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Abstract: Parameter estimation in parametric regression models with missing co-

variates is considered under a survey sampling setup. Under missingness at random,

a semiparametric maximum likelihood approach is proposed which requires no para-

metric specification of the marginal covariate distribution. By drawing from the von

Mises calculus and V-Statistics theory, we obtain an asymptotic linear representa-

tion of the semiparametric maximum likelihood estimator (SMLE) of the regression

parameters, which allows for a consistent estimator of asymptotic variance. An EM

algorithm for computation is then developed to implement the proposed method

using fractional imputation. Simulation results suggest that the SMLE method is

robust, whereas the fully parametric method is subject to severe bias under model

misspecification. A rangeland study from the National Resources Inventory (NRI)

is used to illustrate the practical use of the proposed methodology.
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1. Introduction

Analyzing survey data to make inference about superpopulation models from

finite populations is an area of major interest in survey sampling. When the sam-

pling design is informative, survey data obtained from complex sampling do not

follow the distribution of the finite population, sampling weights are incorpo-

rated into the estimation procedure to obtain valid inferences about the super-

population model. Skinner, Holt and Smith (1996), Korn and Graubard (1999),

Chambers and Skinner (2003), and Fuller (2009, Ch.6) provide comprehensive

overviews on this topic. Regression analysis under informative sampling is, in

particular, an important topic in this area. See Chambers (2003), Pfeffermann

and Sverchkov (2009), Scott and Wild (2011), Kim and Skinner (2013), and

references therein.

When the covariates in the regression have missing values, however, the ex-

isting methods for regression analysis under complex sampling cannot be directly

applied. Adjustments need to be made to obtain consistent estimation. Little
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(1992), Horton and Laird (1999), and Ibrahim et al. (2005) provided comprehen-

sive literature reviews on the regression problem with missing covariates under

non-survey sampling setups. Under complex survey sampling, the literature is

somewhat sparse. Skinner, Holt and Smith (1996) used a pseudo maximum likeli-

hood method to handle missing covariate under complex sampling. Moore et al.

(2009) used response propensity weighting to obtain doubly robust estimation

for a logistic regression model. The methods considered in Ibrahim et al. (2005)

and Skinner, Holt and Smith (1996) are fully parametric in the sense that the

marginal distribution of the covariates is assumed in addition to the conditional

distribution of the response variable given the covariates. In the usual regres-

sion analyses, the marginal distribution of the covariates need not be assumed

under complete response. Only missingness in the covariates calls for such extra

assumption.

Semiparametric inference based on an efficient score function has become

more popular recently. The semiparametric efficient estimator of Robins, Rot-

nitzky and Zhao (1994) and Robins, Hsieh and Newey (1995) achieves the semi-

parametric information bound. Zhao, Lipsitz and Lew (1996) proposed a joint

estimating equation approach for missing covariates by modeling the response

mechanism. Wang and Paik (2006) and Didelez (2002) provided comparison of

the aforementioned semiparametric efficient estimators. In the context of the

missing covariate problem, the marginal distribution of the covariates can be

viewed as a nuisance parameter. If the nuisance parameter is infinite-dimensional

but the regression model itself is parametric, the joint model becomes semipara-

metric. Zhang and Rockette (2005) considered the problem with a single covariate

and obtained a semiparametric efficient estimator of the regression parameters

but did not discuss an extension to complex survey sampling.

In this paper we consider, under a complex sampling setup, a semiparametric

approach of imputing the missing covariate using nonparametric maximum like-

lihood estimates of the covariate distribution, which does not require parametric

specification of the marginal covariate distribution and therefore enjoys robust-

ness. The proposed method can be implemented using a version of the fractional

imputation of Kim (2011), semiparametric fractional imputation, where the im-

puted values for each missing value are from observed values. Fractional weights

of the imputed values are calculated by incorporating the regression model and

the nonparametric maximum likelihood estimates of the covariate distribution.

Section 2 provides the basic setup and introduction of the proposed method.

In Section 3, main results are presented by drawing from the von Misses calculus

and V-statistics theory. In Section 4, the computational aspect of the proposed

method is discussed in light of semiparametric fractional imputation. Section

5 shows the results from three simulation studies. A rangeland study from the
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National Resources Inventory (NRI) using our method is presented in Section 6,

and concluding remarks are made in Section 7.

2. Basic Setup and the Proposed Method

Suppose we are interested in estimating θ in a regression model f(y | x; θ)
for θ ∈ Θ ⊂ Rd, when the covariate x has missing values. The finite population

is assumed to be a random sample from a model with a joint density f(y |
x; θ)g(x), where g(x), the marginal density of x, is completely unspecified. Let

U = {1, 2, . . . , N} be the index set of the finite population and A ⊂ U be the

index set of the sample obstained by a probability sampling. Without loss of

generality, we assume that A = {1, · · · , n}. Let wi be the sampling weight of

unit i in the sample such that N−1
∑

i∈Awiyi is consistent to the population

mean µY = N−1
∑N

i=1 yi. Let δi = 1 if xi is observed and δi = 0 if xi is missing.

We assume that the missing mechanism is missing at random (MAR) in the sense

that
P (δ = 1 | x, y) = P (δ = 1 | y).

Under complete response, the pseudo maximum likelihood estimator

(PMLE) of θ can be obtained as a solution to
n∑

i=1

wiS (θ;xi, yi) = 0, (2.1)

where S (θ;x, y) = ∂ ln f (y | x; θ) /∂θ is the score function of θ. Godambe and

Thompson (1986) and Chambers et al. (2012) have built a solid theoretical base

for the PMLE under complex sampling. In the presence of missing data, the

PMLE of θ can be obtained by solving
n∑

i=1

wiδiS (θ;xi, yi) +

n∑
i=1

wi (1− δi)E {S (θ;X, yi) | yi} = 0. (2.2)

The conditional expectation in (2.2) can be written as

E {S (θ;X, yi) | yi} =

∫
S (θ;x, yi) f(yi | x; θ)dPX(x)∫

f(yi | x; θ)dPX(x)
, (2.3)

where PX is the (unknown) marginal distribution of X. In the context of mea-

surement error models, Pepe and Fleming (1991) used a nonparametric estimate

of (2.3) for discrete data and Carroll, Knickerbocker and Wang (1995) used a

kernel method to estimate the conditional distribution f (x | y). On the other

hand, Ibrahim, Chen and Lipsitz (1999) considered a fully parametric method

in modeling both the marginal distribution of x and the conditional distribution

f (y | x; θ). The nonparametric methods described above have limited applica-

bility due to the curse of dimensionality. The fully parametric approach is very

sensitive to departures from the parametric modeling assumptions.
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We consider a semiparametric model in the sense that we assume a paramet-

ric model for the conditional distribution f (y | x; θ), but the marginal distribu-

tion of x, often not a major interest of the study, is completely unspecified. We

start a formal discussion of the semiparametric approach with the population-

level log-likelihood of θ and PX as

l(θ, PX) =
N∑
i=1

δi
{
log f(yi | xi; θ) + logPX(xi)

}
+

N∑
i=1

(1− δi) log f(yi; θ, P
X),

where f(yi; θ, P
X) = PXf(yi|x; θ) =

∫
f(yi|x; θ)dPX(x).

Thus, the observed pseudo log-likelihood of θ and PX is

lobs(θ, P
X)=

n∑
i=1

wiδi
{
log f(yi|xi; θ)+logPX(xi)

}
+

n∑
i=1

wi(1−δi) log f(yi; θ, P
X).

(2.4)

The global maximization of lobs(θ, P
X) over the parameter space Θ × G is

infinite-dimensional, where Θ ⊂ Rd is the parameter space for θ and G is the set

of all probability measures on X. For a simpler maximization, we restrict the

support of PX to belong to the set of the observed values of X. For simplicity

of notation, assume that we have full response in the first r units and partial

response in the remaining n − r units. Let πk = P (x = xk) be the point mass

assigned to the observed xk such that
∑r

k=1 πk = 1. We focus on the observed

pseudo log-likelihood for θ and π = (π1, . . . , πr) given by

lobs(θ, π)=
r∑

i=1

wi {log f(yi|xi; θ)+log πi}+
n∑

i=r+1

wi log{
r∑

j=1

f(yi|xj ; θ)πj}, (2.5)

where
∑r

j=1 f(yi|xj ; θ)πj in (2.5) can be viewed as an approximation to f(yi; θ,

PX) =
∫
f(yi|x; θ)dPX(x) in (2.4). The observed pseudo log-likelihood is semi-

parametric because we have a parametric component θ and a non-parametric

component π. Such semiparametric models have been considered in Lawless,

Kalbfleisch and Wild (1999), Scott and Wild (2001), Scott and Wild (2002), and

Breslow and Wellner (2007) mostly under two-phase sampling setups. Maximiz-

ing the observed pseudo log-likelihood in (2.5) with respect to (θ, π) subject to∑r
i=1 πi = 1 leads to the semiparametric maximum likelihood estimator (SMLE)

of (θ, π). The asymptotic properties of the SMLE of θ will be discussed in the

next section.

