreachable, because Y (s0) is unknown. In practice, we approximate

the predictor by minimizing the empirical loss function over the training set

z (Goodfellow, Bengio and Courville (2016)); that is, the final predictor is

ŶNN(s0) = fNN(s0; θ̂), with

θ̂ = argmin
θ

1

N

N∑
n=1

L{fNN(sn;θ), z(sn)}. (2.2)

Applying this classical neural network framework directly to spatial pre-

diction is problematic, for at least two reasons. First, classical DNNs do not

account for spatial dependence and, second, spatial prediction typically has

limited observed features, rather than excessive features in common applications

of neural networks. In particular, assume that the spatial process Y (s) is modeled

by Y (s) = x(s)Tβ + ν(s), where x(s) ∈ RP is a vector process of P known

covariates, β is a vector of coefficients, and ν(s) is a spatially dependent and

zero-mean random process with a generally nonstationary covariance function:

Cov{ν(s), ν(s′)} = C(s, s′). In neural networks, we usually assume that Y (s)

are mutually independent, conditional on the features x(s). However, this

assumption is not reasonable in spatial prediction, because the covariates x(s)

contribute only to the mean structure of Y (s), and ν(s) remains a spatially

correlated process. Hence, we need features in addition to x(s) to model spatial

dependence using neural networks.

To account for spatial information, the most natural way is to add d

coordinates (e.g., longitude and latitude) to the features, in the hope that

the neural networks can learn the dependent term ν(s) as a function of s

(Cracknell and Reading (2014)). By doing that, the adjusted features become

xadj(s) = (x(s)T , s)T . However, this does not help to enlarge the feature space,

because the dimension of the coordinates is usually d ≤ 3. Moreover, the

associated neural network may not be efficient, because if the true function is far

from linear, it may require a significant effort for the neural network to achieve

a good approximation. For instance, the optimal predictor under the Gaussian

assumption and MSE loss is the Kriging predictor, which is linear in x(s), but

obviously nonlinear in the coordinates s; this is a special case in which the natural
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structure of neural networks may not work.

Delving deeper into the form of a Kriging prediction may help us to find

an appropriate way to incorporate spatial dependence in a DNN. Suppose z is

observed from a generalized additive model: Z(s) = Y (s) + ε(s), where Y (s) =

x(s)Tβ+ν(s), as defined above, and ε(s) is a white noise process, called the nugget

effect, with zero mean and variance σ2(s), caused by measurement inaccuracy and

fine-scale variability. The (universal) Kriging prediction is

ŶUK(s0) = x(s0)
T β̂ + c(s0)

TΣ−1(z−Xβ̂), (2.3)

where X = (x(s1), . . . ,x(sN))T is an N × P matrix, c(s0) = Cov(Z, Z(s0)),

Σ = Cov(Z,ZT ), and β̂ = (XTΣ−1X)−1XTΣ−1z. The spatial dependence is

incorporated in ŶUK(s0) using a linear function of the covariance vector c(s0),

but its coefficient Σ−1(z − Xβ̂) is unknown. This motivates us to use a set of

known nonlinear functions as the embedding of s in the features to characterize

the spatial process ν(s) in the neural network. This can be done using the

Karhunen–Loève (KL) theorem (Adler (2010)), which establishes that ν(s) admits

a decomposition ν(s) =
∑∞

k=1wkφk(s), where wk are pairwise uncorrelated

random variables and φk(s) are pairwise orthogonal basis functions in the domain

of ν(s). Hence, ν(s) can be linearly quantified using nonlinear basis functions of

s.

In practice, the prediction of ν(s) is typically the truncated KL expansion,

based on the property that given any orthonormal basis functions φk(s), we

can find some large integer K, so that ν(s) can be approximated by the finite

weighted sum of the basis functions, that is, ν̂(s) =
∑K

k=1wkφk(s). Based on

the KL theorem, the form of the basis functions is not as important as the

number of basis functions when approximating the spatial random effect ν(s).

This result is supported by the additional simulations we conduct in Section S4.1

of the Supplementary Material. Multiple types of basis functions can be used,

such as smoothing spline basis functions (Wahba (1990)), wavelet basis functions

(Vidakovic (2009)), and radial basis functions (Friedman, Hastie and Tibshirani

(2001)). By adding an embedding layer with sufficiently large K, the width of

the neural network increases greatly, enabling the network to incorporate more

spatial information than when using the coordinates alone. A similar idea is used

in the recommendation systems of Cheng et al. (2016).

