
Statistica Sinica 32 (2022), 251-269
doi:https://doi.org/10.5705/ss.202019.0416

A UNIFIED FRAMEWORK FOR MINIMUM ABERRATION

Ming-Chung Chang

National Central University

Abstract: Minimum aberration is a popular method of selecting fractional facto-

rial designs. Numerous extensions to the original methods have benefited fields

of experimental design such as multi-stratum designs, multi-group designs, and

multi-platform designs. However, most of these extensions are ad hoc, developed

on case-by-case bases without strong statistical justifications or a unified rationale.

As such, we provide a new perspective on minimum aberration using a Bayesian

approach. Our theory includes a unified framework for minimum aberration and

is easily applied to many situations. Furthermore, it enables experimenters to de-

rive their own aberration criteria. Several theoretical results and three numerical

illustrations are provided.

Key words and phrases: Bayesian, blocking, fractional factorial, mixed-level, multi-

group, multi-platform, multi-stratum, split-plot, strip-plot.

1. Introduction

Minimum aberration is a well established field. The first aberration cri-

terion was proposed by Fries and Hunter (1980) and is popular for assessing

fractional factorial designs. It is especially beneficial when experimenters have

little knowledge about the potentially important factorial effects. This criterion

was originally developed to evaluate regular fractional factorial designs with un-

structured experimental units; refer to Wu and Hamada (2009) and Cheng (2014)

for a comprehensive review.

Several modifications of the aberration criterion of Fries and Hunter (1980)

have been proposed, including those for nonregular designs, block designs, and

split-plot designs (Dean et al. (2015)). Sitter, Chen and Feder (1997), Chen

and Cheng (1999), and Cheng and Wu (2002) developed aberration criteria for

blocked two-level regular fractional factorial designs. Cheng, Li and Ye (2004)

proposed a version for blocked two-level nonregular fractional factorial designs.

Lin (2014) extended the results in Cheng, Li and Ye (2004) to blocked mixed-level

orthogonal arrays. In addition to block designs, minimum aberration has been

used or modified for split-plot designs as well. Huang, Chen and Voelkel (1998),
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Bingham and Sitter (1999), and Bingham, Schoen and Sitter (2004) used it to

compare two-level split-plot designs. Tichon, Li and Mcleod (2012) considered

selecting split-plot designs under five scenarios, each associated with a modified

aberration criterion. Yang and Lin (2017) used the same approach as that of Lin

(2014) to develop an aberration criterion for mixed-level split-plot designs.

An aberration criterion is mathematically formulated by a wordlength pat-

tern, which requires an order of desirability among pertinent words. In the litera-

ture, however, most wordlength patterns are ad hoc modifications of that of Fries

and Hunter (1980) and lack strong statistical justifications. For block designs,

one needs to argue an order between block defining words and treatment defining

words, while three distinct orders were individually proposed by Sitter, Chen and

Feder (1997), Chen and Cheng (1999), and Cheng and Wu (2002). Apart from

the difficulty of judging an appropriate order, the lengths of defining words do

not provide enough information for ranking designs in many situations, such as

blocked nonregular designs. This is because designs that can estimate the same

number of models may have different estimation efficiencies, not to mention to

account for the structures of experimental units.

We develop a unified theory of aberration criteria for various scenarios in the

literature based on a statistically meaningful framework. Moreover, our theory

yields a systematic method allowing experimenters to derive aberration criteria

appropriate for specific experimental conditions. Another work relevant to ours

is that of Cheng and Tang (2005), who adopt the notion of minimizing contami-

nation. However, Cheng and Tang (2005) studied two-level factorial designs with

unstructured experimental units. Our theory, based on a Bayesian approach, has

a sound statistical rationale and can be used to assess and compare mixed-level

fractional factorial designs with experimental units that have complex structures.

In our work, the treatment factors are allowed to have multiple groups, in

the sense that those in the same group are assumed to have (nearly) equal im-

portance on the response. This setting has been considered in the literature,

for example, with control factors and noise factors in robust parameter designs

(Taguchi (1987)). Zhu (2003) studied two-level factorial designs with multiple

groups of treatment factors. Tichon, Li and Mcleod (2012) investigated optimal

split-plot designs with two groups of treatment factors, separately corresponding

to the whole-plot and subplot strata. Recently, an application of multi-group

treatment factors was studied in multi-platform experiments (Sadeghi, Qian and

Arora (2016, 2017)), where the sliced factor itself is in one group and has higher

importance than the other factors. Li, Zhou and Zhang (2015) and Li, Mee and

Zhou (2018) proposed new aberration criteria for factorial designs with multiple
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groups of treatment factors. We discuss applying our work to multi-platform

experiments in Section S5 of the Supplementary Material.

