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model that ties different data generating mechanisms, namely correlation and re-

gression models, with different estimators that have been proposed for the AFT
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1. Introduction

The semi-parametric accelerated failure time (AFT) model is an extension
of linear regression to the analysis of survival data such that for some survival
times Ti,

log(Ti) = Yi = X>
i β + ei , (1.1)

where the distribution of the error term ei is unspecified. Due to censoring on
the responses, we observe Zi = min(Yi, Ci) and δi = I[Yi≤Ci] for some censoring
time variables Ci instead of Yi.

This model has emerged as a useful alternative to the popular Cox propor-
tional hazards model for analysing censored data, as it provides a direct inter-
pretation of the results in terms of quantification of survival times instead of the
more abstract hazard rates. However, inference for this model has been chal-
lenging. Under random right censoring, inference methods that require a direct
estimation of the covariance matrices of the estimators are difficult to imple-
ment because the covariance matrices involve nonparametric estimation of the
underlying distribution. In particular, for median (or quantile) estimation, the
asymptotic variance of β̂ involves the density at the median (or the quantile of
interest), of which a reliable estimation is problematic even without censoring.
Resampling methods, as proposed by Jin et al. (2003), constitute an alternative,
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but they are computationally complex. Here we propose a new empirical likeli-
hood ratio approach that is computationally simple and which applies to least
squares estimation and quantile estimation equally well.

Qin and Jing (2001) and Li and Wang (2003) considered an empirical like-
lihood approach, in which they kept the likelihood of Owen (1991) unchanged
and replaced the constraint equations by

∑n
i=1 piXi(Y ∗

i −X>
i b) = 0. Here, Y ∗ is

the ‘synthetic data’ of Koul, Susarla, and Van Ryzin (1981). This approach has
two major drawbacks. First, the inference method is based on an estimator that
does not perform well (see Simulation Study 3 below). Second, their methods
did not yield the non-parametric version of Wilks’ Theorem since their likelihood
construction did not appropriately reflect the data generating mechanism. In-
deed, the limiting distribution of the −2 log empirical likelihood ratio is that of
a linear combination of weighted independent χ2

1 random variables with weights
to be estimated. In practice, the limiting distribution needs to be calibrated via
resampling. These drawbacks have motivated our work.

We first provide a general framework for the AFT model that ties together
different data generating mechanisms with the estimators that have been pro-
posed for the AFT model. We distinguish two types of data generating schemes
under random right censoring: the accelerated failure time regression model and
the accelerated failure time correlation model. We find that in the accelerated
failure time model, the different data generation models require different estima-
tors, unlike the uncensored case of Freedman (1981), and different assumptions
on the censoring times Ci as well. We provide details in Section 2.

Going further, we develop empirical likelihood methods that yield asymptotic
χ2 results by adequately reflecting the underlying data generating mechanisms
in the construction of the likelihood. With regard to the bootstrap, Freedman
(1981) noted that the resampling scheme must reflect the relevant features of the
stochastic model assumed to have generated the data. Owen (1991) recognized
this with empirical likelihood for linear models. He suggested that the empirical
likelihood be constructed based on the homoscedasticity of (Xi, Yi) for the cor-
relation model, and that the likelihood be based on the homoscedasticity of the
errors ei for the regression model. We extend this distinction to the accelerated
failure time model under random right-censoring and call the first type of empiri-
cal likelihood formulation case-wise, the latter residual-wise. Without censoring,
the two likelihood formulations yield the same likelihood function and hence pro-
duce identical p-values and confidence regions, although interpreted differently
(see Owen (1991)). With censoring however, the case-wise empirical likelihood is
no longer the residual-wise one, and estimates, p-values, and confidence regions
differ.

The proposed likelihood has a complex form and is not explicit under the
constraints. We show that, nevertheless, the resulting inference methods are
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computationally simple and yield the standard asymptotic χ2 results. Results
are also applicable to censored quantile regression.

2. Correlation and Regression Model

In this section, we summarize the main characteristics of the two data gener-
ating models and corresponding estimators. Our main focus is on the correlation
AFT model. For comparison, we include a brief discussion of the empirical like-
lihood results regarding the AFT regression model in Subsection 2.1.

2.1. Regression model

The regression model is appropriate if, for example, the measurement error of
the response is the main source of uncertainty (Freedman (1981)). The true value
of the p-dimensional parameter vector β solves

∫
(y − x>β)x dFe = 0, where Fe

denotes the error distribution. The main assumptions in the regression model are
that the covariates, x1, · · · , xn, are row vectors of p−dimensional fixed constants
that form a matrix of full rank, the errors, e1, · · · , en, are independent with
common distribution Fe having mean 0 and finite variance σ2 (both Fe and σ2

unknown), and the censoring time variables, C1, · · · , Cn, are independent with
common unknown distribution G and independent of Yi conditionally on xi.

Popular estimators of the parameter vector β in this model with censored
data include rank-based estimators (see Chapter 7 of Kalbfleisch and Prentice
(2002) and references therein; Jin et al. (2003)) and the Buckley–James estimator
(Buckley and James (1979); Lai and Ying (1991)).