2.2. DeepKriging: a spatially dependent neural network

In this section, we use a simple DNN to illustrate our DeepKriging framework.

Our model can potentially be used in other deep learning frameworks, such as

CNNs and recurrent neural networks (RNNs).

First, choose the value for K and the basis functions to approximate the

spatial process ν(s). We adopt the idea of Nychka et al. (2015), who developed a
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multi-resolution model for spatial prediction for large data sets. The radial basis

functions at each level of resolution are constructed using a Wendland compactly

supported correlation function, with the nodes arranged on a rectangular grid.

In particular, at a certain level of resolution, let {uj}, for j = 1, . . . ,m, be a

rectangular grid of points (or node points in radial basis function terminology),

and let θ be a scale parameter. The basis functions are given by φ∗j (s) = φ(‖s−
uj‖/θ), where

φ(d) =


(1− d)6(35d2 + 18d+ 3)

3
, d ∈ [0, 1]

0, otherwise.

Hence, the embedding layer uses the mutual distance locally to each knot location,

implying that the spatial patterns are location invariant locally. As a result, the

proposed DeepKriging method models the spatial nonstationarity; as shown in

Section 3.3, the induced covariance functions of an infinitely wide DeepKriging

network are in general nonstationary. The scale parameter θ is set to 2.5 times

the associated knots spacing, following Nychka et al. (2015). The grid at each

finer level increases by a factor of two, and the basis functions are scaled to have

a constant overlap. In particular, in the hth level, the number of knots is chosen

as Kh = (9 × 2h−1 + 1)d, where d is the spatial dimension. For a massive data

set and to obtain K ≥ N , we need H = 1 + dlog2(
d
√
N/10)e levels. Therefore,

for a four-level model, for instance, we need K = 10 + 19 + 37 + 73 = 139 basis

functions in a one-dimensional space, and K = 102 +192 +372 +732 = 7159 basis

functions in a two-dimensional space. This scheme gives a good approximation

for standard covariance functions, and is flexible enough to fit more complicated

shapes. Other works use multi-resolution approximation for massive spatial data

sets; see Katzfuss (2017), and the references therein.

Then, for any coordinate s, we compute the K basis functions to obtain

the embedded vectors φ(s) = (φ1(s), . . . , φK(s))T . The basis functions are

recommended to be orthogonal, based on the KL expansion. Then, let xφ(s) =

(x(s)T ,φ(s)T )T be the embedded input of length P +K, and specify an L-layer

DNN as
u1(s) = W1xφ(s) + b1, a1(s) = ψ1{u1(s)};
u2(s) = W2a1(s) + b2, a2(s) = ψ2{u2(s)};
. . .

uL(s) = WLaL−1(s) + bL, fDK(s) = ψL{uL(s)}.

(2.4)

For the lth layer with Nl neurons, Wl is an Nl × Nl−1 weight matrix, bl is a

bias vector of length Nl, al is a neuron vector of length Nl, and ψl(·) is the

activation function. The output of this neural network is fDK(s), which is a

function of the weights and the biases. Let θ be the vector of unknown weights

and biases, and θ̂ be the estimate from Equation (2.2) based on the training
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Figure 1. Visualization of the DeepKriging structure in a 2D spatial prediction based on
a three-layer DNN

sample. The final DeepKriging prediction at an unobserved location s0 is defined

as ŶDK(s0) = fDK(s0; θ̂).

One major advantage of our DeepKriging method is that we can adjust the

number of neurons, activation functions, and loss functions to cater to different

data types and model interpretations. For example, for predicting continuous

variables, as in a regression problem, we choose NL = 1, ψL(·) as an identity

function, and the loss function as the MSE. Figure 1 provides a visualization

of a DeepKriging structure in a two-dimensional prediction for continuous data.

For predicting categorical variables, as in a classification problem, we choose NL

as the number of categories, ψL(·) as a softmax function, and the loss function

as the cross-entropy loss. For the activation functions in the hidden layers, we

choose the rectified linear unit (ReLU) as a default, which allows us to keep the

linear relationship in the KL expansion, but add some deactivated neurons to

select the best number of basis functions. The DeepKriging structure also allows

the covariate effects to be spatially varying.

Regularizing the DeepKriging network structure includes adding dropout

layers to mitigate overfitting, adding batch-normalization layers to regularize

the covariates and the basis functions to the same scale, and removing all-zero

columns in the basis matrix, owing to the compactly supported structure of the

basis function. Details of the default setting of our DeepKriging network structure

are included in Section S2 of the Supplementary Material. The time complexity

of our DeepKriging method is about O(Nneuron), where Nneuron is the number of
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neurons in the network. The computation cost depends on the width and depth

of the network. However, the computation is highly parallelizable, and can be

accelerated significantly using CPUs and GPUs.