Remark. We can easily extend the above setup to a multiple regression prob-

lem where one covariate has missing values and other covariates are completely

observed. To illustrate this point, we consider a multiple regression problem

yp = β0 + β1y1 + · · · + βp−1yp−1 + βpx + ε, where x has missing values and
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covariates y1, . . . , yp−1 are completed observed in the sample. Let y now be a

p-dimensional vector y = (y1, . . . , yp). Under our setup, we assume the distribu-

tion of y | x is a product of a series of one-dimensional conditional distributions

f(y | x; θ) = f1(y1 | x; θ1)f2(y2 | x, y1; θ2) · · · fp(yp | x, y1, . . . , yp−1; θp), (2.6)

where θk is the parameter in the kth conditional distribution of yk given x and

y1, . . . , yk−1. Therefore, θp is the parameter of primary interest in the multiple

regression problem. In some situations, it is difficult to find a natural distribution

of y | x. Consider, for example, that y contains a continuous variable y1 and a

binary variable y2. A suitable distribution of y given x may be obtained from

(2.6) by specifying a normal distribution of y1 | x and a logistic regression model

for y2 | y1, x treating y1, x as covariates in the logistic regression model. This

seems to be a natural specification of the distribution of (y1, y2) given x in this

setting. See Section 5.3 for an illustration.

3. Main Theoretical Results

In this section, we establish the asymptotic properties of the proposed SMLE

θ̂. We present the theory here and leave proofs to Appendices.

Let

h(θ, PX ; z) = δ log f(y|x; θ) + (1− δ) logPXf(y|X; θ),

where z = (δ, δx, y), PXg(X) =
∫
g(x)dPX(x), and PX is the marginal distribu-

tion of X. Define the population empirical distribution induced by Z1, . . . , ZN ,

potentially available for all units in the population as PZ
N = N−1

∑N
i=1 δZi , where

δZi is the Dirac function of Zi. Thus, given a measurable function g(Z), the ex-

pectation of g under PZ
N is PZ

N g(Z) = N−1
∑N

i=1 g(Zi). In the survey sampling

context, a sample is selected according to a probability sampling scheme. De-

fine the sample empirical measure by PZ
n = N−1

∑n
i=1wiδZi so that PZ

n g(Z) =

N−1
∑n

i=1wig(Zi). Let Ii be the sampling indicator of unit i, Ii = 1 if unit i is

selected in the sample and 0 otherwise. Note that PZ
n g(Z) = N−1

∑N
i=1wiIig(Zi)

and we assume that EPZ
n g(Z) = EPZ

N g(Z) = PZ
0 g(Z), where we use the sub-

script 0 to index the true probability measure. Let PX
n represent the nonpara-

metric distribution of X indexed by π, so that PX
n =

∑n
i=1 δiπiδXi . Thus,

given a measurable function g(X), the expectation of g under PX
n is PX

n g(X) =∑n
i=1 δiπig(Xi). Therefore, the SMLE θ̂ maximizes PZ

n h(θ, PX
n ; z).

We now make the following assumptions.

(C1) There exists a positive number ξ1 such that P (δ = 1 | x, y) = P (δ = 1 |
y) > ξ1 > 0.

264



4 SHU YANG AND JAE KWANG KIM

We consider a semiparametric model in the sense that we assume a paramet-

ric model for the conditional distribution f (y | x; θ), but the marginal distribu-

tion of x, often not a major interest of the study, is completely unspecified. We

start a formal discussion of the semiparametric approach with the population-

level log-likelihood of θ and PX as

l(θ, PX) =
N∑
i=1

δi
{
log f(yi | xi; θ) + logPX(xi)

}
+

N∑
i=1

(1− δi) log f(yi; θ, P
X),

where f(yi; θ, P
X) = PXf(yi|x; θ) =

∫
f(yi|x; θ)dPX(x).

Thus, the observed pseudo log-likelihood of θ and PX is

lobs(θ, P
X)=

n∑
i=1

wiδi
{
log f(yi|xi; θ)+logPX(xi)

}
+

n∑
i=1

wi(1−δi) log f(yi; θ, P
X).

(2.4)

The global maximization of lobs(θ, P
X) over the parameter space Θ × G is

infinite-dimensional, where Θ ⊂ Rd is the parameter space for θ and G is the set

of all probability measures on X. For a simpler maximization, we restrict the

support of PX to belong to the set of the observed values of X. For simplicity

of notation, assume that we have full response in the first r units and partial

response in the remaining n − r units. Let πk = P (x = xk) be the point mass

assigned to the observed xk such that
∑r

k=1 πk = 1. We focus on the observed

pseudo log-likelihood for θ and π = (π1, . . . , πr) given by

lobs(θ, π)=
r∑

i=1

wi {log f(yi|xi; θ)+log πi}+
n∑

i=r+1

wi log{
r∑

j=1

f(yi|xj ; θ)πj}, (2.5)

where
∑r

j=1 f(yi|xj ; θ)πj in (2.5) can be viewed as an approximation to f(yi; θ,

PX) =
∫
f(yi|x; θ)dPX(x) in (2.4). The observed pseudo log-likelihood is semi-

parametric because we have a parametric component θ and a non-parametric

component π. Such semiparametric models have been considered in Lawless,

Kalbfleisch and Wild (1999), Scott and Wild (2001), Scott and Wild (2002), and

Breslow and Wellner (2007) mostly under two-phase sampling setups. Maximiz-

ing the observed pseudo log-likelihood in (2.5) with respect to (θ, π) subject to∑r
i=1 πi = 1 leads to the semiparametric maximum likelihood estimator (SMLE)

of (θ, π). The asymptotic properties of the SMLE of θ will be discussed in the

next section.

Remark. We can easily extend the above setup to a multiple regression prob-

lem where one covariate has missing values and other covariates are completely

observed. To illustrate this point, we consider a multiple regression problem

yp = β0 + β1y1 + · · · + βp−1yp−1 + βpx + ε, where x has missing values and

SEMIPARAMETRIC INFERENCE 5

covariates y1, . . . , yp−1 are completed observed in the sample. Let y now be a

p-dimensional vector y = (y1, . . . , yp). Under our setup, we assume the distribu-

tion of y | x is a product of a series of one-dimensional conditional distributions

f(y | x; θ) = f1(y1 | x; θ1)f2(y2 | x, y1; θ2) · · · fp(yp | x, y1, . . . , yp−1; θp), (2.6)

where θk is the parameter in the kth conditional distribution of yk given x and

y1, . . . , yk−1. Therefore, θp is the parameter of primary interest in the multiple

regression problem. In some situations, it is difficult to find a natural distribution

of y | x. Consider, for example, that y contains a continuous variable y1 and a

binary variable y2. A suitable distribution of y given x may be obtained from

(2.6) by specifying a normal distribution of y1 | x and a logistic regression model

for y2 | y1, x treating y1, x as covariates in the logistic regression model. This

seems to be a natural specification of the distribution of (y1, y2) given x in this

setting. See Section 5.3 for an illustration.

3. Main Theoretical Results

In this section, we establish the asymptotic properties of the proposed SMLE

θ̂. We present the theory here and leave proofs to Appendices.

Let

h(θ, PX ; z) = δ log f(y|x; θ) + (1− δ) logPXf(y|X; θ),

where z = (δ, δx, y), PXg(X) =
∫
g(x)dPX(x), and PX is the marginal distribu-

tion of X. Define the population empirical distribution induced by Z1, . . . , ZN ,

potentially available for all units in the population as PZ
N = N−1

∑N
i=1 δZi , where

δZi is the Dirac function of Zi. Thus, given a measurable function g(Z), the ex-

pectation of g under PZ
N is PZ

N g(Z) = N−1
∑N

i=1 g(Zi). In the survey sampling

context, a sample is selected according to a probability sampling scheme. De-

fine the sample empirical measure by PZ
n = N−1

∑n
i=1wiδZi so that PZ

n g(Z) =

N−1
∑n

i=1wig(Zi). Let Ii be the sampling indicator of unit i, Ii = 1 if unit i is

selected in the sample and 0 otherwise. Note that PZ
n g(Z) = N−1

∑N
i=1wiIig(Zi)

and we assume that EPZ
n g(Z) = EPZ

N g(Z) = PZ
0 g(Z), where we use the sub-

script 0 to index the true probability measure. Let PX
n represent the nonpara-

metric distribution of X indexed by π, so that PX
n =

∑n
i=1 δiπiδXi . Thus,

given a measurable function g(X), the expectation of g under PX
n is PX

n g(X) =∑n
i=1 δiπig(Xi). Therefore, the SMLE θ̂ maximizes PZ

n h(θ, PX
n ; z).

We now make the following assumptions.

(C1) There exists a positive number ξ1 such that P (δ = 1 | x, y) = P (δ = 1 |
y) > ξ1 > 0.

265



6 SHU YANG AND JAE KWANG KIM

(C2) There exists a positive number ξ such that P (Ii = 1 | Xi, Yi, δi) > ξ > 0,

and the sampling design is consistent in the sense that PZ
n g(Z) is consistent

to PZ
N g(Z) for any bounded and measurable function g(Z).