The remainder of this paper is organized as follows. Section 2 provides nec-

essary preliminaries. Section 3 gives the theoretical results of our work and intro-

duces a general aberration criterion with some applications. Section 4 illustrates

minimum aberration designs under three settings: unstructured units, blocked

mixed-level orthogonal arrays, and three-stage manufacturing processes. Finally,

Section 5 concludes this paper. All proofs are deferred to the Supplementary

Material.

2. Preliminaries

2.1. Unit factors and block structures

The experimental units considered in this study have a structure, hereafter

referred to as a block structure. Many common block structures, such as block

designs, split-plot designs, strip-plot designs, and block strip-plot designs, belong

to a specific class of block structures: simple block structures (Nelder (1965a,b)).

A larger class of block structures, covering simple block structures and most

block structures commonly encountered in practice, is that of orthogonal block

structures (Speed and Bailey (1982); Bailey (1985)); refer to Bailey (2008) and

Cheng (2014) for details.

We denote the number of experimental units by N . A block structure can be

described by a set of unit factors defined on the experimental units. An nF -level

unit factor F can be thought of as a partition of the N units into nF disjoint

subsets. Each subset is called an F-class and consists of units that have the same

level of F . A unit factor is said to be uniform if all of its classes are of the same

size. For two different unit factors F1 and F2, we say that F1 is nested in (or

finer than) F2, denoted by F1 ≺ F2, if two units in the same F1-class implies that

they are in the same F2-class. The expression F1 � F2 stands for either F1 ≺ F2

or F1 = F2. The finest unit factor, denoted by E , has N levels, with each class

consisting of one single unit. On the other hand, U denotes the unit factor that

has a single level with all units in the same class. A split-plot design has the

block structure {U ,P, E}, where P partitions the N units into nP whole-plots.

We always include U and E into every block structure. A set of unstructured

units can be treated as having the block structure {U , E}.
In this study, we consider block structures that satisfy conditions (i), (ii), (iii),

(v), and (vi) in Definition 12.4 of Cheng (2014, p. 233), which cover orthogonal

block structures. To save space, these five conditions, denoted by (S1.1)–(S1.5),
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and their importance for the theoretical results in our work are given in Section

S1 of the Supplementary Material. Note that the block structures of most exper-

iments encountered in practice, such as blocked, split-plot, or strip-plot factorial

experiments, satisfy (S1.1)–(S1.5).

2.2. Treatment factorial effects

Suppose there are n treatment factors with levels p1, . . . , pn, and denote∏n
i=1 pi by Ξ. Let β0 be the intercept and β1, . . . , βΞ−1 be the Ξ − 1 factorial

effects. Denote the Ξ× 1 vector of all βj by βββ. Let ααα be the Ξ× 1 vector of the

effects of all Ξ treatment combinations. Then, ααα can be expressed as ααα = Pβββ,

where P is a Ξ × Ξ full model matrix for a complete factorial experiment with

PTP = IΞ. It follows that P−1 = PT and βββ = PTααα.

The matrix P can be systematically constructed based on Kurkjian and Ze-

len (1962) as follows. For each factor i = 1, . . . , n, define a pi × pi orthogonal

matrix Pi, with the first column proportional to the all-one vector. Then, let the

remaining pi − 1 columns define pi − 1 treatment contrasts of the main effects

of factor i. If p1 = 3, for example, a choice of P1 is

1/
√

3 −1/
√

2 1/
√

6

1/
√

3 0 −2/
√

6

1/
√

3 1/
√

2 1/
√

6

,

in which the first column represents the intercept, the second column represents

the linear main effect, and the third column represents the quadratic main effect.

Once P1, . . . ,Pn have been constructed, one can obtain P by

P = P1 ⊗ · · · ⊗Pn, (2.1)

where ⊗ denotes the Kronecker product operator.

The components of βββ can be divided into 2n groups in terms of the treatment

factors involved. Let S be a subset of {1, . . . , n}, where the empty set is denoted

by φ. Each S represents one such group and corresponds to certain βj . For

example, S = φ corresponds to the intercept, S = {i} corresponds to the pi − 1

main effects of factor i, and S = {i1, . . . , ik} corresponds to the (pi1−1) · · · (pik−1)

k-factor interactions among factors i1, . . . , ik.

We adopt a Bayesian framework for βββ. To specify the prior distribution of

βββ, we assume that βββ comprises uncorrelated random variables and follows a zero-

mean multivariate normal distribution with var(βl) = var(βj) if both βl and βj
are associated with the same S. Hence, there are at most 2n distinct values of

var(βi). These values are denoted by vS , for S ⊆ {1, . . . , n}. Furthermore, we
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require

vS ≥ vS′ if S ⊂ S′. (2.2)

This requirement, referred to as the property of nested decreasing interaction

variances in Kerr (2001), is consistent with the effect heredity principle (Yates

(1935); Wu and Hamada (2009, p. 172)). This Bayesian framework is inspired by

Mitchell, Morris and Ylvisaker (1995), Kerr (2001), Joseph (2006), and Joseph

and Delaney (2007). A common technique of their approaches is to induce the

prior distribution of βββ from ααα, where ααα is assumed to be a realization of a sta-

tionary Gaussian process. Some results of the prior distribution of βββ are given in

Section S2 of the Supplementary Material.