3. Theoretical Properties of DeepKriging

DeepKriging provides a novel spatial prediction framework using deep learn-

ing. It differs from classical Kriging methods in several aspects. First, Kriging

prediction is a linear combination of observations. In contrast, DeepKriging

prediction is linked to the observations by the weights and biases through model

training, and is typically nonlinear in the observations (see Section S3.1). Second,

DeepKriging does not assume a GP with a certain covariance function, instead

modeling the spatial dependence using basis functions. Third, Kriging predicts

the random process Y (s) at an unobserved location; in contrast, DeepKriging

approximates the process using a deterministic continuous function.

In this section, we provide important theoretical properties of DeepKriging,

including 1) the underlying relationship between DeepKriging and Kriging, 2)

the accuracy of Deepkriging in terms of the prediction error compared with that

of Kriging, and 3) how the spatial dependence is measured in the DeepKriging

framework. These three aspects are critical to understanding our DeepKriging

method.

3.1. The link between DeepKriging and Kriging-based methods

DeepKriging is closely related to Kriging and its associated variants, which

can be classified as multi-resolution processes (Nychka et al. (2015); Kleiber and

Nychka (2015); Katzfuss (2017)) and Gaussian predictive processes (Banerjee

et al. (2008, 2010)). These processes lead to spatial predictions that can be treated

as linear functions of embedded features xφ(s0), and thus can be approximated

using DeepKriging.

One example is the fixed-rank Kriging (FRK) proposed by Cressie and

Johannesson (2008), who use one of the low-rank approximations of the covariance

matrix to speed up the computation of universal Kriging. Similar to DeepKriging,

they represent the spatial random effects ν(s) by K basis functions, that is, ν(s) =

φ(s)Tη, where η is a K-dimensional Gaussian random vector, with Cov(η) = ΣK .

They assume that the model for Y (s) is Y (s) = x(s)Tβ+ν(s) = x(s)Tβ+φ(s)Tη.

The covariance matrix of Z(s) = Y (s) + ε(s), where ε(s) is white noise with

variance σ2(s), is given by Σ = ΦΣKΦT +V , where Φ = {φ(s1), . . . ,φ(sN)}T is

an N ×K basis matrix, and V = diag{σ2(s1), . . . , σ
2(sN)} is an N ×N diagonal

matrix. The FRK prediction as a linear function of z is given by

ŶFRK(s0) = x(s0)
T β̂ + φ(s0)

TΣKΦTΣ−1(z−Xβ̂), (3.1)

where X = (x(s1), . . . ,x(sN))T is an N × P matrix, β̂ = (XTΣ−1X)−1XTΣ−1z,
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and Σ−1 has a computationally simple form that involves inverting the fixed-rank

K ×K positive-definite matrix ΣK and the N ×N diagonal matrix V . Writing

Equation (3.1) as ŶFRK(s0) = x(s0)
T β̂ + φ(s0)

T α̂, where α̂ = ΣKΦTΣ−1(z −
Xβ̂), implies that the FRK prediction ŶFRK(s0) is linear in the P covariates

x(s0) and K basis functions φ(s0). This is a special case of DeepKriging in which

we set all activation functions to be linear.

FRK usually chooses K to be much smaller than N in order to speed up the

computation for large data sets. Because the covariance ΦΣKΦT has at most

rank K, such a low-rank approximation of the covariance matrix may fail to

capture the high-frequency variation or small-scale spatial dependence in the

spatial process (Stein (2014)). In contrast, for DeepKriging, K needs to be

sufficiently large (K > N) in order to have a good approximation of the spatial

random effect ν(s). Thus our method captures more spatial information in the

prediction.

By setting K = N in the FRK, we can see that the (universal) Kriging

prediction in Equation (2.3) is also a linear function of xφ(s0) = (x(s0)
T ,φ(s0)

T )T .

A detailed proof is provided in Section S1.1 of the Supplementary Material. This

result implies that a Kriging prediction with any covariance function can be

expressed linearly by the embedding features xφ(s0). In this sense, DeepKriging

generalizes Kriging by allowing for nonlinear functions of xφ(s0) in the prediction.