(C3) For some ε0 > 0, {δ log f(Y |X; θ) : θ ∈ Θ} and {(1 − δ) logPXf(Y |X; θ) :

θ ∈ Θ, ||PX − PX
0 || < ε0} are PZ Glivenko-Cantelli.

(C4) log{f(Y |X; θ)f(X)} is dominated by an integrable function F (X,Y ), i.e.,

| log{f(Y |X; θ)f(X)}| < F (X,Y ) for any θ ∈ Θ and E{F (X,Y )} < ∞.

Lemma 1. Let θ̂ be the SMLE of θ and θ0 be the true parameter value of θ,

interior to the compact parameter space Θ. Let PX
0 be the true probability measure

of X. Under the MAR assumption and (C1)−(C4), θ̂ − θ0 → 0 in probability as

n → ∞.

A proof of Lemma 1 is in Appendix A. Condition (C1) requires that the

missing mechanism be MAR in the sense of Rubin (1976). Condition (C2) is

commonly used in survey sampling. It means that the sampling design is consis-

tent in the sense that the sample empirical measure of any bounded, measurable

function is consistent to the population empirical measure. See Fuller (2009)

for some sufficient conditions for (C2). In Condition (C3), the Glivenko-Cantelli

property is imposed on a family of functions for which the uniform strong law of

large numbers holds (Van Der Vaart and Wellner (1996, page 81) ). Conditions

(C3) and (C4) are the usual regularity conditions for the consistency of the SMLE

of the regression models in a simple random sample (See, for example, Van der

Vaart (2000, Chap. 25)), which applies to such as the linear regression model,

the logistic regression model, and the Poisson regression model. Therefore, if we

treat the finite population as a simple random sample from a superpopulation,

the consistency of the SMLE obtained based on the finite population follows by

a similar argument as in Van der Vaart (2000). Condition (C2) then preserves

the consistency of the SMLE obtained based on the survey sample.

(C5) δ log f(Y |X; θ) and (1−δ) logPXf(Y |X; θ) are continuously twice differen-

tiable with respect to θ and
{
δ∂2 log f(Y |X; θ)/∂θ∂θT : θ ∈ Θ

}
and {(1−δ)·

∂2 logPXf(Y |X; θ)/∂θ∂θT : θ ∈ Θ, ||PX − PX
0 || < ε0} are PZ Glivenko-

Cantelli, and non-singular at θ0.

(C6) E
{
S(θ, PX ; z)3

}
< ∞, where S(θ, PX ; z) = δ∂ log f(y|x; θ)/∂θ + (1 −

δ)∂ logPXf(y|X; θ)/∂θ.

Theorem 1. Under (C1)−(C6), θ̂ has the asymptotic linear representation,

θ̂ − θ0 =

n∑
i=1

wiκ(zi; θ0, P
X
0 ) + op(n

−1/2), (3.1)
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where κ(zi; θ0, P
X
0 ) is defined in (C.4) in Appendix C. Thus

Σ−1/2(θ̂ − θ0)
d→ N(0, Id×d)

as n → ∞, with Σ = V ar
{∑n

i=1wiκ(Zi; θ0, P
X
0 )

}
, where Id×d is the d×d identity

matrix.

The proof of Theorem 1 is in Appendix C; which relies on the von Mises

calculus (Fernholz (1983)) and V-statistic theory (von Mises (1947); Hoeffding

(1948)). Even for the complete response problem, it appears difficult to formulate

a single set of conditions that cover most sampling designs of interest. Instead,

we establish the V-statistic theory for Poisson samples in Appendix B. The gen-

eralization of the V-statistic theory for general complex sampling designs can be

established under similar regularity conditions. Fuller (1998) considered Poisson

sampling in a two-phase sampling problem and argued that Poisson sampling is a

good approximation. Condition (C5) requires that the function h be sufficiently

smooth. Together with (C2), it implies that PZ
n ∂2h(θ, PX ; z)/∂θ∂θT converges

uniformly to E{∂2h(θ, PX ; z)/∂θ∂θT } for θ ∈ Θ and ||PX−PX
0 || < ε0. Condition

(C6) is a moment condition for the Central Limit Theorem.

For variance estimation, let

Σ̂ =

n∑
i=1

n∑
j=1

∆ijκ(zi; θ̂, P
X
n )κ(zj ; θ̂, P

X
n )T + V̂ {

N∑
i=1

k(zi; θ, P
X
0 )}, (3.2)

which is a consistent estimator for the variance of θ̂, where ∆ij are the coefficients

for variance estimation. For example, under simple random sampling, ∆ij =

−1/{n2(n−1)} for i �= j and ∆ii = 1/n2. The second term in (3.2) is a consistent

estimator of V {∑N
i=1 k(zi; θ, P

X
0 )}, taking into account the second term in (6.2.9)

of Fuller (2009) for the case n/N = O(1). The second term is needed since, under

Condition (C2), we have n/N = O(1). The linearization method may involve

specialized programming for different models. In contrast, the Jackknife method

of variance estimation can be easily implemented (See Appendix D).

Our setup has a broad scope, including multi-stage sampling design, strati-

fied sampling, and cluster sampling, among others. For illustration, we provide

a detailed description of our method under a two-stage sampling design in Ap-

pendix E.

4. Computation

We propose an EM algorithm to compute the SMLE of θ. Assume that x has

observed values on the realized sample support Sx = {x1, . . . , xr}. Maximizing

the observed log-likelihood
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Condition (C2), we have n/N = O(1). The linearization method may involve

specialized programming for different models. In contrast, the Jackknife method

of variance estimation can be easily implemented (See Appendix D).

Our setup has a broad scope, including multi-stage sampling design, strati-

fied sampling, and cluster sampling, among others. For illustration, we provide

a detailed description of our method under a two-stage sampling design in Ap-
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lobs(θ, π)=

r∑
i=1

wi{log f(yi|xi; θ)+log πi}+
n∑

i=r+1

wi log
{ r∑

j=1

δjf(yi|xj ; θ)πj
}

(4.1)

subject to
∑r

i=1 πi = 1 with respect to (θ, π) can be obtained by applying the

Lagrange multiplier method. The solution to this optimization is given by solving

r∑
i=1

wiS(θ;xi, yi) +

n∑
i=r+1

wi

{∑r
j=1 πjf(yi | xj ; θ)S(θ;xj , yi)∑r

j=1 πjf(yi | xj ; θ)

}
= 0, (4.2)

πk =
wk +

∑n
i=r+1wiw

∗
ik(θ)∑n

i=1wi
, (4.3)

where w∗
ij(θ) = πjf(yi|xj ; θ)/

∑r
k=1 πkf(yi|xk; θ).

To obtain the solution to (4.2) and (4.3), an EM algorithm using fractional

imputation can be applied:

Step 0. For each unit with δi = 0, r imputed values of x are assigned with x∗ij =

xj . Let π
(0)
k = 1/r and θ(0) be the PMLE of θ using only respondents.

Step 1. At the tth EM iteration, compute the fractional weight

w∗
ij(t)=

f(yi | x∗ij ; θ(t))π
(t)
j∑r

k=1 f(yi | x∗ik; θ(t))π
(t)
k

.

Step 2. Use w∗
ij(t) and (x∗ij , yi) to update the parameters by solving the imputed

score equation
r∑

i=1

wiS(θ;xi, yi) +

n∑
i=r+1

wi

r∑
j=1

w∗
ij(t)S(θ;x

∗
ij , yi) = 0, (4.4)

π
(t+1)
k =

wk +
∑n

i=r+1wiw
∗
ik(t)∑n

i=1wi
. (4.5)

Step 3. Set t = t+ 1 and go to Step 1. Continue until convergence.