The following empirical likelihood approach was proposed by Zhou and Li
(2008). Let Zi = min(Yi, Ci) and δi = I[Yi≤Ci]. Let b be a vector, and define the
residuals with respect to b as ri(b) = zi−x>

i b. Zhou and Li (2008) proposed that
empirical likelihood be formulated with respect to (ri(b), δi) as follows: given
b, the residual-wise empirical likelihood for some univariate distribution F is
defined as

Le(F ) =
∏
δi=1

pi

∏
δi=0

(1 −
∑

rj(b)≤ri(b)

pj) ,

where pi = dF [ri(b)] is the probability placed by F on the ith residual. The
likelihood ratio is

Re(b) =
sup{Le(F )|F ∈ Fb}
sup{Le(F )|F ∈ Fb}

, (2.1)

where Fb denotes the set of all univariate distributions that place positive prob-
abilities on each uncensored ri(b), as Le(F ) = 0 for any F that places zero
probability on any uncensored ri(b), and Fb denotes a subset of Fb that satisfies
the constraints

∑n
i=1 piδiri(b)x̃i = 0 for x̃i = xi +

∑
δj=0, j:j<i m[j, i]xj . Here,
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m[j, i] denotes the weights derived from the Buckley–James estimating equation.
We refer to Zhou and Li (2008) for more details. As the term in the denomi-
nator of (2.1) is maximized by the Kaplan–Meier estimator (Kaplan and Meier
(1958)) of the residuals ri(b) whose calculation is straightforward, maximization
is only required for the numerator, analogously to the uncensored case. When b̂

is the Buckley–James estimator, Re(b̂) = 1 and confidence regions based on (2.1)
are ‘centered’ at the Buckley–James estimate. By formulating similar constraints
with respect to rank estimators, Zhou (2005a) proposed a residual-wise likelihood
for log-rank or Gehan-type estimators. In each case, the resulting likelihood ratio
admits chi-squared limiting distributions (Zhou (2005a); Zhou and Li (2008)).

2.2. Correlation model

The correlation model is appropriate if, for example, the goal is to estimate
the regression plane for a certain population on the basis of a simple random
sample (Freedman (1981)). The true value of the parameter β solves

∫∫
(y −

x>β)x dFxy = 0, where Fxy denotes the joint (p + 1)-variate distribution of x

and y. Here, we assume that the vectors (Xi, Yi) are independent, the p × p

covariance matrix of the rows of X, EX>X is positive definite, and E ||(X,Y )||3
exists. Some more technical conditions are listed in the appendix.

The estimation method we consider for this model is given through the
(case-wise weighted) estimating equation below. Weighted least squares and M-
estimation methods have been proposed by Koul, Susarla, and Van Ryzin (1982),
Zhou (1992a), Stute (1996), and Gross and Lai (1996). The estimator b can be
expressed as the solution of the estimating equation

n∑
i=1

wi(Zi − X>
i b)Xi = 0 . (2.2)

In contrast to the ‘synthetic data’ approach of Koul, Susarla, and Van Ryzin
(1981), Leurgans (1987), and various generalizations, the ‘case-wise weighted’
approach never creates any new response values (i.e. synthetic data). Instead,
it tries to recoup the effect of censored responses by properly weighting the
uncensored responses. On the other hand, it does not require iteration in the
calculation of the estimator, as opposed to the Buckley–James estimator.

Two weighting schemes have been used to determine the weights wi. Stute
(1996) ordered the Zi so δ(i) is the censoring indicator δ corresponding to the ith
order statistic Z(i), and rewrote the jumps of the Kaplan–Meier estimator of the
marginal distribution of Y as

∆1 = δ(1)/n and ∆i =
δ(1)

n − i + 1

i−1∏
j=1

(
n − j

n − j + 1

)δ(j)

, i = 2, · · · , n .
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He used the ∆i as weights in (2.2).
On the other hand, inverse censoring probability weights have been used

in many different places, for example in van der Laan and Robins (2003) and
Rotnitzky and Robins (2005). These weights are given by

w∗
i =

δi

1 − Ĝ(Zi)
,

with Ĝ(·) being the Kaplan–Meier estimator of the censoring distribution G based
on (Zi, 1 − δi).

The two weighting schemes are in fact identical. Inverse censoring probability
weighting is equivalent to weighting by the jumps of the Kaplan–Meier. Indeed,
for all t,

[1 − F̂ (t)][1 − Ĝ(t)] = 1 − Ĥ(t), (2.3)

where F̂ (t) and Ĝ(t) are the Kaplan–Meier estimators for Yi based on (Zi, δi)
and the censoring variable Ci based on (Zi, 1 − δi), respectively, and Ĥ(t) is the
empirical distribution based on Zi. From (2.3), we observe that when t = Zi

with δi = 1, then ∆i[1 − Ĝ(t)] = 1/n, from which it follows that

∆i =
δi

n[1 − Ĝ(Zi)]
=

w∗
i

n
.

Stute (1996) also proposed

F̂xy(A) =
n∑

i=1

∆iI{(Zi,Xi)∈A} for some set A in R(p+1)

as a multivariate extension of the univariate Kaplan–Meier estimator. Based
on these two observations, we call a solution to (2.2) with wi = ∆i case-wise
weighted estimator.