3.2. DeepKriging in decision theory

Our DeepKriging prediction procedure conventionally follows an approxi-

mation-estimation decomposition described in Fan, Ma and Zhong (2019). Let F
be the function space expressible by a particular DNN model, and ŶN(s0) be the

final prediction from the model based on N observed locations. The following

decomposition of the total risk between the true value Y (s0) and the prediction

ŶN(s0) implies three sources of errors:

R{Y (s0), ŶN(s0)} =

R{Y (s0), Ŷ
opt
F (s0)}︸ ︷︷ ︸

approximation error

+R{Ŷ opt
F (s0), Ŷ

opt
N (s0)}︸ ︷︷ ︸

estimation error

+R{Ŷ opt
N (s0), ŶN(s0)}︸ ︷︷ ︸

optimization error

.

The approximation error relates to the model capacity, and is defined as the

risk between the true process Y (s0) and the optimal predictor Ŷ opt
F (s0) =

argminŶ (s0)∈FR(Ŷ (s0), Y (s0)) as a function in F . The estimation error is defined

as the risk between Ŷ opt
N (s0) and Ŷ opt

F (s0), where Ŷ opt
N (s0) = ŶN(s0; θ̂), with

θ̂ = argminθ(1/N)
∑N

n=1 L{ŶN(sn;θ), z(sn)}; this type of error is affected by the

complexity of F , and relates to the generalization power of the model. The

optimization error is the empirical risk between Ŷ opt
N (s0) and ŶN(s0).

The function class of the Kriging prediction in Equation (2.3), FUK, can be

viewed as the space of linear functions of x(s0) and z taking the form x(s0)
Tβ+
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zTγ, whereas the function class of DeepKriging, FDK, is the function space

generated by the DNN described in (2.4). The universal approximation theorem

(Theorem 2.3.1 of Csáji (2001)) claims that every continuous function of the

features xφ(s), denoted as C(xφ), can be arbitrarily well approximated by a feed-

forward neural network with a single hidden layer that contains a finite number

of hidden neurons and with an arbitrary activation function. This indicates that

the optimal DeepKriging prediction with a single hidden layer and a finite loss

function has the largest model capacity in C(xφ), that is, Ŷ opt
FDK

(s0) = Ŷ opt
C(xφ)

(s0).

This result holds for any type of data (i.e., continuous or discrete) and for any

type of task (i.e., regression or classification). Therefore, the optimal DeepKriging

prediction has larger capacity than the Kriging prediction in terms of minimizing

the approximation error, that is, E{L(Ŷ opt
FDK

(s0), Y (s0))} ≤ E[L{Ŷ opt
FUK

(s0), Y (s0)}].
A detailed proof is provided in Section S1.2 of the Supplementary Material.

Similarly, the optimal DeepKriging prediction has larger model capacity than

that of the FRK prediction. FRK can be viewed as DeepKriging, with a

single hidden layer containing a finite number of neurons and a linear activation

function. By allowing for a large number of basis functions, multiple layers, more

flexible activation functions, and a wide network, DeepKriging yields nonlinear

predictions that can appropriately capture the spatial dependence in a spatial

process.

3.3. DeepKriging as a GP

Neal (1996) showed that a single-layer fully connected neural network with

an independent and identically distributed (i.i.d.) prior over its parameters (i.e.,

weights and biases) is equivalent to a GP with the limit of an infinite network

width (i.e., an infinite number of hidden neurons). Later, Lee et al. (2018)

derived the exact equivalence between infinitely wide deep networks and GPs.

Consequently, a similar correspondence to GPs also holds for our DeepKriging

network.

We start with a regression-type DeepKriging model with a single hidden

layer containing N1 neurons. The input features are xφ(s) = (x(s)T ,φ(s)T )T ∈
RP+K , and the output is ŶDK(s) = b1 +

∑N1

j=1w
1
ja

1
j(s), where a1j(s) = ψ1{b0j +∑P+K

i=1 w0
jix

(i)
φ (s)}, with x

(i)
φ (s) being the ith component of xφ(s). The weights

(w1
j , w

0
ji) and biases (b1, b0j) are independent and drawn randomly to have a

zero mean and variances σ2
w/N1 and σ2

b , respectively. Consequently, the post-

activations a1j and a1j′ are independent for j 6= j′. Moreover, because ŶDK(s) is a

sum of i.i.d terms, it follows from the central limit theorem that in the limit of

infinite width N1 → ∞, ŶDK(s) follows a Gaussian distribution from the multi-

dimensional central limit theorem, any finite collection of {ŶDK(s1), ŶDK(s2), . . . ,

ŶDK(sn)} has a joint multivariate Gaussian distribution, which is exactly the

definition of a GP. Therefore, we conclude that with sufficiently large N1, ŶDK is
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a GP with zero mean and covariance function

C1(s, s′) = E{ŶDK(s)ŶDK(s′)} = σ2
b + σ2

wE{a1j(s)a1j(s
′)} = σ2

b + σ2
wC(s, s′),

where C(s, s′) is obtained by integrating against the distribution of w0, b0, as in

Neal (1996).

