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Abstract: In this paper, we have two asymptotic objectives: the LAN and the

residual empirical process for a class of ARCH(∞)-SM (stochastic mean) models,

which covers finite-order ARCH and GARCH models. First, we establish the LAN

for the ARCH(∞)-SM model and, based on it, construct an asymptotically optimal

test when the parameter vector contains a nuisance parameter. Also, we discuss

asymptotically efficient estimators for unknown parameters when the innovation

density is known and when it is unknown. For the residual empirical process, we

investigate its asymptotic behavior in ARCH(q)-SM models. We show that, unlike

the usual autoregressive model, the limiting distribution in this case depends upon

the estimator of the regression parameter as well as those of the ARCH parameters.
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1. Introduction

Traditional time series models such as ARMA models assume a constant one-

period forecast variance. However, in actual practice, this assumption is often

violated, especially in economic time series. In order to circumvent this difficulty,

Engle (1982) and Bollerslev (1986) introduced, respectively, the autoregressive

conditional heteroscedastic (ARCH) model and the generalized ARCH (GARCH)

model. Since then, a great number of theoretical and empirical studies have been

conducted for them (cf. Engle (1995), Linton (1993) and Chandra and Taniguchi

(2001)). Recently, Giraitis, Kokoszaka and Leipus (2000) discussed a class of

ARCH(∞) models, which includes the ARCH and GARCH models as special

cases, and established sufficient conditions for the existence of a stationary solu-

tion and its explicit representation. In this paper, we deal with the ARCH(∞)

model with stochastic mean (ARCH(∞)-SM model) rather than ARCH(∞) mod-

els themselves. In particular, we focus on local asymptotic normality (LAN)

and the residual empirical process (REP) of the ARCH-SM model. Both LAN

and REP are well known to be meaningful in the estimation and the testing of
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hypotheses for statistical models. For a review of the related history and back-

ground, we refer to LeCam (1986), LeCam and Yang (1990) and Shorack and

Wellner (1986).

In this paper, based on the LeCam (1986) and Swensen (1985) approach,

we establish the LAN theorem for a class of ARCH(∞)-SM models (there is

another approach to prove the LAN for time series, see Drost, Klassen and Werker

(1997)). Since the central sequence is not measurable with respect to given

data, we provide a version of the LAN theorem described by a data-measurable

central sequence. Based on the result, we consider the problem of testing for

ARCH(∞)-SM models, and construct a locally asymptotically optimal test in

terms of the data-measurable central sequence. Also, we discuss asymptotically

efficient estimators for the unknown parameter of the ARCH(∞)-SM model when

the innovation density g(·) is known, and when it is unknown. The details are

presented in Sections 2 and 3.

On the REP side, we investigate the asymptotic behavior of the REP from an

ARCH(q)-SM model. In fact, the asymptotic properties for the REP have been

derived by many authors in autoregressive models. For instance, Boldin (1982),

Kreiss (1991), Koul (1992), Ling (1998) and Lee and Wei (1999) derived its

limiting distribution in stationary and unstable autoregressive models. However,

those are directed toward handling the REP from the autoregressive model with

i.i.d. errors with constant variance.

The REP from the ARCH model is intrinsically of great interest since, in gen-

eral, the scale parameter makes the analysis a lot more complicated (cf. Lee and

Wei (1999, Section 3.1)) and furthermore, the conditional variance of ARCH mod-

els varies with time. Recently, Boldin (2000) considered the REP for ARCH(1)

models. However, his result does not cover the ARCH-SM model and cannot

be extended in a straightforward manner. Also, Koul (2002) obtained a general

result for a class of ARCH models, but his model does not include the ARCH-SM

model either. Our analysis shows that the REP is asymptotically the same as the

sum of the true empirical process and a stochastic process induced from the pa-

rameter estimators. Moreover, it is revealed that, unlike the usual autoregressive

model, the estimator of the regression parameter severely affects the asymptotic

behavior of the REP. The details are addressed in Section 4. Although the result

itself is worthwhile, in actual practice it is more important to figure out the co-

variance structure of the limiting Gaussian process of the REP since goodness of

fit tests, such as the chi-square type test, can be easily constructed provided the

covariance structure is known. Therefore, at the end of Section 4, we discuss the

limiting distribution of the REP from an ARCH(1)-SM model when the Gaussian

MLE of the ARCH parameters are substituted into the REP. The proofs of the

theorems presented in Sections 2-4 are in Section 5.
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2. ARCH(∞) Model with Stochastic Regression

Suppose that (Ω,F ,P) is a probability space, and {Ft; t ∈ Z} is a sequence

of sub-σ-fields of F satisfying Ft ⊂ Ft+1, t ∈ Z. We consider the ARCH(∞)-SM

model {Yt; t ∈ Z} defined by

{

Yt − β′zt = σtut, t ∈ Z,

σ2
t = a +

∑∞
j=1 bj(Yt−j − β′zt−j)

2,
(2.1)

where a > 0, bj ≥ 0, j = 1, 2, . . . , {ut; t ∈ Z} is a sequence of i.i.d. random

variables with density g(·), and ut is Ft-measurable and independent of Ft−1.