3. Main Results

We define the case-wise empirical likelihood for the AFT correlation model.
Reflecting the independent and identical distributions of the vectors (Xi, Yi), al-
though the observations are censored, we propose formulating the empirical likeli-
hood case-wise as follows. Consider the estimating equation

∫ ∫
(y−x>β)xdFxy =

0. For any integrable function φ(x, y), equality holds for the two integrals∫
φ(x, y)dFxy and

∫ ∫
φ(x, y)dFx|ydFy, where Fx|y denotes the conditional dis-

tribution of X given Y . Based on the data (Xi, Zi, δi) i = 1, · · ·n, a reasonable
estimator of Fx|y when y = Zi and δi = 1 is a point mass at Xi. In fact, using
this conditional distribution coupled with the marginal distribution estimator of
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Fy, namely the Kaplan–Meier estimator, one obtains an estimator that is iden-
tical to Stute’s F̂xy mentioned above (see the appendix for more details of this
equivalency).

Using this relationship, the case-wise empirical likelihood is

Lxy(Fy, Fx|y) =
∏

1
∏
δi=1

pi

∏
δi=0

(1 −
∑

Zj≤Zi

pj) ,

where pi = dFy[Zi] is the probability that Fy places on the ith case. Since the
conditional distribution Fx|y remains as a point mass throughout (as discussed
above) and does not change, we drop Fx|y from Lxy and denote Fy simply as F .
Similarly we drop the constant point mass from the likelihood

Lxy(Fy) =
∏
δi=1

pi

∏
δi=0

(1 −
∑

Zj≤Zi

pj) .

The likelihood ratio is

Rxy(b) =
sup{Lxy(F )|F ∈ F̃b}
sup{Lxy(F )|F ∈ F}

, (3.1)

where F is the set of univariate distributions that place positive probabilities
on each uncensored case (as Lxy(F ) = 0 for any F that places zero probability
on some uncensored (Zi, δi)), and F̃b denotes the subset of F that satisfies the
constraints

n∑
i=1

piδi(Zi − X>
i b)Xi = 0 .

This constraint can also be interpreted as∑
Zi

∑
Xj

piδi(Zi − X>
j b)Xjdij = 0 or

∫ ∫
(y − x>b)xdF̂xy = 0,

where dij = 1 if and only if i = j and zero otherwise, and F̂xy is similar to Stute’s
estimator except that we identify pi = ∆i.

The denominator of (3.1) is provided when F is the Kaplan–Meier estimator
and the maximization is required for the numerator only, which can be obtained
using the method of Zhou (2005b), among others. When b is the case-wise
weighted estimator (the solution to estimating equation (2.2)), then Rxy(b) = 1
and confidence regions based on (3.1) are ‘centered’ at this estimator.

Consider the AFT correlation model equation (1.1) and the testing of the
null hypothesis H0 : β = β0 vs. H1 : β 6= β0. The following theorem contains
the main result for the proposed case-wise empirical likelihood ratio statistic for
least squares regression. A proof can be found in the Appendix.
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Theorem 1. For the correlation model under H0 : β = β0, conditions (C1)−(C3)
and (C6) from the Appendix and assumptions of Theorem 3.1 in Zhou (1992b),
imply that −2 log Rxy(β0) → χ2

p in distribution as n → ∞.

In many applications, inference is only sought for a part of the β vector.
A usual approach is to “profile” out the components that are not under con-
sideration. Profiling has been proposed for empirical likelihood in uncensored
cases (e.g., Qin and Lawless (2001)). Under censoring, Lin and Wei (1992) pro-
posed profiling with Buckley-James estimators. We similarly consider a profile
empirical likelihood ratio: let β = (β1, β2) where β1 ∈ Rq, q < p, is the part of
the parameter under testing. Similarly, let β0 = (β10, β20). A profile empirical
likelihood ratio for β1 is given by supβ2

Rxy(β = (β1, β2).

Theorem 2. Consider the correlation model and assume conditions of Theorem
1 above. Under H0 : β1 = β10, we have −2 log supβ2

Rxy(β = (β10, β2)) → χ2
q in

distribution as n → ∞.

Similar results hold for censored quantile models when the τth conditional
quantile of Yi is modelled by

Qτ (log Ti|Xi) = Qτ (Yi|Xi) = X>
i βτ ,

and, instead of Yi, we observe Zi = min(Yi, Ci) and δi = I[Yi≤Ci] for some censor-
ing time variables Ci. This model may also be written as Yi = X>

i βτ + ei, with
the error terms ei independent random variables with zero τth quantiles. When
τ = 0 · 5, this is censored median regression, and Huang, Ma, and Xie (2007)
proposed a case-wise weighted estimator that is a special case of our case-wise
weighted estimator. Here, we propose a case-wise empirical likelihood inference
for the general censored quantile regression using

Rxy(b) =
sup{Lxy(F )|F ∈ F̃b}
sup{Lxy(F )|F ∈ F}

,

where F̃b is the subset of F that satisfies the constraints

n∑
i=1

piδiψτ (Zi − X>
i b)Xi = 0 ,

and ψτ (u) is the derivative of the so-called check function ρτ (u) = u(τ − I[u<0])
of Koenker and Bassett (1978). Similar to the censored accelerated failure time
model, the denominator of Rxy(b) is maximized by the Kaplan–Meier estimator,
and thus when calculating Rxy(b), maximization is only needed for the numerator.
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Figure 1. Histogram plots of slope estimates by the Buckley–James estimator
and case-wise weighted estimator based on 5,000 simulations with n = 400
with 28.5% censoring in each case. Vertical lines indicate the true value of
the slope parameter. First row is Buckley–James estimator.