For DeepKriging with deeper layers, the induced covariance function can be

obtained in a recursive way, following Lee et al. (2018):

C l(s, s′) = σ2
b + σ2

wFψ{C l−1(s, s′), C l−1(s, s), C l−1(s′, s′)}, (3.2)

where Fψ(·) is a deterministic function that depends only on the activation

function ψ. An iterative series of computations yields the covariance CL for

the GP describing the network’s final output, ŶDK(s). For the base case,

C0(s, s′) = σ2
b + σ2

w{xφ(s)Txφ(s′)/(P +K)}. The aforementioned results require

the assumption of infinitely many hidden neurons in each layer. However, when

the prior distributions of the weights and biases are Gaussian, this condition is

not needed.

For certain activation functions, Equation (3.2) can be computed analytically.

The simplest case occurs when the activation function is an identity function

ψl(x) = x and no covariate effect exists. Then, ŶDK(s) is a linear function of the

basis functions φ(s), that is, ŶDK(s) = b+ wTφ(s), where b and w are combined

biases and weights, respectively. In this case, the induced covariance function of

ŶDK is given by CL(s, s′) = σ2
b + σ2

wφ(s)Tφ(s′), which is the basis approximation

of a spatial covariance function.

In the case of ReLU nonlinearity, Equation (3.2) has a closed form of the

well-known arc-cosine kernel (Cho and Saul (2009)):

C l(s, s′) = σ2
b +

σ2
w

2π

√
C l−1(s, s)C l−1(s′, s′)

{
sin
(
θl−1s,s′

)
+ (π − θl−1s,s′ ) cos

(
θl−1s,s′

)}
,

where θls,s′ = cos−1{C l(s, s′)/
√
C l(s, s)C l(s′, s′)}. When no analytic form of the

resulted covariance function exists, it can be computed numerically, as described

in Lee et al. (2018).

Consider a regression-type DeepKriging model, with a single hidden layer and

no covariate effects. It can be shown that with infinitely many hidden neurons,

the covariance function of the output ŶDK(s) for any two nearby locations has

the form

C(s, s′) = v(s) + v(s′)− c‖φ(s)− φ(s′)‖2, (3.3)

where φ(s) is the basis vector at location s, v(s) > 0 is related to the variance

when s = s′, and c is a scaling parameter. The proof is provided in Section S1.3

of the Supplementary Material. As a special case, if only the coordinates are

used in the features, then ‖φ(s) − φ(s′)‖2 = ‖s − s′‖2, v(s) = v(s′) = v, and
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thus C(s, s′) = v − c‖s − s′‖2, which contains less information than in Equation

(3.3). Therefore, the embedding layer in DeepKriging yields spatial covariance

structures that are more flexible than when simply using the coordinates.

Next, we show how the DeepKriging-induced covariance function can

approximate the common stationary covariance functions in spatial statistics.

Let the basis functions be φl(s) = k(s,ul) based on a certain kernel function

k(·, ·) and knot ul, for l = 1, . . . ,K. If the ul form a fine grid of knots covering

the spatial domain, then

‖φ(s)− φ(s′)‖2 =
K∑
l=1

{k(s,ul)− k(s′,ul)}2 ≈
∫
{k(s,u)− k(s′,u)}2du

=

∫
k(s,u)2 + k(s′,u)2 − 2k(s,u)k(s′,u)du.

Note that the last term is the kernel convolution approximation to a

covariance function. Higdon (2002) shows that by selecting an appropriate kernel

function, we can approximate any stationary covariance function based on the

kernel convolution. Furthermore, the induced covariance function of DeepKriging

possesses favorable physical interpretations. For example, DeepKriging can yield

the Matérn covariance function, also commonly used in Kriging, because it

is related to a stochastic partial differential equation (SPDE) of Laplace type

(Whittle (1954)). In addition, DeepKriging can induce a GP that approximates

a fractional Brownian motion, based on the example of a DNN provided in Neal

(1996).