Step 1 is the E-step in the EM algorithm. Step 2 is the M-step that uses

(4.4) and (4.5) to update the parameters. An important property of the EM

algorithm is that, lobs(θ
(t+1), π(t+1)) ≥ lobs(θ

(t), π(t)). To see this, write

lobs(θ
(t+1), π(t+1))− lobs(θ

(t), π(t))

=

r∑
i=1

wi

[
log{f(xi, yi; θ(t+1))π

(t+1)
i } − log{f(xi, yi; θ(t), π(t))π

(t)
i }

]
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+
n∑

i=r+1

wi

[
log

{∑r
j=1 f(yi|xj ; θ(t+1))π

(t+1)
j∑r

j=1 f(yi|xj ; θ(t))π
(t)
j

}]

≥
r∑

i=1

wi

[
log{f(xi, yi; θ(t+1))π

(t+1)
i } − log{f(xi, yi; θ(t), π(t))π

(t)
i }

]

+

n∑
i=r+1

wi

[ r∑
j=1

log

{
f(yi|xj ; θ(t+1))π

(t+1)
j

f(yi|xj ; θ(t))π(t)
j

}
f(yi|xj ; θ(t))π(t)

j∑r
k=1 f(yi|xk; θ(t))π

(t)
k

]

=

r∑
i=1

wi

[
log{f(xi, yi; θ(t+1))π

(t+1)
i } − log{f(xi, yi; θ(t), π(t))π

(t)
i }

]

+
n∑

i=r+1

wi

r∑
j=1

w∗
ij(t)

[
log{f(yi|xj ; θ(t+1))π

(t+1)
j } − log{f(yi|xj ; θ(t))π(t)

j }
]

=

r∑
i=1

wi log{f(xi, yi; θ(t+1))}+
n∑

i=r+1

wi

r∑
j=1

w∗
ij(t) log{f(yi|xj ; θ(t+1))}

−
r∑

i=1

wi log{f(xi, yi; θ(t))} −
n∑

i=r+1

wi

r∑
j=1

w∗
ij(t) log{f(yi|xj ; θ(t))}

+

r∑
i=1

wi log π
(t+1)
i +

n∑
i=r+1

wi

r∑
j=1

w∗
ij(t) log π

(t+1)
j

−
r∑

i=1

wi log π
(t)
i −

n∑
i=r+1

wi

r∑
j=1

w∗
ij(t) log π

(t)
j ≥ 0,

where the first inequality follows by Jensen’s inequality and the last line follows by
the M-step of the EM algorithm. Thus, the sequence {lobs(θ(t), π(t))} is monotone
increasing, bounded above if the SMLE exists, and converges to some value l∗.
In most cases, l∗ is a stationary value in the sense that l∗ = lobs(θ

∗, π∗) for
some (θ∗, π∗) at which ∂lobs(θ, π)/∂(θ, π) = 0. Under fairly weak conditions, the
EM sequence {(θ(t), π(t))} converges to a stationary point (θ∗, π∗). Furthermore,
if lobs(θ, π) is uni-modal with (θ∗, π∗) the only stationary point, {(θ(t), π(t))}
converges to the unique maximizer of lobs. Further convergence details can be
found in Wu (1983) and McLachlan and Krishnan (2007).

The weights w∗
ij(θ̂) assigned to imputed values can be called fractional

weights. Imputed values are not changed, only fractional weights are updated
for each EM iteration. The proposed method is an application of the paramet-
ric fractional imputation of Kim (2011), but instead of assuming a parametric
model for the marginal distribution of x, we used a nonparametric model. Paik
(2000) proposed the same method in the context of missing covariates in logistic
regression.
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wi log
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subject to
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r∑
i=1

wiS(θ;xi, yi) +

n∑
i=r+1

wi

{∑r
j=1 πjf(yi | xj ; θ)S(θ;xj , yi)∑r

j=1 πjf(yi | xj ; θ)

}
= 0, (4.2)

πk =
wk +

∑n
i=r+1wiw

∗
ik(θ)∑n

i=1wi
, (4.3)

where w∗
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xj . Let π
(0)
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Step 1. At the tth EM iteration, compute the fractional weight
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f(yi | x∗ij ; θ(t))π
(t)
j∑r

k=1 f(yi | x∗ik; θ(t))π
(t)
k

.
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ij(t) and (x∗ij , yi) to update the parameters by solving the imputed

score equation
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wiS(θ;xi, yi) +
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ij(t)S(θ;x

∗
ij , yi) = 0, (4.4)

π
(t+1)
k =

wk +
∑n

i=r+1wiw
∗
ik(t)∑n

i=1wi
. (4.5)

Step 3. Set t = t+ 1 and go to Step 1. Continue until convergence.

Step 1 is the E-step in the EM algorithm. Step 2 is the M-step that uses

(4.4) and (4.5) to update the parameters. An important property of the EM

algorithm is that, lobs(θ
(t+1), π(t+1)) ≥ lobs(θ

(t), π(t)). To see this, write

lobs(θ
(t+1), π(t+1))− lobs(θ

(t), π(t))

=
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(t)
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+
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i=r+1

wi

[
log

{∑r
j=1 f(yi|xj ; θ(t+1))π

(t+1)
j∑r

j=1 f(yi|xj ; θ(t))π
(t)
j

}]

≥
r∑

i=1

wi

[
log{f(xi, yi; θ(t+1))π

(t+1)
i } − log{f(xi, yi; θ(t), π(t))π

(t)
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]
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]
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+
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i +
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ij(t) log π

(t+1)
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−
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wi log π
(t)
i −

n∑
i=r+1

wi

r∑
j=1

w∗
ij(t) log π

(t)
j ≥ 0,

where the first inequality follows by Jensen’s inequality and the last line follows by
the M-step of the EM algorithm. Thus, the sequence {lobs(θ(t), π(t))} is monotone
increasing, bounded above if the SMLE exists, and converges to some value l∗.
In most cases, l∗ is a stationary value in the sense that l∗ = lobs(θ

∗, π∗) for
some (θ∗, π∗) at which ∂lobs(θ, π)/∂(θ, π) = 0. Under fairly weak conditions, the
EM sequence {(θ(t), π(t))} converges to a stationary point (θ∗, π∗). Furthermore,
if lobs(θ, π) is uni-modal with (θ∗, π∗) the only stationary point, {(θ(t), π(t))}
converges to the unique maximizer of lobs. Further convergence details can be
found in Wu (1983) and McLachlan and Krishnan (2007).

The weights w∗
ij(θ̂) assigned to imputed values can be called fractional

weights. Imputed values are not changed, only fractional weights are updated
for each EM iteration. The proposed method is an application of the paramet-
ric fractional imputation of Kim (2011), but instead of assuming a parametric
model for the marginal distribution of x, we used a nonparametric model. Paik
(2000) proposed the same method in the context of missing covariates in logistic
regression.
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5. Simulation Study

To evaluate the performance of the proposed estimator, we conducted three

Monte Carlo simulation studies.

5.1. Simulation one - linear model

Finite populations of size N = 2, 000 were generated according to

xi ∼ Beta (0.5, 1), (5.1)

yi|xi ∼ Normal (β0 + β1xi, σ
2), (5.2)

where (β0, β1, σ
2) = (0, 5, 1). Each unit in the finite population was associated

with a size variable, zi ∼ Gamma (xi + |yi| + 1, 1). For each finite population,

we generated a sample of size n = 100 by the probability proportional to size

(PPS) sampling method. Let pi be the selection probability for PPS sampling,

where pi = nzi/
∑N

i=1 zi. If pi > 1, we set pi to be 1. The sampling weight was

wi = 1/pi. The sampling mechanism was informative by construction.

We also generated δi, the response indicator variable of xi, from Bernoulli(φi)

with φi = 0.75(MCAR) and logit(φi) = −1 + 2yi(MAR), such that the response

rate was 0.75. Interest was estimating the regression parameters β0 and β1.

We compared the proposed semiparametric maximum likelihood estimator

(SMLE) over 1, 000 datasets with three other estimators: CC, the complete case

analysis discarding the cases with missing values; PMLE w, the pseudo maximum

likelihood estimator obtained by solving (2.2) assuming xi ∼ N(µx, σ
2
x); PMLE t,

the pseudo MLE assuming xi ∼ Beta(α, β), as in (5.1). In PMLE w the covariate

distribution was wrongly specified, whereas in PMLE t the covariate distribution

was correctly specified. In SMLE, PMLE w, and PMLE t, the regression model

was correctly specified as in (5.2). For variance estimation, we considered the

conventional delete-one Jackknife variance estimator.

Table 1 presents numerical results for the linear regression under MCAR

and MAR. Each method and parameter combination has a point estimate and a

variance estimate. The Monte Carlo bias (Bias) and variance (Var) are the bias

and variance for the point estimates over the Monte Carlo samples. E(V̂ar) is the

Monte Carlo mean of the variance estimates over the Monte Carlo samples.

Under MCAR, CC is unbiased in estimating all parameters. However, it is

inefficient compared with other methods. Under MAR, CC is shown to be invalid

as it is associated with a large bias in the regression parameters considered. This

indicates that analysis ignoring missing values can be misleading.

If the covariate distribution is correctly specified, PMLE (PMLE t) is both

unbiased and efficient. However, if the covariate distribution is misspecified,
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Table 1. Linear regression estimation under MCAR and MAR. CC: the com-
plete case estimator; PMLE t: pseudo MLE under the true model; PMLE w:
pseudo MLE under model misspecification; SMLE: Semiparametric MLE.

Bias Var E(V̂ar)

Setup Method β̂0 β̂1 β̂0 β̂1 β̂0 β̂1

CC 0.00 0.00 0.0086 0.0395 0.0089 0.0415
MCAR PMLE t 0.00 0.00 0.0073 0.0330 0.0075 0.0343

PMLE w 0.00 0.00 0.0075 0.0343 0.0078 0.0353
SMLE 0.00 0.00 0.0073 0.0335 0.0075 0.0345

CC 0.10 -0.07 0.0093 0.0384 0.0096 0.0404
MAR PMLE t 0.00 0.00 0.0072 0.0319 0.0074 0.0333

PMLE w 0.04 -0.08 0.0074 0.0317 0.0076 0.0327
SMLE 0.00 0.01 0.0072 0.0322 0.0074 0.0332

PMLE (PMLE w) can be biased. Under MAR, PMLE w is biased in estimating

the parameters of interest.