Theorem 3. Under H0 : βτ = β0 and assuming conditions (C1)−(C6) of the
Appendix, for given τ , −2 log Rxy(β0) → χ2

p in distribution as n → ∞. If βτ =
(β1, β2) with β1 ∈ Rq, q < p, under H0 : β1 = β10 we have −2 log supβ2

Rxy(βτ =
(β10, β2)) → χ2

q in distribution as n → ∞.

4. Simulation Studies

4.1. Simulation study 1

We compared the case-wise and residual-wise (Zhou and Li (2008)) empirical
likelihoods using three models: homoscedastic errors with independent censoring
(M1), heteroscedastic errors with independent censoring (M2), and homoscedas-
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tic errors with censoring dependent on x (M3).

M1 : Yi = X>
i β + ei , Ci = εi ,

M2 : Yi = X>
i β + ei exp(X>

i γ) , Ci = εi ,

M3 : Yi = X>
i β + ei , Ci = X>

i η + εi ,

where Xi = (1, X1i) with X1i ∼ U(0, 1), ei ∼ N(0, 1), and εi is from a mixture
of N(3, 32) and U(−2, 18). Here, β, γ, and η were chosen such that the cen-
soring in each model was 28.5% and the error heteroscedasticity in (M2) and
the conditional dependency of Ci on Xi in (M3) was non-negligible. Due to the
heteroscedastic errors, the R2 of the least squares regression analysis of (M2)
(without censoring) was on average reduced to 0.25 from 0.5 of an equivalent
analysis of (M1), and an average R2 of 0.28 was yielded for the least squares
regression analysis of Ci on Xi for (M3).

We first examine the slope estimate by the case-wise weighted and the
Buckley–James estimator. Figure 1 shows that the Buckley–James estimator
is biased for the heteroscedastic errors model (M2), while the case-wise weighted
estimator is not. When the censoring variables are dependent on Xi (M3), how-
ever, the case-wise weighted estimator is biased.

We confirmed that the differences in the data generating models require the
empirical likelihood to be formulated differently. Q-Q plots in Figure 2 show
that only the case-wise empirical likelihood is valid for the heteroscedastic errors
model (M2), and only the residual-wise likelihood is valid for covariate-dependent
censoring (M3). Deviation from the limiting chi-squared distribution in the like-
lihood ratio statistic corresponds to bias in the estimates. Both empirical likeli-
hoods were appropriate for (M1), as they are equivalent to the first order with
the same limiting chi-squared distribution.

4.2. Simulation study 2

We examined the performance of the case-wise empirical likelihood for cen-
sored quantile regression using three models that are similar to those used in
Simulation Study 1.

M1 : Yi = X>
i β + ei , Ci = εi ,

M2 : Yi = X>
i β + ei(Xi + 1) , Ci = εi ,

M3 : Yi = X>
i β + ei , Ci = X1i + εi ,

where Xi = (1, X1i) with X1i ∼ U(0, 1). The error ei ∼ N(0, 0 · 752) in (M1)
and (M3), ei ∼ N(0, 0 · 52) in (M2). The parameter β = (0 · 5, 1 · 5); for the
censoring εi ∼ 0 ·5+exp(0 ·5) in (M1) and (M2), and εi ∼ exp(0.5) in (M3). The
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Figure 2. Q-Q plots of quantiles of χ2
2 versus −2 log Re(β) (residual-wise)

and −2 log Rxy(β) (case-wise), respectively, based on 5,000 simulations with
n = 400 and 28.5% censoring in each case.

Figure 3. Q-Q plots of the quantiles χ2
2 versus −2 log Rxy(β0) (case-wise)

based on 1,000 simulations with sample size n = 200 and about 30% censor-
ing in each case.
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Table 1. Simulation results comparing β̂KSV with β̂ZS

With intercept Without intercept
β̂KSV β̂ZS β̂KSV β̂ZS

intercept slope intercept slope slope slope
Mean -0.00088 0.99964 -0.00122 1.00002 0.99899 0.99907

Variance 0.02061 0.02002 0.01395 0.01133 0.00312 0.00230

censoring percentage was about 30%. We fit Qτ (Yi|Xi) at τ = 0·25. The quantile
regression Q-Q plots in Figure 3 exhibit similar properties as the mean regression
in Simulation Study 1. Specifically, the case-wise empirical likelihood approach
for censored quantile regression is not adversely affected by heteroscedastic errors,
but it is biased in the presence of covariate-dependent censoring.

4.3. Simulation study 3

In order to compare the proposed method with the empirical likelihood
method proposed by Qin and Jing (2001) and Li and Wang (2003), it is instruc-
tive to compare the estimators that form the basis of the proposed inferential
methods. Their estimator is based on the ‘synthetic data’ approach of Koul,
Susarla, and Van Ryzin (1981), we refer to it as β̂KSV . The estimator considered
here is based on Zhou (1992a) and Stute (1996), denoted β̂ZS .