4. Simulation Studies

4.1. DeepKriging on a one-dimensional GP

We first consider the performance of DeepKriging when data are simulated

from a one-dimensional stationary GP, where the Kriging prediction is optimal.

We also compare DeepKriging with two naive DNNs: a DNN with the intercept

x(s) = 1 as its only input, and a DNN with x(s) = 1 and coordinate s as the

inputs. We also consider a Kriging prediction with the true covariance function

and with an estimated Matérn covariance function. The simulation design is

illustrated in Section S3.1 of the Supplementary Material.

Figure S1 in the Supplementary Material shows the prediction for one of

the sample data sets using each of the five prediction methods. The DNN

with only the intercept predicts the mean of the process. Although including

the coordinate s in the DNN improves the prediction, it fails to capture the

high-frequency variability, and cannot reflect the spatial correlations of the

true process. Moreover, the DeepKriging prediction and the optimal Kriging

prediction almost overlap.
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To further validate the performance, we calculate the root MSE (RMSE) and

mean absolute percentage error (MAPE) on the testing data over 100 replicated

samples in Table S1 in the Supplementary Material, where MAPE is defined

as (1/Ntest)
∑Ntest

n=1 (Y pred
n − Y true

n )/Y true
n , Ntest is the number of testing samples,

Y pred
n is the predicted value, and Y true

n is the true value. As the minimum-

MSE predictor, the Kriging prediction with the true covariance function has the

smallest RMSE, as expected. DeepKriging performs similarly to the two Kriging

predictions, and significantly outperforms the two naive DNN models. We also

provide the results on the training set in Table S1 in the Supplementary Material.

Again, the Kriging prediction with the true covariance function performs best.

The DeepKriging prediction is comparable with the optimal Kriging prediction,

and outperforms the Kriging prediction with an estimated covariance function

and the two naive DNN models in terms of both the RMSE and the MAPE.

4.2. DeepKriging on two-dimensional nonstationary data

In this section, we evaluate the performance of DeepKriging on two-dimen-

sional nonstationary data, so that the procedure is designed to resemble the

real-data application in Section 5. The simulation details are included in Section

S3.2 of the Supplementary Material.

We use 10-fold cross-validation to show the performance of DeepKriging,

Kriging with an estimated stationary covariance function, and the baseline DNN

with only the coordinates s in the features. We calculate the RMSEs and

MAPEs on the testing data set, and show the results in Figure S2(b) and

Table S2. DeepKriging significantly outperforms Kriging in terms of the RMSEs

and MAPEs, because Kriging assumes a stationary covariance function, whereas

DeepKriging captures the nonstationarity in the data. In addition, the baseline

DNN is better than Kriging in this example, because the data are nonGaussian,

and Kriging is no longer optimal. Moreover, the baseline DNN performs worse

than DeepKriging, as expected. The MAPE from DeepKriging is lower than

that of the baseline DNN, but higher than that of Kriging. This can happen

because we are using the MSE as the loss function in DeepKriging, so it does

not necessarily possess the lowest MAPE. We also calculate the RMSEs and

MAPEs on the training data set (see Table S2). Kriging outperforms the other

two models in terms of both metrics. This is because the errors for the training

data set can be viewed as the variance estimates of the assumed model, much as

in a regression model. Kriging tends to underestimate this variance, leading to a

worse prediction on the testing data set.

Additional simulations (see Section S3 of the Supplementary Material)

show that DeepKriging is nonlinear in observation, whereas Kriging is linear.

Furthermore, computation time comparison based on the same simulation study

shows that Kriging is faster for small sample sizes (N < 1,500), but that

DeepKriging is much more scalable when the sample size increases. This is
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because when the sample size is small, the computation time is still under

control for Kriging, but for DeepKriging, the number of parameters is large,

owing to the large width and depth of the network, making the computation time

longer than that of Kriging. When the sample size increases, the computational

burden of both methods increases, but for DeepKriging, we can use parallel

computing with CPUs or GPUs to accelerate the computation. Therefore, our

DeepKriging method is much more scalable to large data sizes. For example, when

N = 12,800, it takes more than 1.5 hours (5,663 seconds) to implement a Kriging

model, whereas DeepKriging takes only 3.5 minutes (214 seconds) without GPU

acceleration, and 1.5 minutes (94 seconds) with a Tesla P100 GPU.

5. Application

5.1. Challenges of predicting PM2.5 concentration

PM2.5, fine particulate matter of less than 2.5µm, is a harmful air pollutant.