2.3. Statistical model

Suppose N experimental units have a block structure B = {F0,F1, . . . ,Fm},
where F0 = U and Fm = E . For each Fi ∈ B, let XFi

be an N × nFi
incidence

matrix that describes the relationship between the units and the levels of Fi.
Each entry of XFi

is zero or one such that the ljth entry of XFi
is one if and

only if the lth unit is in the jth Fi-class.

Under a fractional factorial design d with N treatment combinations, let

y = Uβββ +

m∑
i=0

XFi
γγγFi ,

where y is a vector of responses, U is the N × Ξ full model matrix under d

(composed of N corresponding rows from P), and γγγFi = (γFi

1 , . . . , γFi
nFi

)T with

γFi

j being the effect of the jth level of unit factor Fi (e.g., block effects, whole-

plot effects, and subplot effects). We assume that the γFi

j are uncorrelated, with

each γFi

j following a zero-mean normal distribution with variance σ2
Fi

, and that

they are independent of βββ. Then, the conditional distribution of y given βββ is the

multivariate normal distribution

y|βββ ∼ N

(
Uβββ,

m∑
i=0

σ2
Fi

XFi
XT
Fi

)
. (2.3)

Let V =
∑m

i=0 σ
2
Fi

XFi
XT
Fi

. If B satisfies conditions (S1.1)–(S1.5), then V

has m+1 eigenspaces WF0
, . . . ,WFm

, with one eigenspace associated with each of

the m+ 1 unit factors. Here, WF0
= WU is the one-dimensional space consisting

of all the vectors with constant entries, and each other eigenvector defines a unit

contrast (Cheng, 2014, p. 237). It follows that
∑m

i=0 PWFi
= IN , where PWFi

is
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the orthogonal projection matrix onto WFi
. Let the corresponding eigenvalues

be ξF0
, . . . , ξFm

. Here, WFi
and ξFi

are called a stratum and stratum variance,

respectively. It can be shown that ξFi
≤ ξFj

if Fi � Fj (Cheng, 2014, p. 246).

The case where γFi

1 , . . . , γFi
nFi

are unknown constants (fixed effects) can be treated

by letting σ2
Fi

=∞, leading to ξFj
=∞ if Fi � Fj .

A systematic method to construct PWF is as follows. Define VF as the

column space of XF , for each F ∈ B. The orthogonal projection matrix onto VF
is PVF = XF (XT

FXF )−1XT
F . It can be shown that PWF = PVF−

∑
G∈B:F≺G PWG .

Thus, one can obtain every PWF by starting from PWU = (1/N)1N1TN . More

details can be found in Cheng (2014, p. 243).

3. A General Aberration Criterion

In this section, we propose an aberration criterion for design assessment and

selection based on the Bayesian approach. This criterion is capable of handling

mixed-level treatment factors, as well as complex structures of experimental units.

In addition, it is easily modified according to experimenters’ beliefs about impor-

tant factorial effects. Sections 3.1 to 3.3 illustrate its three common applications.

From (2.2) and (2.3), the posterior distribution βββ|y is multivariate normal

with a mean vector and the covariance matrix cov(βββ|y) = Σβ−ΣβU
T (UΣβU

T +

V)−1UΣβ, where Σβ is the (prior) covariance matrix of βββ. Let M = cov(βββ|y)−1.

A commonly used design selection criterion, Bayesian D-optimality, maximizes

det[M]. However, while the D-optimality has a good statistical interpretation,

it is not easily manageable. A good surrogate for the D-optimality, referred to

as the (M.S)-optimality due to Eccleston and Hedayat (1974), first maximizes

tr[M], and then minimizes tr[M2] among the designs that maximize tr[M].

For each S ⊆ {1, . . . , n}, let US be composed of the columns in U associated

with S. If S = {1, 2} with p1 = 2 and p2 = 3, for example, then US consists

of (2 − 1)(3 − 1) = 2 columns, each representing a treatment contrast of the

two-factor interaction between factors 1 and 2 under the given design.

Define

Φ1(d;ξξξ,v) =

m∑
i=0

∑
S⊆{1,...,n}

vS
ξFi

tr
[
UT
SPWFi

US

]
,

Φ2(d;ξξξ,v) =

m∑
i=0

1

ξ2
Fi

tr
[
(ΣβU

TPWFi
U)2

]
+ 2

∑
0≤l<s≤m

1

ξFl
ξFs

tr
[
(ΣβU

TPWFl
U)(ΣβU

TPWFs
U)
]
,
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where v and ξξξ are the vectors of vS and ξFi
, respectively. We have the following

result for the Bayesian (M.S)-optimality.