In all scenarios, SMLE is unbiased. On the other hand, PMLE t is more

efficient than SMLE, but the efficiency gain is not significant. In practice, mis-

specification of covariate distribution for PMLE is a big concern since it is often

difficult to specify a correct parametric model when missing data are present.

SMLE is attractive since it avoids error-prone model speculation. Variance esti-

mation of the SMLE is also nearly unbiased in this simulation.

5.2. Simulation two - Poisson regression model

We considered a Poisson regression model with a canonical link including an

intercept. The complete-data pseudo log-likelihood was

lobs(θ, P
X) =

∑
i∈A

wi {yi(β0 + β1xi)− exp(β0 + β1xi)}+
∑
i∈A

wi log{PX(xi)}.

The data generating process was the same as in Simulation One except for

the conditional distribution, yi|xi ∼ Poisson (µi), where logµi = log{E(yi|xi)} =

β0 + β1xi with β0 = 0 and β1 = 1. As in Simulation One, xi ∼ Beta (0.5, 1).

Intereste was estimating the regression parameters, but n = 100 here. Table 2

summarizes numerical results obtained for the Poisson regression with MCAR

and MAR. The results are in line with Simulation One, with similar conclusions

drawn.

5.3. Simulation three - multiple regression model

We considered the populations to consist of NI = 100 clusters of size Mi,

where Mi ∼ Binom (50, 0.5) + 50. Thus, the cluster size ranged from 50 to
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5. Simulation Study
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Table 1. Linear regression estimation under MCAR and MAR. CC: the com-
plete case estimator; PMLE t: pseudo MLE under the true model; PMLE w:
pseudo MLE under model misspecification; SMLE: Semiparametric MLE.

Bias Var E(V̂ar)

Setup Method β̂0 β̂1 β̂0 β̂1 β̂0 β̂1

CC 0.00 0.00 0.0086 0.0395 0.0089 0.0415
MCAR PMLE t 0.00 0.00 0.0073 0.0330 0.0075 0.0343

PMLE w 0.00 0.00 0.0075 0.0343 0.0078 0.0353
SMLE 0.00 0.00 0.0073 0.0335 0.0075 0.0345

CC 0.10 -0.07 0.0093 0.0384 0.0096 0.0404
MAR PMLE t 0.00 0.00 0.0072 0.0319 0.0074 0.0333

PMLE w 0.04 -0.08 0.0074 0.0317 0.0076 0.0327
SMLE 0.00 0.01 0.0072 0.0322 0.0074 0.0332
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specification of covariate distribution for PMLE is a big concern since it is often
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SMLE is attractive since it avoids error-prone model speculation. Variance esti-
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Table 2. Poisson regression estimation under MCAR and MAR. CC: the
complete case estimator; PMLE t: pseudo MLE under the true model;
PMLE w: pseudo MLE under model misspecification; SMLE: Semipara-
metric MLE.

Bias Var E(V̂ar)

Setup Method β̂0 β̂1 β̂0 β̂1 β̂0 β̂1

CC 0.00 -0.01 0.0267 0.0962 0.0274 0.0997
MCAR PMLE t 0.00 -0.01 0.0234 0.0884 0.0236 0.0914

PMLE w -0.02 -0.02 0.0253 0.0957 0.0254 0.0988
SMLE 0.00 0.00 0.0237 0.0901 0.0239 0.0928

CC 0.11 -0.05 0.0257 0.0841 0.0258 0.0851
MAR PMLE t 0.00 -0.02 0.0227 0.0852 0.0227 0.0903

PMLE w 0.00 -0.05 0.0260 0.0966 0.0262 0.1000
SMLE 0.00 -0.01 0.0229 0.0867 0.0230 0.0916

100. We considered two-stage cluster sampling to generate samples with the

final sample size n = 100. In the first stage of the cluster sampling we selected

nI = 10 clusters using PPS sampling with selection probability proportional to

Mi, pi = Mi/(
∑100

i=1Mi), and in the second stage within each selected cluster, we

sampled mi = 10 units by simple random sampling. We generated three values

in the population according to x1ij ∼ Beta (0.5, 1), x2ij |x1ij ∼ Normal (α0 +

α1x1ij , σ
2
x), and yij |x1ij , x2ij ∼ Normal (β0+β1x1ij +β2x2ij , σ

2), where i indexes

cluster, j indexes unit within clusters, α0 = 0, α1 = 5, σ2
x = 1, β0 = 0, β1 =

−1, β2 = 2, σ2 = 1. The regression parameters of Y on X1 and X2 were

of primary interest. We took only X1 to have missing values. We assumed

f(y, x2|x1; θ) = f(y|x1, x2;β)f(x2|x1;α), where β = (β0, β1, β2, σ
2) and α =

(α0, α1, σ
2
x), with the latter being a nuisance parameter in the sense that we

were not directly interested in estimating α; however we needed to estimate it

in order to estimate β = (β0, β1, β2, σ
2). We let δij be the response indicator

variable of x1ij generated from Bernoulli(rij), with rij = 0.75 (MCAR) and

logit(rij) = φ0 + φ1yij (MAR), where (φ0, φ1) = (0, 0.3). The standard errors

were calculated using the customary delete-a-cluster Jackknife variance estimator

of Rao, Wu and Yue (1992), see Appendix E for details. Table 3 summarizes

numerical results for the multiple regression with MCAR and MAR. The results

are consistent with Simulation One and Simulation Two in that SMLE is unbiased

under both MCAR and MAR (in contrast to CC, which is biased under MAR)

and robust (in constrast to PMLE, which is biased under a misspecified covariate

distribution).

SEMIPARAMETRIC INFERENCE 13

Table 3. Multiple regression estimation under MCAR and MAR. CC: the
complete case estimator; PMLE t: pseudo MLE under the true model;
PMLE w: pseudo MLE under model misspecification; SMLE: Semipara-
metric MLE.

Bias Var E(V̂ar)

Setup Method β̂0 β̂1 β̂2 β̂0 β̂1 β̂2 β̂0 β̂1 β̂2

CC 0.00 -0.01 0.00 0.033 0.514 0.014 0.033 0.558 0.015
MCAR PMLE t 0.00 0.00 0.00 0.025 0.482 0.012 0.024 0.451 0.015

PMLE w 0.02 0.02 0.00 0.027 0.475 0.012 0.026 0.443 0.011
SMLE 0.00 0.00 0.00 0.025 0.487 0.013 0.025 0.527 0.014

CC 0.13 0.00 -0.02 0.044 0.518 0.016 0.044 0.566 0.017
MAR PMLE t 0.00 0.00 0.00 0.025 0.478 0.012 0.024 0.436 0.011

PMLE w 0.06 -0.15 0.01 0.030 0.446 0.011 0.029 0.414 0.010
SMLE 0.00 0.00 0.00 0.025 0.487 0.013 0.025 0.528 0.014

6. Data Example

The National Resources Inventory (NRI) is a stratified, two-stage area sam-

ple of non-federal lands in the United States conducted by the Natural Resources

Conservation Service (NRCS) of the U.S. Department of Agriculture (USDA).

One of the NRI onsite surveys is a longitudinal study on rangeland, with range-

land defined as a land/use category in which the plant cover is composed of native

grass, grass-like plants, and forbs for grazing and browsing. The characteristic

of interest in this study is the percentage of the non-native plant species. We

focus on the samples with repeated measures in years 2005 and 2013, denoted by

(xi, yi), where i indexes the sampling unit called segment, xi is the observation

in 2005, and yi is the observation in 2013. Since we have repeated measurements

on segments over time, we can estimate change in rangeland characteristics.

All variables in the sample data are completely observed. The original scale

of x and y was coded from 1 to 6. We first transformed the original variables

using log[(x/6.1)/{1− x/6.1}] and log[(y/6.1)/{1− y/6.1}]. Hereafter, we use x

and y to denote the variables on a transformed scale.

To evaluate the performance of the SMLE, we generated missingness for xi
intentionally. Specifically, we considered xi to be subject to missingness and yi is

completely observed. We generated the response indicator δi for xi, which equals

1 if xi is available and 0 otherwise.