For the direct comparison, we assumed the simplest model from the previous
section, namely (M1), and used the setting Xi = (1, X1i), X1i ∼ U(1, 0 · 52),
ei ∼ N(0, 0 · 52), β = (0, 1), and εi ∼ N(6 · 1, 42). Table 1 provides results based
on 10,000 simulations for sample size n = 100. Both estimators appear to be
unbiased, but the variance of the components of β̂ZS was at least 30% and 40%
smaller for the model including the intercept, and at least 25% smaller for the
without-intercept model. The simulation indicates that the estimator β̂KSV is far
from efficient, any inference method based on this estimator cannot be expected
to perform as well as inferential procedures based on β̂ZS .

4.4 Simulation study 4

Here we compared confidence intervals based on the proposed empirical like-
lihood method with those based on Huang, Ma, and Xie (2007), comparing aver-
age length and coverage probability. The methods provide the same parameter
estimates, but the method of Huang, Ma, and Xie (2007) requires a bootstrap
resampling technique for the calculation of confidence intervals.

The assumed model was Yi = Xiβ + εi, where β = 1, Xi ∼ N(1, 0.25),
εi ∼ N(0, 0.25). The censoring distribution was chosen as Ci ∼ N(3.1, 0.25) to
generate about 30% censoring. Sample sizes were n = 40, 60, and 120. We
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Table 2. Simulation results comparing proposed empirical likelihood based
(EL) confidence intervals with Huang, Ma, and Xie (2007) (HMX). Nominal
level 95%.

n = 40 n = 60 n = 120
EL HMX EL HMX EL HMX

Interval Mean 0.3213 0.3259 0.2698 0.2713 0.1917 0.1909
Length Std. Dev. 0.0648 0.0681 0.0443 0.0463 0.0230 0.0233
Coverage Probability 0.925 0.928 0.928 0.923 0.944 0.939

used 1,000 bootstrap replications for the application of the method proposed by
Huang, Ma, and Xie (2007). Simulation size was 1,000.

Results are displayed in Table 2. The methods show very similar perfor-
mance in terms of confidence interval length and coverage probability. An ad-
vantage of the proposed empirical likelihood procedure is that it does not require
a bootstrap, which makes it less computationally demanding and free of possible
bootstrap sampling error.

5. Small-Cell Lung Cancer Data

We consider a lung cancer data set (Maksymiuk et al. (1994)) that has been
analysed by Ying, Jung, and Wei (1995) using median regression, and by Huang,
Ma, and Xie (2007) using a least absolute deviations method in the accelerated
failure time (AFT) model. In this study, 121 patients with limited-stage small-cell
lung cancer were randomly assigned to one of two different treatment sequences,
A and B, with 62 patients assigned to A and 59 patients to B. Each death time
was either observed or administratively censored, and the censoring variable did
not depend on the covariates treatment and age.

Denote the treatment indicator variable by X1i, and the entry age for the
ith patient by X2i, where X1i = 1 if the patient is in group B. Let Yi be the
base 10 logarithm of the ith patient’s failure time. We assume the AFT model

Yi = β0 + β1X1i + β2X2i + σ(X1i, X2i)εi .

The estimated parameter values obtained using the approach described in this
paper need to be equal to the ones from Huang, Ma, and Xie (2007), provided
weighting has been done in the same way. The major difference is in inference
about the parameters, where empirical likelihood has the advantage that it is not
necessary to estimate the asymptotic variance of the estimator in order to perform
hypothesis tests and to construct confidence regions. An empirical likelihood
confidence region for this data set is displayed in Figure 4.
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Median regression estimates were obtained by Ying, Jung, and Wei (1995)
and Huang, Ma, and Xie (2007) as

β̂0 = 3·028, β̂1 = −0·163, and β̂2 = −0·004 (Ying, Jung, and Wei (1995))

β̂0 = 2·693, β̂1 = −0·146, and β̂2 = 0·001 (Huang, Ma, and Xie (2007)).

Huang, Ma, and Xie (2007) did not always treat the largest Y observation as
uncensored. This resulted in weights that sum to less than one (the sum of the
weights without the last observation is 0.85). We recommend treating the largest
Y observation as uncensored so that the weights sum to one lest the estimation be
biased since the information from the largest Y observation is ignored. Treating
the largest Y as uncensored, the median regression estimates are

β̂0 = 2·603, β̂1 = −0·263, and β̂2 = 0·0038 (with last weight).

While the different approaches lead to the same conclusions with regard to
the treatment (predictor X1), the data analysis suggests possibly conflicting in-
terpretations regarding the role of the predictor X2 (entry age). Ying, Jung, and
Wei (1995) calculate a negative coefficient (-0.004), while Huang, Ma, and Xie
(2007) and the approach proposed here find 0.001 and 0.003837, respectively, de-
pending on whether or not the largest observation is treated as uncensored. How-
ever, the confidence interval for β2 in Ying, Jung, and Wei (1995) includes zero
(-0.0162, 0.003), and so does the empirical likelihood confidence interval based
on the newly proposed inference method, (-0.0024, 0.0151). Thus, the methods
agree that the predictor “entry age” is not significant. The empirical likelihood
based confidence interval is about 10% shorter than the interval provided by Ying,
Jung, and Wei (1995). This is not surprising when considering that the latter is
not based on the likelihood and may therefore not be efficient, and the former
does not have to rely on inverting the estimated variance-covariance matrix of
an estimating function, which could lead to unstable estimates. Perhaps this
explains the differences in the estimated intercept that lead to rather different
estimated median survival times between 102·6 = 398 and 103 = 1, 000 days.