Theorem 1. The Bayesian (M.S)-optimality involves first maximizing Φ1(d;ξξξ,v),

and then minimizing Φ2(d;ξξξ,v) among the designs that maximize Φ1(d;ξξξ,v).

To obtain a more structured form of Φ1(d;ξξξ,v), we need Lemmas 1 and 2

in Section S3 of the Supplementary Material, which jointly state that tr
[
UT
SUS

]
does not depend on the choice of designs and orthogonal-column bases of the

column space of P. We summarize these the following theorem.

Theorem 2. For an S ⊆ {1, . . . , n}, tr
[
UT
SUS

]
is a constant for any choice of

N -run designs, as well as for any choice of orthogonal-column bases in P.

With Theorem 2 and the property
∑m

i=0 PWFi
= IN , maximizing Φ1(d;ξξξ,v)

is reduced to minimizing

Φ∗1(d;ξξξ,v) =

m−1∑
i=0

∑
S⊆{1,...,n}

vS

(
1

ξFm

− 1

ξFi

)
tr
[
UT
SPWFi

US

]
by replacing PWFm

with IN −
∑m−1

i=0 PWFi
.

In addition to the choice of designs, Φ∗1(d;ξξξ,v) and Φ2(d;ξξξ,v) depend on

unknown parameters v and ξξξ. The following result serves as a useful tool for

searching for optimal designs with respect to minimizing Φ∗1(d;ξξξ,v) for all feasible

v and ξξξ. Here, v and ξξξ are said to be feasible if v satisfies (2.2) and Fi ≺ Fj
implies ξFi

≤ ξFj
.

Theorem 3. Suppose B is a block structure satisfying conditions (S1.1)–(S1.5).

Then, a necessary and sufficient condition for a design to minimize Φ∗1(d;ξξξ,v)

for all feasible v and ξξξ is that it minimizes∑
S∈S

∑
i:Fi∈G

tr
[
UT
SPWFi

US

]
,

for all nonempty subsets S ⊆ 2{1,...,n} \ {φ} and G ⊆ B \ {Fm}, such that

S ∈ S, S′ ∈ 2{1,...,n} \ {φ}, and S′ ⊂ S ⇒ S′ ∈ S, (3.1)

F ∈ G,F ′ ∈ B, and F ≺ F ′ ⇒ F ′ ∈ G. (3.2)

We illustrate Theorem 3 using a simple scenario. Suppose n = 2 and B =

{F0,F1,F2} with F2 ≺ F1 ≺ F0. The subsets of 2{1,2} \ {φ} = {{1}, {2}, {1, 2}}
that all satisfy (3.1) are S1 = {{1}}, S2 = {{2}}, S3 = {{1}, {2}}, S4 =
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{{1}, {2}, {1, 2}}. Likewise, the subsets of B\{F2} that all satisfy (3.2) are G1 =

{F0}, G2 = {F0,F1}. By Theorem 3, if a design minimizes
∑

S∈Si

∑
j:Fj∈Gl

tr[UT
SPWFj

US ], for i = 1, . . . , 4 and l = 1, 2, then it minimizes Φ∗1(d;ξξξ,v) for all

feasible v and ξξξ.

Theorem 3 extends Theorem 5.1 in Chang and Cheng (2018) in two ways.

First, Chang and Cheng (2018) limit their theory to two-level designs, whereas

here we deal with mixed-level treatment factors. Second, Theorem 3 provides a

sufficient and necessary condition for a design to be optimal for all feasible v and

ξξξ, whereas Theorem 5.1 in Chang and Cheng (2018) requires the values of v.

Similarly to Chang and Cheng (2018), Theorem 3 is able to eliminate inferior

designs. For two designs d1 and d2, if
∑

S∈S
∑

i:Fi∈G tr
[
UT
SPWFi

US

]
of d1 is no

greater than that of d2 under every combination of S and G, with strict inequality

for at least one combination, then d2 is worse than d1, and is said to be inadmis-

sible. Eliminating inadmissible designs yields a considerable reduction of designs

that need to be considered. If there remains one design (up to isomorphism), it

minimizes Φ∗1(d;ξξξ,v) for all feasible v and ξξξ. Usually, using Φ∗1(d;ξξξ,v) is enough

to distinguish designs. If more than one nonisomorphic design remains, we can

assess them using either Φ2(d;ξξξ,v) or the actual Bayesian D-optimal criterion.

In the remainder of this section, we illustrate equivalent forms of minimizing

Φ∗1(d;ξξξ,v) under several specific scenarios. Some are reduced to well-known aber-

ration criteria. To define an aberration criterion, one needs a desirability order

about the importance of factorial effects. This can be achieved under appropriate

settings of the values of v.