Its adverse effects are associated with many diseases, such as respiratory disease

(Peng et al. (2009)) and myocardial infarction (Peters et al. (2001)); see the

review by the World Health Organization (2013). Therefore, it is essential to

obtain a high-resolution map of PM2.5 exposure in order to assess its impact. The

measurements from monitoring networks are the best characterization of PM2.5

concentration at a given time and location. However, data from monitoring

locations are often sparsely distributed, so are out of spatial and temporal

alignment with health outcomes. At the same time, it is known that PM2.5

concentration is associated with meteorological conditions such as temperature

and relative humidity (Jacob and Winner (2009)), where the meteorological

data or data products are often easy to access with good spatial coverage

and resolutions. Hence, interpolations of PM2.5 concentration using data from

monitoring networks and other meteorological data is a promising field of research

(Di et al. (2016)), where spatial prediction plays a central role.

The modeling and prediction of PM2.5 concentration are challenging. First,

PM2.5 concentration data are obviously nonGaussian, and thus classical Kriging

methods are inappropriate here. Second, PM2.5 data from monitoring stations are

irregular and sparse, but many interpolation methods require lattice data. Third,

it is more important, but challenging, to understand the risk of high pollution

and to predict pollution levels, such as being low, medium, or high; statistically,

these two questions are related to estimating the probability over a threshold and

a classification problem, respectively. Quantile regression and CNNs have been

used to overcome some of the above issues (Reich, Fuentes and Dunson (2011);

Porter et al. (2015); Di et al. (2016)). However, there is not yet a unified method

that can handle all of the aforementioned tasks.
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5.2. Data and preprocessing

To tackle the above-mentioned problems, we apply the proposed DeepKriging

method to the spatial prediction of PM2.5 concentrations based on meteorological

variables. Meteorological data are obtained from the NCEP North American

Regional Reanalysis (NARR) product. Reanalysis is a gridded data set that

represents the state of the atmosphere, incorporating observations and outputs

of numerical weather prediction models from past to present-day. Reanalysis

data are often used to represent the “true state” of the atmosphere according

to observations, and thus we use these data as the “observed data” for the

covariates. Six meteorological variables are used in this study: 1) air temperature

at 2 m; 2) relative humidity at 2 m; 3) accumulated total precipitation; 4)

surface pressure; 5) the u-component of wind; and 6) the v-component of wind

at 10 m. The covariates from the NARR product are gridded data on June

05, 2019, with a spatial resolution of about 32× 32 km covering the continental

United States, containing 7,706 gridded cells in total. Because the units of the

meteorological variables vary, we use min-max normalization to re-scale the data

before implementing the models. Daily averaged data of PM2.5 concentrations

are observed from 841 monitoring stations. Because the coordinates from NARR

and those from stations are not identical, and because some stations are too

close to each other, we keep the spatial resolution of NARR and average the

PM2.5 measurements of nearby monitoring stations in the same grid cell. After

the matching, 604 grid cells remain for the model training, with the PM2.5

concentration value at each location shown in Figure 2(a). Our goal is to predict

the PM2.5 concentrations at any s0 of the other 7,706 − 604 = 7,102 locations,

where the PM2.5 concentrations are not observed, but the covariates are provided

by the reanalysis data.

5.3. Model fitting and results

Our aim is to predict the PM2.5 concentration values at unobserved grid

cells where the six meteorological variables are provided. We use 10-fold cross-

validation to verify the performance of DeepKriging. For comparison purposes, we

also show the results from Kriging and the baseline DNN with the six covariates

and coordinates. We calculate the MSEs and MAEs as the validation criteria,

shown in the first two rows of Table 1, both of which show that DeepKriging

outperforms the baseline DNN and Kriging.

To assess the risk of high PM2.5 pollution, we can use DeepKriging for

spatial data classification. Specifically, we threshold the PM2.5 concentrations

by 12.0 µg/m3, which is the threshold between “good” and “moderate” levels

for the daily mean of EPA national ambient air quality standards (NAAQS)

(EPA (2012)). Based on the classified data, we can implement a binary

classification using DeepKriging by assuming that the actual values of PM2.5
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Table 1. Model performance based on 10-fold cross-validation. The MSEs and MAEs of
the predictions and the classification accuracy (ACC) for predicting PM2.5 concentrations
above 12.0 µg/m3 are used as validation criteria. The mean and standard deviation (SD)
of the 10 sets of validation errors or accuracy are provided in the table.