6. Concluding Remarks

We note some differences and similarities of the case-wise and residual-wise
empirical likelihood. A trade-off exists between assumptions on the error terms
and the censoring time variables: the homoscedastic errors assumption of the
regression model is relaxed for the correlation model, while the conditional in-
dependence assumption on Ci is strengthened such that the Ci need to be inde-
pendent of the random vector (Xi, Yi) (or at least satisfy assumption (C1) in the
Appendix). This is confirmed by the simulation study: the case-wise empirical
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Figure 4. Confidence regions for (β1, β2) in the small-cell lung cancer
data. The original parameter space is 3-dimensional, therefore only two
two-dimensional cuts at β0 = 2 · 5 and β0 = 2 · 603 are displayed. The
contour lines correspond to different critical values.

likelihood is biased when Ci are only conditionally independent of Yi, while the
residual-wise one is biased in the presence of heteroscedastic errors. Hence, the
case-wise empirical likelihood is more appropriate when error heteroscedasticity
is more a concern than independent censoring. The computation of (3.1) does not
involve Xi with δi = 0, so the case-wise empirical likelihood allows missingness
in Xi with δi = 0, while the residual-wise empirical likelihood does not.

Both methods provide a computationally simple inference method, and soft-
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ware is readily available in R. This contrasts with other methods that require a
direct estimation of the covariance matrices of the estimators. For example, the
median regression approach proposed by Ying, Jung, and Wei (1995) requires for
inference the inversion of an estimated variance-covariance matrix which may be
unstable, in particular at the tails of the survival functions. Also, this approach
is expected to lack efficiency because it is not based on the likelihood.

Portnoy (2003) investigated the censored quantile regression process using
a recursive algorithm that fits the entire quantile regression process successively
from below. The model accommodates both heteroscedastic errors and condi-
tionally independent censoring. His method, however, requires the strong as-
sumption that the entire quantile process is linear in xi. This implies that the
validity of quantile estimates at, for example, the median depends on the lin-
earity of the entire conditional functionals at all lower quantiles, as non-linear
relations at any of the lower quantiles bias the median estimates. The Peng
and Huang (2008) method is similarly restricted by the global linearity assump-
tion. Wang and Wang (2009) relaxed the global linearity assumption by a local
Kaplan-Meier method. However, their method is subject to the so-called “curse-
of-dimensionality”. For inference, all these methods rely on resampling. The
proposed case-weighted estimator and accompanying case-wise empirical likeli-
hood method provide simple and practical alternatives with only slightly more
restrictive conditions.
Acknowledgment The research was supported in part by National Science
Foundation grant DMS-0604920.

Appendix

Let (X1, Y1), · · · (Xn, Yn) be a random sample of vectors from a joint distri-
bution F (x, y), where the Yi are subject to right censoring, and take φ(x, y) =
(y−x>β)x for the AFT model, φ(x, y) = ψτ (y−x>β)x for the quantile regression
model.

A.1. Assumptions

(C1) The (transformed) survival times Yi and the censoring times Ci are inde-
pendent. Furthermore, pr(Yi ≤ Ci|Xi, Yi) = pr(Yi ≤ Ci|Yi).

(C2) The survival functions pr(Yi ≥ t) and pr(Ci ≥ t) are continuous and either
ξY < ξC , or ∀t < ∞, pr(Zi ≥ t) > 0. Here, for any random variable U , ξU

denotes the right end point of the support of U .

(C3) The Xi are independent, identically distributed according to some distribu-
tion with finite, nonzero variance, and they are independent of Yi and of
Ci.
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(C4) Let Fe(·|x) be the conditional distribution of the ei given X = x, with
fe(·|x) as the corresponding conditional density function. For the given τ ,
Fe(0|x) = τ , and fe(u|x) is continuous in u in a neighborhood of 0 for almost
all x.

(C5) E(XX>fe(0|X)) is finite and nonsingular.

(C6) σ2
KM (φ) < ∞, where σ2

KM (φ) is the asymptotic variance of
√

n
∑

i φ(xi, ti)
∆F̂KM (ti).

Some of these assumptions have been formulated in related works (Zhou
(1992b); Stute (1996); Huang, Ma, and Xie (2007)).

A.2. Equivalency Between Two Kaplan–Meier Estimators

We show that in the correlation model, the Kaplan–Meier estimator of the
marginal distribution Fy is identical to Stute’s F̂xy, multivariate extension of the
univariate Kaplan–Meier estimator. Recall that Zi are the censored values of Yi,
Zi = min(Yi, Ci), with the censoring indicator δi.

Under (C1), a reasonable estimate for the marginal distribution of Y is the
Kaplan–Meier estimate F̂KM based on Zi and δi. A reasonable estimate of the
conditional distribution F (x|y) is

F̂ (x|y = zi) = point mass at xi, if δi = 1; (A.1)

otherwise F̂ (x|y = zi) is left undefined. This gives rise to an estimator of the
joint distribution, identical to the one proposed by Stute (1996).