If it is known that the 2n subsets of {1, . . . , n} can be divided into J groups

H1, . . . ,HJ , such that vS = vS′ for S, S′ in the same group and vS > vS′ for

S ∈ Hl and S′ ∈ Hl′ with l < l′, then, because Φ∗1(d;ξξξ,v) is linear in vS ’s, the

following wordlength pattern is induced:

m−1∑
i=0


(

1

ξFm

− 1

ξFi

)∑
S∈H1

tr
[
UT
SPWFi

US

]
, . . . ,

∑
j∈HJ

tr
[
UT
SPWFi

US

] .

(3.3)

An aberration criterion can be defined as sequentially minimizing this wordlength

pattern. Since tr
[
UT
SPWFi

US

]
= tr

[
USUT

SPWFi

]
, it follows from the proof

of Lemma 2 (in the Supplementary Material) that (3.3) does not depend on

orthogonal bases in P.

If, on the other hand, the information about important factorial effects is

vague, then the effect hierarchy principle in Wu and Hamada (2009, p. 172)
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is often assumed, especially for screening experiments (Dean and Lewis (2006)).

Under the Bayesian framework, this principle is basically consistent with choosing

Hl = {S ⊆ {1, . . . , n} : |S| = l}, for l = 1, . . . , n; or equivalently,

(i) vS = vS′ if |S| = |S′|,
(ii) vS > vS′ if |S| < |S′|. (3.4)

It is obvious that (3.4) satisfies (2.2). By replacing “S′ ⊂ S” in (3.1) with

“vS′ ≥ vS”, we can establish another version of Theorem 3, tailored to the setting

in (3.4).

Theorem 4. Suppose B is a block structure satisfying conditions (S1.1)–(S1.5).

Then, under (3.4), a necessary and sufficient condition for a design to minimize

Φ∗1(d;ξξξ,v), for all v that satisfy (3.4) and feasible ξξξ, is that it minimizes∑
S∈S

∑
i:Fi∈G

tr
[
UT
SPWFi

US

]
,

for all nonempty subsets G ⊆ B \ {Fm} satisfying (3.2), and S ⊆ 2{1,...,n} \ {φ}
satisfying

S ∈ S, S′ ∈ 2{1,...,n} \ {φ}, and vS′ ≥ vS ⇒ S′ ∈ S. (3.5)

For n = 3, the nonempty subsets of 2{1,2,3} \ {φ} = {{1}, {2}, {3}, {1, 2}, {1,
3}, {2, 3}, {1, 2, 3}} that all satisfy (3.5) are Sk = {S ⊆ {1, . . . , n} : 0 < |S| ≤ k},
k = 1, 2, 3, each corresponding to main effects, effects up to two-factor interac-

tions, or effects up to the three-factor interaction.

When (3.4) holds, with an additional requirement that vS � vS′ if |S| <
|S′| (i.e., lower-order effects are much more important than higher-order ones),

minimizing Φ∗1(d;ξξξ,v) is equivalent to sequentially minimizing

W =
m−1∑
i=0


(

1

ξFm

− 1

ξFi

) ∑
S:|S|=1

tr
[
UT
SPWFi

US

]
, . . . ,

∑
S:|S|=n

tr
[
UT
SPWFi

US

] .

The W can be regarded as a wordlength pattern and induces an aberration crite-

rion for complex block structures. This criterion, not an ad hoc one, is developed

based on good properties of a statistical model. If ξξξ are known, their values can

be inserted. Otherwise, based on Theorem 4, a design sequentially minimizes W

for all feasible ξξξ provided that it sequentially minimizes
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WG =

 ∑
i:Fi∈G

∑
S:|S|=1

tr
[
UT
SPWFi

US

]
, . . . ,

∑
i:Fi∈G

∑
S:|S|=n

tr
[
UT
SPWFi

US

] ,

for all G ⊆ B \ {Fm} satisfying (3.2).

Note that each WG can be regarded as a wordlength pattern and induces

an aberration criterion for the block structure G ∪ {Fm}, where all unit effects

are fixed effects; that is, ξF = ∞ if F ∈ G, because under the block structure

G ∪ {Fm},

lim
ξF→∞:F∈G

Φ∗1(d;ξξξ,v) ∝
∑

i:Fi∈G

∑
S⊆{1,...,n}

vStr
[
UT
SPWFi

US

]
.

Consequently, if a design has minimum aberration under each case of fixed unit

effects (i.e., WG with G satisfying (3.2)), then it has minimum aberration under

random unit effects (i.e., W).

The aberration criterion induced by W can be applied to any block structure

that satisfies conditions (S1.1)–(S1.5). In Sections 3.1 to 3.3, we introduce three

common applications.

As a remark, if a finer hierarchy exists among βj such that they can be

divided into K groups I1, . . . ,IK , with those in the same group having equal

variance and var(βj) > var(βj′) for βj ∈ Il and βj′ ∈ Il′ with l < l′, then a more

flexible version of (3.3) is

m−1∑
i=0

{(
1

ξFm

− 1

ξFi

)(
tr
[
UT

1 PWFi
U1

]
, . . . , tr

[
UT
KPWFi

UK

])}
, (3.6)

where Ul is composed of the columns in U associated with the βj belonging to Il.