Parameters DeepKriging Baseline DNN Kriging

Mean SD Mean SD Mean SD

MSE 1.632 0.572 3.632 0.925 3.361 0.773

MAE 0.892 0.103 1.448 0.162 1.365 0.178

ACC 95.2% 2.6% 89.6% 4.8% 88.5% 4.6%

concentration are unknown. A direct comparison with Kriging is not feasible,

because Kriging is not suitable for binary classification. Instead, we predict

the continuous PM2.5 concentrations using Kriging, and classify the predictions

by thresholding them at 12.0 µg/m3. We then use 10-fold cross-validation to

show the classification accuracy, presented in the last row of Table 1. As shown,

DeepKriging significantly outperforms Kriging and the baseline DNN in terms of

classification accuracy.

Based on the model fitting, we can predict the PM2.5 concentration, level

of pollution, and risk of a high pollution level over the threshold of 12 µg/m3

at unobserved locations using the NARR data. Figure 2(a) shows the raw

PM2.5 station data from the AQS database. Figure 2(b) shows a smooth map

of the predicted PM2.5 concentration from DeepKriging. We also provide the

distribution prediction (details and algorithms are included in Section S5 of

the Supplementary Material) to obtain the predicted risk defined as P{PM2.5 >

12 µg/m3}, shown in Figure 2(c). This map implies that high PM2.5 pollution

risks exist over much of the eastern United States. We further compare the results

to the Kriging prediction in Figure 2(d), showing that DeepKriging provides more

local features/patterns than Kriging does.

6. Discussion

We have proposed a new spatial prediction model using a DNN that incor-

porates spatial dependence by using a set of basis functions. Our method does

not assume parametric forms of the covariance functions or data distributions

and, in general, is compatible with nonstationarity, nonlinear relationships,

and nonGaussian data. Our DeepKriging framework can provide uncertainty

quantification using the distribution prediction method described in Section S5

of the Supplementary Material.

Classical Kriging methods consider predictions as linear combinations of

observations, which impedes their interaction with several machine learning

frameworks. Some evidence of the equivalence between Kriging and radial

basis function interpolation has been provided by Matheron (1981). However,
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Figure 2. (a) PM2.5 concentration (µg/m3) collected from monitoring stations. (b)
Predicted PM2.5 concentration using DeepKriging. (c) Predicted risk of high pollution
P{PM2.5 > 12 µg/m3} based on a distribution prediction using DeepKriging. (d)
Predicted PM2.5 concentration using Kriging.

without modern machine learning tools, only a linear combination and a limited

number of radial basis functions have been investigated, and are viewed as a

less favorable choice to Kriging (Dubrule (1983, 1984)). This work provides

a new perspective on deep learning in spatial prediction with a large number

of basis functions. We have shown that the proposed method is superior to

Kriging in many aspects, both theoretically and numerically, in our simulation

and real application. For instance, DeepKriging is more scalable large data

sets and suits for more data types than Kriging does. DeepKriging also has

a GP representation with flexible spatial covariance structures, which enables

Bayesian inference on regression tasks by evaluating the corresponding GP. More

importantly, the proposed DeepKriging framework connects regression-based

prediction and spatial prediction so that many other machine learning algorithms

can be applied.

In general applications, it is possible that the covariates at the new location s0
are not observed. One promising approach for coping with this problem is to find

the true values of the missing covariates for a subset of the observations, and then,

to train a machine learning algorithm to predict the values of those covariates

for the rest (see, e.g., Imai and Khanna (2016)). However, Fong and Tyler

(2021) showed that plugging in these predictions without regard for the prediction
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error renders regression analyses biased, inconsistent, and overconfident. They

describe a procedure to avoid these inconsistencies that combines a new sample-

splitting scheme and a general method of moments (GMM) estimator to form

an efficient and consistent estimator. Overall, it is nontrivial to address the

problem of missing covariates: intuitive strategies such as plugging in machine

learning predictions lead to bias and inconsistency, while the implementation of

a more complicated method, such as that in Fong and Tyler (2021), requires

extra assumptions (e.g., the exclusion restriction condition) and increases the

computational burden. If the goal is to predict both the response and the

covariates, a multivariate version of DeepKriging could be developed. These

are left to future work.

Supplementary Material

The online Supplementary Material contains proofs of the lemmas and

theorems (Section S1), the settings for the DeepKriging network structure

(Section S2), details of the simulation studies (Section S3), additional simulation

studies (Section S4), distribution prediction and uncertainty quantification

(Section S5), and the source code and data required to reproduce the research

(Section S6).
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