For the function of the random vector φ(x, y), the expectation

Eφ(x, y) =
∫

φ(x, y)dF (x, y) =
∫ ∫

φ(x, y)dF (x|y)dF (y)

can be estimated using the joint distribution estimator, that is, the Kaplan–Meier
estimator for the marginal distribution, and the conditional distribution defined
in (A.1): ∑

i

[
∑

j

φ(xj , ti)I[j=i]δi]∆F̂KM (ti) =
∑

i

φ(xi, ti)∆F̂KM (ti).

If we take the function φ to be I[s ≤ x; t ≤ y], this also defines an estimator of
the joint distribution F (x, y).

By the Law of Large Numbers and Central Limit Theorem for this estimator
(see Stute (1996)) and the assumption

∫
φ(x, t)dF (x, t) = 0, we have, as n → ∞,

√
n

(
n∑

i=1

φ(xi, ti)∆F̂KM (ti)

)
→ N(0, σ2

KM (φ))
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in distribution, where σ2
KM (φ) < ∞ by (C6). The variance σ2

KM (φ) can be
written in several different but equivalent ways. Akritas (2000) gave a form
of σ2

KM (φ) on which the following variance estimator is based. The variance
σ2

KM (φ) can be consistently estimated by

σ̂2 =
∑

i

[φ(xi, ti) − φ̄(ti)]2
∆F̂KM (ti)

1 − ĜKM (ti)
, (A.2)

where φ̄(s) =
∑

j:tj>s φ(xj , tj)∆F̂KM (tj)/[1− F̂KM (s)] is the so called advanced-
time transformation of Efron and Johnstone (1990). See also Akritas (2000) for
details.

A.3 Outline of the Proofs for Theorems 1 and 3

Recall that when computing the numerator in the likelihood ratio (3.1), we
need to compute the supremum of the empirical likelihood over all F , dominated
by the Kaplan–Meier estimator, that satisfy the constraint equations. We first
construct these distributions indexed by an h( ) function. Later we take the
supremum over h.

Notice that any distribution that is dominated by the Kaplan–Meier estima-
tor can be written as (by its jumps)

∆F (ti) = ∆F̂KM (ti)
1

1 + h(ti)

for some h, but may not satisfy the constraint equations. We thus write an
F that is dominated by the Kaplan–Meier and satisfies the constraint equation
(A.4) as

∆Fλ(ti) = ∆F̂KM (ti) ×
1

1 + λh(xi, ti)
× 1

C(λ)
, i = 1, 2, ..., n, (A.3)

where C(λ) is the normalizing constant

C(λ) =
n∑

i=1

∆F̂KM (ti)
1 + λh(xi, ti)

.

This parameter λ is chosen so that the resulting F satisfies the constraint equa-
tions, i.e., λ is the solution of∫

φ(x, t)dFλ(x, t) =
1

C(λ)

n∑
i=1

∆F̂KM (ti)
φ(xi, ti)

1 + λh(xi, ti)
= 0. (A.4)

We suppose the function h = h(x, y) satisfies ‖h(x, y)‖ = 1 and
|
∫

φ(x, y)h(x, y)dF (x, y)| ≥ ε > 0.



312 MAI ZHOU, MI-OK KIM AND ARNE BATHKE

Lemma A below gives an asymptotic representation of λ, and we denote this
parameter value as λ0. With λ0, the distribution Fλ0 satisfies the conditions
Fλ0 ¿ F̂KM and

∫
φ(x, t)dFλ0(x, t) = 0.

When restricted to these distributions (indexed by h), we define a (profile)
empirical likelihood ratio function as

Rh =

{
Lxy(Fλ0)

Lxy(F̂KM )
| h satisfies (i), (ii) above

}
,

where Lxy is defined in Section 3. By Theorem A below we have

−2 log Rxy = −2 log(sup
h

Rh) = χ2
(p) + op(1) ,

and the proof is complete.

Lemma A. Under (C1)−(C6) and the conditions on h,
(1) with probability tending to one as n → ∞, λ0 is well defined,
(2) λ0 = Op(n−1/2) as n → ∞,

(3) λ0 has the representation given at (A.5) for n → ∞.

Proof. Expanding (A.4), we have

0 =
n∑

i=1

∆F̂KM (ti)
φ(xi, ti)

1 + λ0h(xi, ti)

=
n∑

i=1

φ(xi, ti)∆F̂KM (Ti) − λ0

n∑
i=1

φ(xi, ti)h(xi, ti)∆F̂KM (ti)

+λ2
0

n∑
i=1

φ(xi, ti)h2(xi, ti)
1 + λ0h(xi, ti)

∆F̂KM (ti).

It follows that

λ0 =
∑n

i=1 φ(xi, ti)∆F̂KM (ti)∑n
i=1 φ(xi, ti)h(xi, ti)∆F̂KM (ti)

+ op(n−1/2). (A.5)

The uniqueness of λ0 follows from observing that in (A.4), C(λ) is positive, and
the remaining term is strictly monotone in λ. Existence requires feasibility of
the parameter under the hypothesis (for a detailed discussion of feasibility in
censored empirical likelihood see Pan and Zhou (2002)). However, for n → ∞,
the probability that the true parameter is feasible approaches one.