This is useful in situations such as multi-platform experiments and experiments

with quantitative treatment factors.

3.1. Unstructured units

For unstructured experimental units, the block structures are denoted by

{F0,F1} with F0 = U and F1 = E . Because WF0
is spanned by a vector of ones,

we have PWF0
= (1/N)1N1TN and PWF1

= IN−PWF0
. It follows that sequentially

minimizing W is equivalent to sequentially minimizing

W0 =

 ∑
S:|S|=1

(1TNUS)(1TNUS)T , . . . ,
∑

S:|S|=n

(1TNUS)(1TNUS)T

 . (3.7)
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As given by Cheng (2014, p. 340), the wordlength pattern of the generalized

aberration criterion proposed by Xu and Wu (2001) takes the following form:
Ξ
N2

∑
S:|S|=k(1

T
NUS)(1TNUS)T , for k = 1, . . . , n. Thus, it is equivalent to sequen-

tially minimizing W0. Moreover, it follows from Theorem 4 that if a design

minimizes
∑

S:0<|S|≤k(1
T
NUS)(1TNUS)T for all k = 1, . . . , n, then it minimizes

Φ∗1(d;ξξξ,v) for all v satisfying (3.4); based on this, a generalized minimum aber-

ration design must not be inadmissible. The following result implies that a design

cannot minimize Φ∗1(d;ξξξ,v) for all v satisfying (3.4) if it has replication.

Theorem 5. If an N -run design consists of m replicates, then

n∑
k=0

∑
S:|S|=k

(1TNUS)(1TNUS)T = N + 2m.

Theorem 5 discloses a disadvantage of using designs with replicates in terms

of estimating factorial effects. By Theorem 5, for two designs with the same run

size, the one with more replicates has a larger value of
∑n

k=0

∑
S:|S|=k(1

T
NUS)

(1TNUS)T . Thus, it does not reach the necessary and sufficient condition in

Theorem 4 and cannot minimize Φ∗1(d;ξξξ,v) for all v satisfying (3.4). This is

not surprising because replicates do not provide any information about factorial

effects.

3.2. A chain of nested unit factors

In many real applications, the experimental units are partitioned by a chain

of nested unit factors, such as block designs, split-plot designs, or split-split plot

designs.

Without loss of generality, suppose the block structure is {F0,F1, . . . ,Fm}
with Fi ≺ Fj if i > j, where block designs or split-plot designs correspond

to m = 2 and split-split plot designs correspond to m = 3. Because the G

that satisfy (3.2) are {F0}, {F0,F1},. . . , {F0,F1,F2, . . . ,Fm−1}, it follows from

Theorem 4 that a design sequentially minimizes W for all feasible ξξξ provided that

it sequentially minimizes

Wl =

 l∑
i=0

∑
S:|S|=1

tr
[
UT
SPWFi

US

]
, . . . ,

l∑
i=0

∑
S:|S|=n

tr
[
UT
SPWFi

US

] ,

for all l = 0, 1, . . . ,m− 1.

For block or split-plot experiments, we have m = 2 and F1 partitions the

units into blocks or whole-plots. In this case, we have PWF0
= (1/N)1N1TN ,
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PWF1
= PVF1

−PWF0
, PWF2

= IN − (PWF0
+ PWF1

), and

W =∑
i=0,1


(

1

ξF2

− 1

ξFi

) ∑
S:|S|=1

tr
[
UT
SPWFi

US

]
, . . . ,

∑
S:|S|=n

tr
[
UT
SPWFi

US

] .

Then, we have that if a design sequentially minimizes W0 and W1, then it se-

quentially minimizes W for all feasible ξξξ.

Under a block design, W1 defines an aberration criterion for models with

fixed block effects. By letting

W1,i =

 ∑
S:|S|=1

tr
[
UT
SPWFi

US

]
, . . . ,

∑
S:|S|=n

tr
[
UT
SPWFi

US

] , i = 0, 1,

we have W1 = W1,0 + W1,1. It can be seen that W1,0 = 1
NW0, which is pro-

portional to the generalized wordlength pattern; also, W1,1 defines a wordlength

pattern proportional to the block wordlength pattern in the literature (e.g., Cheng,

Li and Ye (2004)). Thus, W1 combines the treatment wordlength pattern and

block wordlength pattern using W1 = W1,0 + W1,1, which differs from those in

previous works, such as Chen and Cheng (1999); Cheng, Li and Ye (2004); Lin

(2014). For example, Cheng, Li and Ye (2004) and Lin (2014) proposed aberra-

tion criteria for blocked nonregular designs by arguing two types of desirability

between treatment defining words and block defining words. The two wordlength

patterns in Cheng, Li and Ye (2004) are proportional to

W1 = (δ1,0, δ2,0, δ1,1, δ3,0, δ4,0, δ2,1, δ5,0, δ6,0, δ3,1, δ7,0, . . .) ,

W2 = (δ1,0, δ1,1, δ2,0, δ3,0, δ2,1, δ4,0, δ5,0, δ3,1, δ6,0, δ7,0, . . .) ,

with δk,i =
∑

S:|S|=k tr
[
UT
SPWFi

US

]
. Those defined in Lin (2014) possess the

same patterns but are under (3.6) with Il consisting of the βj of the same polyno-

mial degree l. It can be seen that δk,1 precedes δ2k,0 in W2, whereas δ2k,0 precedes