We created four scenarios by different missing mechanisms (MCAR and

MAR) and response rates (70% and 50%). Under MAR, we generated δi from a

Binomial distribution with probability

Pr(δi = 1) =
exp(φ0 + φ1yi)

1 + exp(φ0 + φ1yi)
,
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α1x1ij , σ
2
x), and yij |x1ij , x2ij ∼ Normal (β0+β1x1ij +β2x2ij , σ

2), where i indexes

cluster, j indexes unit within clusters, α0 = 0, α1 = 5, σ2
x = 1, β0 = 0, β1 =

−1, β2 = 2, σ2 = 1. The regression parameters of Y on X1 and X2 were

of primary interest. We took only X1 to have missing values. We assumed

f(y, x2|x1; θ) = f(y|x1, x2;β)f(x2|x1;α), where β = (β0, β1, β2, σ
2) and α =

(α0, α1, σ
2
x), with the latter being a nuisance parameter in the sense that we

were not directly interested in estimating α; however we needed to estimate it

in order to estimate β = (β0, β1, β2, σ
2). We let δij be the response indicator

variable of x1ij generated from Bernoulli(rij), with rij = 0.75 (MCAR) and

logit(rij) = φ0 + φ1yij (MAR), where (φ0, φ1) = (0, 0.3). The standard errors

were calculated using the customary delete-a-cluster Jackknife variance estimator

of Rao, Wu and Yue (1992), see Appendix E for details. Table 3 summarizes

numerical results for the multiple regression with MCAR and MAR. The results

are consistent with Simulation One and Simulation Two in that SMLE is unbiased

under both MCAR and MAR (in contrast to CC, which is biased under MAR)

and robust (in constrast to PMLE, which is biased under a misspecified covariate

distribution).
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Table 3. Multiple regression estimation under MCAR and MAR. CC: the
complete case estimator; PMLE t: pseudo MLE under the true model;
PMLE w: pseudo MLE under model misspecification; SMLE: Semipara-
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6. Data Example

The National Resources Inventory (NRI) is a stratified, two-stage area sam-

ple of non-federal lands in the United States conducted by the Natural Resources

Conservation Service (NRCS) of the U.S. Department of Agriculture (USDA).

One of the NRI onsite surveys is a longitudinal study on rangeland, with range-

land defined as a land/use category in which the plant cover is composed of native

grass, grass-like plants, and forbs for grazing and browsing. The characteristic

of interest in this study is the percentage of the non-native plant species. We

focus on the samples with repeated measures in years 2005 and 2013, denoted by

(xi, yi), where i indexes the sampling unit called segment, xi is the observation

in 2005, and yi is the observation in 2013. Since we have repeated measurements

on segments over time, we can estimate change in rangeland characteristics.

All variables in the sample data are completely observed. The original scale

of x and y was coded from 1 to 6. We first transformed the original variables

using log[(x/6.1)/{1− x/6.1}] and log[(y/6.1)/{1− y/6.1}]. Hereafter, we use x

and y to denote the variables on a transformed scale.

To evaluate the performance of the SMLE, we generated missingness for xi
intentionally. Specifically, we considered xi to be subject to missingness and yi is

completely observed. We generated the response indicator δi for xi, which equals

1 if xi is available and 0 otherwise.

We created four scenarios by different missing mechanisms (MCAR and

MAR) and response rates (70% and 50%). Under MAR, we generated δi from a

Binomial distribution with probability

Pr(δi = 1) =
exp(φ0 + φ1yi)

1 + exp(φ0 + φ1yi)
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Figure 1. Scatter plot of Y against X based on the full sample (on a trans-
formed scale).

where (ϕ0, ϕ1) = (−1, 1.3) and (ϕ0, ϕ1) = (−2, 1.15) correspond to 70% and 50%

response rate, respectively.

We assumed yi = β0 + β1xi + ϵi, where ϵi ∼ N(0, σ2). Figures 1, 2, and 3

show the scatter plot of Y against X, the scatter plot of the residuals from the

linear regression of Y on X based on the full data, and the QQ plot of residuals,

respectively. Figures 1 and 2 suggest a linear regression of Y on X with constant

variance of the error term. In Figure 3, points lie closely to the diagonal line,

which suggests that the normality assumption of the error term is adequate.

We were interested in estimating the regression parameters β0, β1 and σ2.

Table 4 shows the results for the full sample (FULL) estimator, the complete

case (CC) sample estimator, the pseudo maximum likelihood estimator further

assuming a normal distribution of xi (PMLN), and the semiparametric maxi-

mum likelihood estimator (SMLE). The standard errors were calculated using

the customary delete-a-cluster Jackknife variance estimator of Rao, Wu and Yue

(1992).

Table 4 presents the numerical results for the NRI rangeland study. Under

MCAR, CC is close to FULL but associated with larger standard errors. In

such situations, the CC analysis is valid but loses efficiency due to discarding

incomplete cases. Under MAR, compared to FULL, CC is associated with a large

bias in estimating the intercept and slope. Considering the missing mechanism,

the units with larger outcomes are more likely to respond, and therefore the points

on the bottom left corner of the (x, y) plane are more likely to be excluded from

the CC analysis, which explains the fact that the CC estimate of the intercept
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Figure 2. Scatter plot of residuals from linear regression of Y on X against
X based on the full sample (on a transformed scale).

Figure 3. QQ plot of the residuals from a linear regression of Y on X based
on the full sample (on a transformed scale).

tends to be larger than the FULL estimate, while the CC estimate of the slope

tends to be smaller than the FULL estimate. As the response rate decreases, the

bias increases.

Under MAR, there is a remarkable difference in the point estimates between

FULL and PMLN, suggesting that PMLN is probably biased due to model mis-

specification. Due to the difficulty in correctly specifying a parametric model,

practitioners often choose to use a normal model. That would lead to biased
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show the scatter plot of Y against X, the scatter plot of the residuals from the

linear regression of Y on X based on the full data, and the QQ plot of residuals,

respectively. Figures 1 and 2 suggest a linear regression of Y on X with constant

variance of the error term. In Figure 3, points lie closely to the diagonal line,

which suggests that the normality assumption of the error term is adequate.

We were interested in estimating the regression parameters β0, β1 and σ2.

Table 4 shows the results for the full sample (FULL) estimator, the complete

case (CC) sample estimator, the pseudo maximum likelihood estimator further

assuming a normal distribution of xi (PMLN), and the semiparametric maxi-

mum likelihood estimator (SMLE). The standard errors were calculated using

the customary delete-a-cluster Jackknife variance estimator of Rao, Wu and Yue

(1992).

Table 4 presents the numerical results for the NRI rangeland study. Under

MCAR, CC is close to FULL but associated with larger standard errors. In

such situations, the CC analysis is valid but loses efficiency due to discarding

incomplete cases. Under MAR, compared to FULL, CC is associated with a large

bias in estimating the intercept and slope. Considering the missing mechanism,

the units with larger outcomes are more likely to respond, and therefore the points

on the bottom left corner of the (x, y) plane are more likely to be excluded from

the CC analysis, which explains the fact that the CC estimate of the intercept
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Table 4. Results for NRI rangeland study. Full: the full sample estima-
tor; CC: the complete case estimator; PMLE t: pseudo MLE under the
true model; PMLE w: pseudo MLE under model misspecification; SMLE:
Semiparametric MLE.

β̂0(V̂ar) β̂1(V̂ar) σ̂2(V̂ar)
FULL 0.95 (0.0046) 0.59 (0.0010) 1.18 (0.0053)

MCAR, response rate=70%
CC 0.93 (0.0065) 0.59 (0.0014) 1.15 (0.0071)

PMLN 0.93 (0.0061) 0.59 (0.0012) 1.14 (0.0067)
SMLE 0.92 (0.0056) 0.59 (0.0011) 1.12 (0.0066)

MCAR, response rate=50%
CC 0.91 (0.0088) 0.60 (0.0021) 1.13 (0.0102)

PMLN 0.89 (0.0078) 0.61 (0.0017) 1.14 (0.0096)
SMLE 0.88 (0.0070) 0.61 (0.0016) 1.11 (0.0099)

MAR, response rate=70%
CC 1.44 (0.0076) 0.48 (0.0013) 1.01 (0.0058)

PMLN 1.45 (0.0074) 0.48 (0.0013) 1.00 (0.0057)
SMLE 0.97 (0.0054) 0.58 (0.0014) 1.18 (0.0093)

MAR, response rate=50%
CC 1.69 (0.0115) 0.44 (0.0017) 0.92 (0.0066)

PMLN 1.70 (0.0106) 0.44 (0.0016) 0.91 (0.0064)
SMLE 0.96 (0.0076) 0.58 (0.0018) 1.16 (0.0144)

parameter estimation, as our result shows.

In all scenarios, SMLE is close to FULL. Under MCAR, although CC is

unbiased, the use of SMLE gains efficiency over CC. Under MAR, the use of

SMLE corrects the bias of CC and PMLN. Again, the main advantage of SMLE

is that it does not require specifying the marginal distribution of x and is thus

robust, whereas the parametric pseudo maximum likelihood method is subject

to severe bias under model misspecification.

7. Concluding Remarks

In this paper, a semiparametric maximum likelihood procedure is proposed

to handle missing covariates in survey data. The proposed method does not re-

quire a parametric specification of the covariate distribution, and is thus robust

compared with the fully parametric methods. We also provide an EM type of

computation algorithm, which results in a fractionally imputed data set. Our

simulation compares the proposed method (SMLE) with the complete case (CC)

analysis, and the pseudo maximum likelihood method (PMLE) based on para-

metric models for the covariate distribution. The CC analysis tends to lose effi-

ciency and introduce bias in estimation under MAR. The PMLE is efficient under

the true model but can be severely biased under a wrong model. The proposed
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SMLE produces valid inference with good efficiency in the simulation study. It

is usually difficult, if not impossible, to specify a passable covariate distribution.