Theorem A If the conditions in Lemma A hold, then, as n → ∞,

−2 logRh = −λ0f
′′
(0)λ0 + op(1),
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where f(·) is defined at (A.6). Furthermore,

−2 log Rxy = −2 log(sup
h

Rh) = χ2
(p) + op(1).

Proof. We assume p = 1 for simplicity. The same arguments work when p ≥ 1.
Define the marginal empirical likelihood as a function of λ by

f(λ) = log
n∏

i=1

(∆Fλ(Ti))δi(1 − Fλ(Ti))1−δi , (A.6)

where |λ| ≤ C|λ0|. Then

f(0) = log
n∏

i=1

(∆F̂KM (Ti))δi(1 − F̂KM (Ti))1−δi = Lxy(F̂KM ).

By Lemma A, λ0 = Op(n−1/2), so we can apply Taylor’s expansion for f(λ0):

f(λ0) = f(0) + λ0f
′
(0) +

λ2
0

2
f

′′
(0) +

λ3
0

3!
f

′′′
(ξ), |ξ| ≤ |λ0|. (A.7)

Substituting (A.3) in (A.6),

f(λ) =
n∑

i=1

δi log ∆F̂KM (Ti) −
n∑

i=1

δi log(1 + λh(xi, Ti)) − n log

(
n∑

i=1

∆F̂KM (Ti)
1 + λh(xi, Ti)

)

+
n∑

i=1

(1 − δi) log

 ∑
j:Tj>Ti

∆F̂KM (Tj)
1 + λh(xj , Tj)

 .

Some tedious but straightforward calculation shows that f
′
(0) = 0 and that

the second derivative of f with respect to λ, evaluated at λ = 0, is

f
′′
(0) = n(

n∑
i=1

h(xi, Ti)∆F̂KM (Ti))2 − n

n∑
i=1

h2(xi, Ti)∆F̂KM (Ti)

+
n∑

i=1

(1 − δi)

∑
j:Tj>Ti

h2(xj , Tj)∆F̂KM (Tj)

1 − F̂KM (Ti)

−
n∑

i=1

(1 − δi)

(
∑

j:Tj>Ti

h(xj , Tj)∆F̂KM (Tj))2

(1 − F̂KM (Ti))2
.
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Similar calculations show that the third derivative of f evaluated at ξ is f
′′′

(ξ) =
op(n2/3). Now as f

′
(0) = 0 and f

′′′
(ξ) = op(n2/3), it follows from (A.7) that

−2 logRh = 2[f(0) − f(λ0)]

= 2
(

f(0) − f(0) − λ0f
′
(0) − λ2

0

2
f

′′
(0) − λ3

0

3!
f

′′′
(ξ)

)
= −λ2

0f
′′
(0) − λ3

0

3
f

′′′
(ξ)

= nλ2
0

−f
′′
(0)

n
+ op(1).

This proves the first assertion. Rewriting the last line of the above equalities
using Lemma A, we obtain

−2 logRh =
[
√

n
∑

φ(xi, ti)∆FKM (ti)]2

σ̂2
× rh + op(1),

where

rh =
σ̂2

[
∑

φ(xi, ti)h(xi, ti)∆F (ti)]2
−f

′′
(0)

n
,

and σ̂2 is given in (A.2). Finally

−2 logRxy = −2 log(sup
h

Rh) = inf
h
−2 logRh

=
[
√

n
∑

φ(xi, ti)∆FKM (ti)]2

σ̂2
inf
h

rh + op(1).

It can be shown (outlined below) by a Cauchy-Schwarz inequality that for any
sample size n, the infimum of rh over h is 1. Thus by Stute’s Central Limit
Theorem and the Slutsky Lemma we have

−2 logRxy =
[
√

n
∑

φ(xi, ti)∆FKM (ti)]2

σ̂2
+ op(1) = χ2

(1) + op(1) . (A.8)

Finally we show rh ≥ 1. With f
′′
(0), after several tedious simplifications

and using the self-consistency identity of the Kaplan–Meier estimator and the
advanced time identity of Efron and Johnstone (1990), find

−f
′′
(0)
n

=
n∑

i=1

(h(xi, ti) − h̄(ti))2[1 − ĜKM (ti)]∆F̂KM (ti),

where h̄ denotes the advanced time transformation of h. From here, a straight-
forward application of the Cauchy-Schwarz inequality shows that rh ≥ 1, and the
lower bound 1 is achieved when

h(xi, ti) − h̄(ti) =
φ(xi, ti) − φ̄(ti)
1 − ĜKM (ti)

.



EMPIRICAL LIKELIHOOD FOR AFT MODEL 315

A.4. Proof of Theorem 2

Note that the first equality in (A.8) in a multivariate version is simply

−2 logRxy = >̂θΣ̂−1θ̂ + op(1) ,

where Σ̂ denotes a multivariate version of σ̂ defined in (A.2), and θ̂ =
√

n(
∑

φ(xi,
ti)∆F̂KM (ti)). Standard results on the profiling of the quadratic form then lead
to the conclusion of Theorem 2 (see e.g., Basawa and Koul (1980)).
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