δk,1 in W1. Because W1 ∝ limξF1
→∞W, we expect W1 produce designs that are

more similar to W2 than to W1 because W2 regards confounding treatments with

blocks as more severe than W1 does. However, deciding to use W1 or W2 relies

heavily on subjective judgment. In our work, the use of W1 is justified by the

Bayesian (M.S)-optimality. In addition, it can be shown that W1 tends to maxi-

mize D-efficiency under certain fixed-effect models. More details can be found in

Section S7 of the Supplementary Material. A numerical comparison of W1, W1,
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and W2 is given in Section 4.2.

3.3. Experiments with multiple processing stages

For experiments with multiple processing stages, the experimental units are

partitioned into disjoint classes at each stage. For the treatment factors at some

stage, their levels are randomly assigned to the classes of the partition, with the

same level assigned to all units in the same class. Many industrial experiments

have a sequence of processing stages (Mee and Bates (1998); Butler (2004); Bing-

ham et al. (2008); Antolino et al. (2009a,b); Ranjan, Bingham and Dean (2009);

Cheng and Tsai (2011); Yuangyai and Lin (2013)).

In an experiment with multiple processing stages, the partition of the exper-

imental units at the ith stage defines a unit factor Fi. As mentioned in Cheng

and Tsai (2011), the resulting block structure may not satisfy conditions (S1.1)–

(S1.5). Cheng and Tsai (2011) proved that if the Fi (except U and E) are uniform,

mutually orthogonal, and are not nested in one another, then the resulting block

structure satisfies the five conditions if and only if these Fi define an orthogonal

array of strength two.

Here, we consider block structures B = {U , E ,F1, . . . ,Fh}, where F1, . . . ,Fh
define an orthogonal array of strength two on the experimental units. Because

E ≺ F1, . . . ,Fh ≺ U and the Fi are not nested in one another, the G that

satisfy (3.2) are {U}, {U ,Fi} with 1 ≤ i ≤ h, {U ,Fi,Fj} with 1 ≤ i, j ≤ h,. . . ,

{U ,F1, . . . ,Fh}. There are 2h such subsets to be considered. It follows that

PWU = (1/N)1N1TN and PWFi
= PVFi

−PWU for i = 1, . . . , h.

The split-lot designs in Mee and Bates (1998) belong to this category. Sup-

pose 16 batches of material are to be arranged into four groups of equal size at

each of three stages (h = 3). From Theorem 4, a design sequentially minimizes

W for all feasible ξξξ provided that it sequentially minimizes

WI =

∑
F∈I

∑
S:|S|=1

tr
[
UT
SPWF US

]
, . . . ,

∑
F∈I

∑
S:|S|=n

tr
[
UT
SPWF US

] , (3.8)

for all I = {U}, {U ,F1}, {U ,F2}, {U ,F3}, {U ,F1,F2}, {U ,F1,F3}, {U ,F2,F3},
and {U ,F1,F2,F3}. Note that this is a scenario of orthogonal block structures

but not simple block structures.

4. Examples: Minimum Aberration Designs Under Three Scenarios

In this section, we apply the aberration criteria developed in Section 3 under

(3.4) to three block structures. For the situations where v does not satisfy (3.4),
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it is easy to derive appropriate aberration criteria based on the results in Section

3 (e.g., (3.6)).

4.1. Eighteen-run nonregular designs

Suppose there are 18 unstructured experimental units. We have the block

structure {U , E}. Consider a three-level 18-run orthogonal array of strength two

in columns two to eight of Table 8C.2 of Wu and Hamada (2009), also given in

Section S6 of the Supplementary Material. Many three-level 18-run nonregular

designs with fewer factors can be obtained by deleting columns from the array.

For n = 3, Wang and Wu (1995) showed that there are three nonisomorphic

designs. Xu and Wu (2001) gave their generalized wordlength patterns, which

are (0, 0, 0.5), (0, 0, 1), (0, 0, 2). The first has generalized minimum aberration

and, by Theorem 4, minimizes Φ∗1(d;ξξξ,v) for all v satisfying (3.4). Moreover,

because the sums of the generalized wordlengths of the three designs are 0.5, 1,

and 2, respectively, it follows from (1TNUφ)(1TNUφ)T = N2/Ξ = 12 and Theorem

5 that (33/182){(18 + 2m) − 12} = l with l = 0.5, 1, 2 for the three designs. We

have m = 0, 3, 9, respectively. Therefore, the first design does not have replicates,

while the other two designs separately have 3 and 9 replicates.