Thus, the proposed semiparametric approach has promise for handling missing

covariates in practice.

The proposed method is based on the MAR assumption. When MAR does

not hold, method that brings in the exponential titling technique (Kim and Yu

(2011)) can be developed accordingly. This will be investigated in the future.
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The positivity condition (C1) and condition (C3) ensure that {h(θ, PX ;Z) :

θ ∈ Θ, ||PX−PX
0 || < ε0} is PZ Glivenko-Cantelli, and therefore supθ,||PX−PX

0 ||<ε0

|PZ
Nh(θ, PX ;Z) − E{h(θ, PX ;Z)}| → 0, as N → ∞. Moreover, by the design

consistency condition in (C2), we have

|PZ
n h(θ, PX ;Z)− PZ

Nh(θ, PX ;Z)| → ∞

for θ ∈ Θ and ||PX − PX
0 || < ε0. Together, we have

sup
θ,||PX−PX

0 ||<ε0

|PZ
n h(θ, PX ; z)− E{h(θ, PX ; z)}| → 0, (A.1)

as n → ∞. Condition (C4) implies that

E{h(θ, PX
n ; z)− h(θ, PX

0 ; z)} → 0, (A.2)

for any PX
n such that ||PX

n − PX
0 || → 0 as n → ∞. Note that

θ̂ = argmax
θ

n∑
i=1

wih(θ, P
X
n ; zi)

= argmax
θ

{ n∑
i=1

wih(θ, P
X
n ; zi)−Eh(θ, PX ; z)|PX=PX

n

}
+Eh(θ, PX ; z)|PX=PX

n
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= op(1) + argmax
θ

{
Eh(θ, PX ; z)|PX=PX

n
− Eh(θ, PX

0 ; z)
}
+ Eh(θ, PX

0 ; z)

= op(1) + argmax
θ

Eh(θ, PX
0 ; z)

= op(1) + θ0,

where the third and fourth equalities follow from (A.1) and (A.2), respectively.

Therefore, θ̂ converges to θ0 in probability as n → ∞.

Appendix B. The V-statistic theory for Possion sampling

We first establish the V-statistic theory for Poisson sampling. In Pois-

son sampling, the sampling indicator is independently generated with a known

sampling probability, which preserves the i.i.d. structure of the observations

{Ii, Zi ≡ (δi, δiXi, Yi)}. The V-statistic is

VN (v) = N−2
N∑
i=1

N∑
j=1

wiwjIiIjv(Zi, Zj),

where the function, v : Rq ×Rq → R, is a measurable symmetric function. Then

wiwjIiIjv(Zi, Zj) is the symmetric kernel of the V-statistic. We use Hoeffding de-

composition (Hoeffding (1948)), defining functions v1(Ii, Zi) and v2(Ii, Zi, Ij , Zj)

as

v1(Ii, Zi) = E{wiwjIiIjv(Zi, Zj) | (Ii, Zi)} − v0

= wiIiE{v(Zi, Zj) | (Ii, Zi)} − v0, (B.1)

v2(Ii, Zi, Ij , Zj) = wiwjIiIjv(Zi, Zj)− v1(Ii, Zi)− v1(Ij , Zj)− v0, (B.2)

where v0 = E{wiwjIiIjv(Zi, Zj)} = E{v(Zi, Zj)}. Therefore, we have

wiwjIiIjv(Zi, Zj) = v0 + v1(Ii, Zi) + v1(Ij , Zj) + v2(Ii, Zi, Ij , Zj). (B.3)

Here v1 and v2 satisfy Ev1(Ii, Zi) = 0, and E{v2(Ii, Zi, Ij , Zj)|(Ii, Zi)} = E{v2(Ii,
Zi, Ij , Zj)|(Ij , Zj)} = 0, ∀(Ii, Zi), (Ij , Zj). Then v2(Ii, Zi, Ij , Zj) is called a de-

generated kernel. From (B.3), by some algebra, we obtain the Hoeffding decom-

position of the V-statistic

VN (v) = v0 +
2

N

N∑
i=1

v1(Ii, Zi) + VN (v2).

In this way, we decompose VN (v) into a sum of a constant term v0, an average

of v1(Ii, Zi), and a V-statistic with a degenerate kernel v2. The terms v1(Ii, Zi),

1 ≤ i ≤ N and v2(Ii, Zi, Ij , Zj), 1 ≤ i < j ≤ N are all mutually uncorrelated.

Thus,
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var
{ 2

N

N∑
i=1

v1(Ii, Zi)
}
=

4

N
var {v1(I1, Z1)} ,

var {VN (v2)} =
1

N4

N∑
i=1

N∑
j=1

E{v2(Ii, Zi, Ij , Zj)
2}

≤ 1

N2
max [var {v2(I1, Z1, I1, Z1)} , var {v2(I1, Z1, I2, Z2)}] .

It follows that VN (v2) = Op(N
−1) and we can obtain the V-statistic central

limit theorem from the Central Limit Theorem for partial sums of i.i.d. random

variables,
√
N{VN (v)− v0} has an asymptotically normal distribution.

Appendix C. Proof of Theorem 1

Let

h(θ, PX ; z) = δ log f(y|x; θ) + (1− δ) logPXf(y|X; θ),

where z = (δ, δx, y). The corresponding score function is

S(θ, PX ; z) =
∂

∂θ
h(θ, PX ; z) = δ

fθ(y|x; θ)
f(y|x; θ) + (1− δ)

PXfθ(y|X; θ)

PXf(y|X; θ)
,

where fθ(y|x; θ) = ∂f(y|x; θ)/∂θ. The SMLE θ̂ solves PZ
n S(θ, PX

n ; z) = 0, where

PZ
n S(θ, PX ; z) = N−1

{ n∑
i=1

wiδi
fθ(yi|xi; θ)
f(yi|xi; θ)

+

n∑
i=1

wi(1− δi)
PXfθ(yi|X; θ)

PXf(yi|X; θ)

}
.

By Lemma 1, θ̂ − θ0 → 0 in probability as n → ∞, so we can apply a Taylor

expansion method to get

0 = PZ
n S(θ̂, PX

n ) = PZ
n S(θ0, P

X
n , z) + PZ

n Sθ(θ0, P
X
n , z)(θ̂ − θ0) + op(θ̂ − θ0),

where Sθ = ∂S/∂θT . Then

θ̂ − θ0 = E(−Sθ)
−1PZ

n S(θ0, P
X
n ) + op(θ̂ − θ0)

= E(−Sθ)
−1

[
PZ
n S(θ0, P

X
0 ) + PZ

n

{
S(θ0, P

X
n )− S(θ0, P

X
0 )

}]
(C.1)

+op(θ̂ − θ0).

The quantity PZ
n

{
S(θ0, P

X
n )− S(θ0, P

X
0 )

}
quantifies the discrepancy between

PX
n and the true distribution PX

0 in the score function. To calculate this term,

let δx be the Dirac function with point mass one at x. By a Taylor expansion

and the von Mises calculus (Fernholz (1983)), we have

S(θ0, P
X
n )− S(θ0, P

X
0 )
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= op(1) + argmax
θ
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n
− Eh(θ, PX
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= SP (θ0, P
X
0 )(PX

n − PX
0 ) + op(n

−1/2)

= SP (θ0, P
X
0 )(

n∑
i=1

πiδxi − PX
0 ) + op(n

−1/2)

=

n∑
i=1

dS(θ0, (1− t)PX
0 + tπiδxi)

dt
|t=0 + op(n

−1/2), (C.2)

where SP (θ0, P
X
0 ) = ∂S(θ, PX)/∂PX |(θ=θ0,PX=PX

0 ). Since

S(θ, (1− t)PX
0 + tπiδxi)

= δ
fθ(y|x; θ)
f(y|x; θ) + (1− δ)

{
(1− t)PX

0 + tπiδxi

}
fθ(y|x; θ){

(1− t)PX
0 + tπiδxi

}
f(y|x; θ) ,

we have

dS
(
θ0, (1− t)PX

0 + tπiδxi

)
dt

|t=0

= (1− δ)
(πiδxi − PX

0 )fθ(y|x; θ0)
PX
0 f(y|x; θ0)

− (1− δ)
(πiδxi − PX

0 )f(y|x; θ0)PX
0 fθ(y|x; θ0)

{PX
0 f(y|x; θ0)}2

.