For n = 4, Xu and Wu (2001) gave the generalized wordlength patterns of the

only four nonisomorphic designs, which are (0, 0, 2, 1.5), (0, 0, 2.5, 1), (0, 0, 3.5, 0),

and (0, 0, 3.5, 0). The first one has generalized minimum aberration and, by Theo-

rem 4, minimizes Φ∗1(d;ξξξ,v) for all v satisfying (3.4). The sums of the generalized

wordlengths are all equal to 3.5. By Theorem 5, we have (34/182){(18+2m)−4} =

3.5. Thus, m = 0 and these four designs have no replicates.

4.2. Blocked mixed-level orthogonal arrays

Lin (2014) studied blocked mixed-level orthogonal arrays and listed several

minimum aberration designs in terms of W1 and W2. We consider a scenario in

their study: 18-run blocked orthogonal arrays with three blocks of size six and

four treatment factors, consisting of one two-level factor and three three-level

factors. Each blocked orthogonal array is constructed by selecting five columns

in Table 8C.2 of Wu and Hamada (2009), also given in Section S6 of the Supple-

mentary Material, where one is the two-level column, one is a three-level column

for blocking, and the others are three-level columns. There are 7 × C6
3 = 140

candidate designs.

A complete search shows that no design has minimum aberration with re-

spect to both W0 and W1. The minimum aberration design with respect to W1,

denoted by d∗, is constructed by selecting the eighth column for blocking, the first
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0 20 40 60 80 100 120 140

Ranking

d*

Minimum aberration design under W1

Minimum aberration design under W2

Figure 1. Comparison of W1, W1, and W2

Table 1. Minimum aberration design: Three-stage manufacturing process

Stage 1 Stage 2 Stage 3
0 0 0 0 0 0
0 1 0 1 0 1
1 0 1 0 1 0
1 2 1 2 1 2
2 1 2 1 2 1
2 2 2 2 2 2

column for the two-level treatment factor, and the second, fourth, fifth columns

for the three-level treatment factors. It has W1 = (0, 0.125, 0.708, 1, 0.75, 0.042, 0).

Figure 1 gives the ranking of all 140 candidate designs in terms of W1, where

each point represents a design and the x-axis shows their rank values (average if

tied, smaller the better). The black filled circle is d∗, with rank value one. The

black filled square and black triangle represent those with minimum aberration

in terms of W1 and W2, respectively. We can see that the three minimum aber-

ration designs under the three different aberration criteria do not coincide. As

discussed in Section 3.2, the one obtained using W2 is closer to that using W1. In

addition, d∗ has maximum D-efficiency under certain fixed-effects models. Refer

to Section S7 of the Supplementary Material for details.

4.3. Three-stage manufacturing process

Butler (2004) mentioned a three-stage manufacturing process with a few

treatment factors in each stage. Suppose there are 36 experimental units and

each stage consists of two three-level treatment factors. The 36 units are di-

vided into six groups of equal size in each stage. We have the block structure
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{U ,F1,F2,F3, E}, where each Fi is a unit factor for one stage and partitions the

36 units into six classes. We also require that F1,F2, and F3 define an orthogonal

array of strength two that can be represented by the following Latin square (Wu

and Hamada (2009, p. 151)):

A B C D E F

B C F A D E

C F B E A D

D E A B F C

E A D F C B

F D E C B A

where each row, column, and letter represent a group of the first, second, and

third stages, respectively. To reduce the computational burden, we assume that

the interactions of the treatment factors across different stages are all negligible.

A complete search shows that the design given in Table 1 has minimum

aberration with respect to (3.8) for all I = {U}, {U ,F1}, {U ,F2}, {U ,F3},
{U ,F1,F2}, {U ,F1,F3}, {U ,F2,F3}, and {U ,F1,F2,F3}, with wordlength pat-

terns (0, 6), (16, 20), (16, 20), (16, 20), (32, 34), (32, 34), (32, 34), and (48, 48),

respectively. Thus, it has minimum aberration with respect to W for all feasible

ξξξ. The three stages share the same design settings and balance, and are without

replicates.

5. Conclusion

We have developed a unified theory for aberration criteria using a Bayesian

perspective. Our theory provides applications mixed-level/multi-group treatment

factors, nonregular designs, and orthogonal block structures. Given design situa-

tions, experimenters can create suitable aberration criteria based on our theory.

In addition, we provide a useful result to screen out inadmissible designs.

The block structures we consider require uniform unit factors. In real appli-

cations, however, this may not be feasible. For instance, this is impossible if the

number of experimental units is not a multiple of the number of levels of some

unit factor. Because this assumption is crucial to our theory, developing a more

general theory is needed, and will be considered in future work.

Supplementary Material

The online Supplementary Material contains all proofs and several additional

explanations.
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