Thus, (C.2) becomes

(1−δ)

[
(PX

n −PX
0 )fθ(y|x; θ0)

PX
0 f(y|x; θ0)

− (PX
n −PX

0 )f(y|x; θ0)PX
0 fθ(y|x; θ0)

{PX
0 f(y|x; θ0)}2

]
+op(n

−1/2),

and

PZ
n {S(θ0, PX

n )− S(θ0, P
X
0 )}

=N−1
N∑
i=1

wiIi(1− δi)

[
(PX

n − PX
0 )fθ(yi|x; θ0)

PX
0 f(yi|x; θ0)

−(PX
n − PX

0 )f(yi|x; θ0)PX
0 fθ(yi|x; θ0)

{PX
0 f(yi|x; θ0)}2

]

=N−2
N∑
i=1

N∑
j=1

wiwjIiIj(1−δi)δj
1

wj

[
fθ(yi|xj ; θ0)πj
PX
0 f(yi|x; θ0)

−f(yi|xj ; θ0)πjPX
0 fθ(yi|x; θ0)

{PX
0 f(yi|x; θ0)}2

]
+op(n

−1/2)

=N−2
n∑

i=1

n∑
j=1

wiwjv(zi, zj) + op(n
−1/2)

=N−2
N∑
i=1

N∑
j=1

wiwjIiIjv(zi, zj) + op(n
−1/2)
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≡ VN + op(n
−1/2),

where the second equality follows from evaluating

PX
n f(yi|x; θ0) =

n∑
j=1

δjf(yi|xj ; θ0)πj

and

PX
n fθ(yi|x; θ0) =

n∑
j=1

δjfθ(yi|xj ; θ0)πj .

Thus,

VN = N−2
N∑
i=1

N∑
j=1

wiwjIiIjv(zi, zj)

is a V-statistics with the kernel function wiwjIiIjv(zi, zj), where

v(zi, zj) =
1

2

{(1− δi)δjfθ(yi|xj ; θ0)πj
wjPX

0 f(yi|x; θ0)
− (1− δi)δjf(yi|xj ; θ0)πjPX

0 fθ(yi|x; θ0)
wj{PX

0 f(yi|x; θ0)}2

+
(1− δj)δifθ(yj |xi; θ0)πi

wiPX
0 f(yj |x; θ0)

− (1− δj)δif(yj |xi; θ0)πiPX
0 fθ(yj |x; θ0)

wi{PX
0 f(yj |x; θ0)}2

}
.

Let

v1(zi; θ0, P
X) = E{v(zi, zj)|zi}

=
1

2
P (δj = 1)E

[
E

{
fθ(yi|xj ; θ0)πj
wjPX

0 f(yi|x; θ0)

−f(yi|xj ; θ0)πjPX
0 fθ(yi|x; θ0)

wj{PX
0 f(yi|x; θ0)}2

|δj = 1

}
|δi = 0, yi
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1

2wi
P (δj = 0)E
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E

{
fθ(yj |xi; θ0)πi
PX
0 f(yj |x; θ0)

−f(yj |xi; θ0)πiPX
0 fθ(yj |x; θ0)

{PX
0 f(yj |x; θ0)}2

|δj = 0

}
|δi = 1, xi

]
.

From the theory of V-statistics, we have

Vn = N−1
N∑
i=1

wiIi{2v1(zi; θ0, PX
0 )}+ op(n

−1/2). (C.3)

Combining (C.1) and (C.3), we have

θ̂ − θ0 =N−1
N∑
i=1

wiIiκ(zi; θ0, P
X
0 ) + op(n

−1/2),

where
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= SP (θ0, P
X
0 )(PX

n − PX
0 ) + op(n

−1/2)

= SP (θ0, P
X
0 )(

n∑
i=1

πiδxi − PX
0 ) + op(n

−1/2)

=

n∑
i=1

dS(θ0, (1− t)PX
0 + tπiδxi)

dt
|t=0 + op(n

−1/2), (C.2)
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X
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= δ
fθ(y|x; θ)
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fθ(y|x; θ){

(1− t)PX
0 + tπiδxi
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{PX
0 f(y|x; θ0)}2

.
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κ(zi; θ0, P
X
0 ) = E(−Sθ)

−1
{
S(θ0, P

X
0 ; zi) + 2v1(zi; θ0, P

X
0 )

}
. (C.4)

Therefore, Σ−1/2(θ̂ − θ0)
d→ N(0, Id), where Σ = V ar{∑n

i=1wiκ(Zi; θ0, P
X
0 )}.

Appendix D. The Jackknife variance estimator

The Jackknife variance estimator provides a useful tool to calculate variances

under complex sampling designs. The goal is to replicate the design in a series

of subsamples that reflect the overall sample. Each of these subsamples retains

the features of the original design.

To implement the Jackknife variance estimation, first consider w
[k]
i as the

kth replication weight such that

V̂rep =

L∑
k=1

ck(Ŷ
[k] − Ŷ )2

is consistent for the variance of Ŷ =
∑

i∈Awiyi, where L is the replication size,

ck is the kth replication factor depending on the replication method and the

sampling mechanism, and Ŷ [k] =
∑

i∈Aw
[k]
i yi is the kth replicate of Ŷ . In delete-

one Jackknife variance estimation, L = n and ck = (n− 1)/n.

For the replication method, we first obtain the kth replicate SMLE θ̂[k] of θ̂

by solving

r∑
i=1

w
[k]
i S(θ;xi, yi) +

n∑
i=r+1

w
[k]
i

{∑r
j=1 πjf(yi | xj ; θ)S(θ;xj , yi)∑r

j=1 πjf(yi | xj ; θ)

}
= 0,

πj =
w

[k]
j +

∑n
i=r+1w

[k]
i w∗

ij(θ)∑n
i=1w

[k]
i

,

where w∗
ij(θ)=πjf(yi|xj ; θ)/

∑r
k=1πkf(yi|xk; θ) and w

[k]
i is the replication weight.

The replication variance estimator of θ̂ is obtained as

V̂rep(θ̂) =
L∑

k=1

ck(θ̂
[k] − θ̂)2.

Appendix E. Illustration with two-stage sampling design

Under a two-stage sampling design, let AI be the index set of the primary

sampling units (PSUs) in the sample. Let Ai be the index set of units selected

in PSU i ∈ AI . The final sample of units is indexed by A = ∪i∈AI
Ai. Let πIi

be the selection probability of the PSU i and πk|i be the conditional selection
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probability of unit k given that PSU i is selected in the first stage where k ∈PSU
i. Thus, the first order inclusion probability of unit k ∈PSU i is P (k ∈ A) =

P (k ∈ Ai|i ∈ AI)P (i ∈ AI) = πk|iπIi and the sampling weight for this unit is

wik = 1/(πk|iπIi). Let (xik, yik) be the covariate and the outcome variable for

unit k ∈ Ai.

The point estimation of θ can be obtained by solving the imputed score

equation

∑
i∈AI

[ ∑
k∈Ri

wikS(θ;xik, yik)

+
∑
k∈Mi

wik

{∑
j∈AI

∑
l∈Rj

πjlf(yik | xjl; θ)S(θ;xjl, yik)∑
j′∈AI

∑
l′∈Rj′

πj′l′f(yik | xj′l′ ; θ)

}]
= 0,

πjl =
wjl +

∑
i∈AI

∑
k∈Mi

wikw
∗
ik,jl(θ)∑

i∈AI

∑
k∈Ai

wik
,

where Ri and Mi are the index sets for the respondents and the nonrespondents

in PSU i, i.e., Ai = Ri ∪ Mi and w∗
ik,jl(θ) = πjlf(yik|xjl; θ)/{

∑
j′∈AI

∑
l′∈Rj′

πj′l′f(yik | xj′l′ ; θ)}. The EM algorithm described in Section 4 can be imple-

mented to obtain the solution.

For variance estimation, we consider the Jackknife variance estimation con-

sidered in Rao, Wu and Yue (1992) for multi-stage sampling:

V̂rep(θ̂) =
∑
i∈AI

ni − 1

ni

∑
k∈Ai

(θ̂[k] − θ̂)2,

where ni = |Ai| is the sample size in PSU i, θ̂[k] is computed by omitting unit

k ∈ Ai and by modifying the weights so that π−1
j|i is replaced by niπ

−1
j|i /(ni − 1)

for all j ∈ Ai and weight stays unaltered for all other j /∈ Ai.
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one Jackknife variance estimation, L = n and ck = (n− 1)/n.

For the replication method, we first obtain the kth replicate SMLE θ̂[k] of θ̂

by solving

r∑
i=1

w
[k]
i S(θ;xi, yi) +

n∑
i=r+1

w
[k]
i

{∑r
j=1 πjf(yi | xj ; θ)S(θ;xj , yi)∑r

j=1 πjf(yi | xj ; θ)

}
= 0,

πj =
w

[k]
j +

∑n
i=r+1w

[k]
i w∗

ij(θ)∑n
i=1w

[k]
i

,

where w∗
ij(θ)=πjf(yi|xj ; θ)/

∑r
k=1πkf(yi|xk; θ) and w

[k]
i is the replication weight.

The replication variance estimator of θ̂ is obtained as

V̂rep(θ̂) =
L∑

k=1

ck(θ̂
[k] − θ̂)2.

Appendix E. Illustration with two-stage sampling design

Under a two-stage sampling design, let AI be the index set of the primary

sampling units (PSUs) in the sample. Let Ai be the index set of units selected

in PSU i ∈ AI . The final sample of units is indexed by A = ∪i∈AI
Ai. Let πIi

be the selection probability of the PSU i and πk|i be the conditional selection

SEMIPARAMETRIC INFERENCE 23
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