Here β = (β1, . . . , βp)
′ is an unknown vector and the zt = (zt1, . . . , ztp)

′ are

observable p × 1 random vectors which are Ft−1-measurable. If β = 0, this

ARCH(∞)-SM model becomes the ARCH(∞) model proposed by Giraitis et

al. (2000). Note that the class of ARCH(∞)-SM models is larger than the class

of GARCH(r, s)-SM models defined by

{

Yt − β′zt = σtut, t ∈ Z,

σ2
t = a +

∑r
j=1 ajσ

2
t−j +

∑s
j=1 bj(Yt−j − β′zt−j)

2,
(2.2)

where the associated polynomials of the second equation of (2.2) satisfy the

invertible condition. If we take zt = (Yt−1, Yt−2, . . . , Yt−p)
′, then (2.2) becomes

the AR(p)-GARCH (r, s) model, which indicates that the class of ARCH(∞)-SM

models is sufficiently broad. Recently, there was an attempt to study an adaptive

estimation for ARMA-GARCH models (cf. Ling and McAleer (2003)).

In order to develop the asymptotic theory we impose the following assump-

tions.

Assumption 1.

(i) Eut = 0 , V ar(ut) = 1 and Eu4
t < ∞.

(ii) a and bj ’s are functions of an unknown parameter η = (η1, . . . , ηq)
′, i.e.,

a = a(η) and bj = bj(η) for j ≥ 1 and η ∈ H, where H is an open subset of

R
q. The functions a(η) and bj(η) are twice continuously differentiable with

respect to η.

(iii)There exist ã > 0 and b̃j ≥ 0 satisfying
∑∞

j=1 b̃j < 1, such that a(η) ≥ ã and

bj(η) ≤ b̃j for all j ≥ 1 and η ∈ H, which entails

∞
∑

j=1

bj(η) < 1 for all η ∈ H. (2.3)

(iv) There exist ã(1), ã(2) > 0 and b̃
(1)
j , b̃

(2)
j ≥ 0 satisfying

∑∞
j=1 b̃

(i)
j < ∞, i = 1, 2,

such that ‖∂a(η)/∂η‖ ≤ ã(1), ‖(∂2/∂η∂η′)a(η)‖ ≤ ã(2) for all η ∈ H, and
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||(∂/∂η)bj(η)‖ ≤ b̃j
(1)

and ‖(∂2/(∂η∂η′))bj(η)‖ ≤ b̃j(η)
(2)

for all j ≥ 1 and

η ∈ H, where ‖a‖ denotes the Euclidean norm of a vector or matrix defined

by
√

tr(a′a).

The condition (2.3) guarantees the existence of a strictly stationary solution

for {Yt −β′zt} in (2.1) (cf. Giraitis et al. (2000)). For a class of GARCH models,

Bougerol and Picard (1992) gave a necessary and sufficient condition for the strict

stationarity which, however, is different from that for usual ARCH models.

Assumption 2. {E(u4
t )}1/2∑∞

j=1 bj < 1 and E||zt||4 < ∞.

The condition {E(u4
t )}1/2∑∞

j=1 bj < 1 implies E(Y 4
t ) < ∞ (see Giratis et

al. (2000)). Note that in a special case of GARCH models in (2.2), a necessary

and sufficient condition for the existence of the fourth moment of Yt − β′zt has

been established by Ling and Li (1997), Chen and An (1998) and Ling and

McAleer (2002).

Assumption 3. The innovation density g(·) is symmetric, twice continuously

differentiable, and satisfies (i) 0 < I(g) :=
∫ {g′(u)/g(u)}2g(u)du < ∞,

∫ {g′(u)/

g(u)}4g(u)du < ∞, and (ii) lim|u|→∞ ug(u) = 0, lim|u|→∞ u2g′(u) = 0.

From Assumption 3, it follows that E{g ′(ut)/g(ut)} = 0, E{ut(g
′(ut)/g(ut))}

= −1, E{(g′(ut)/g(ut))
′} = −I(g), E{ut(g

′(ut)/g(ut))
′} = 0 and E{u2

t (g
′(ut)/

g(ut))
′} = −J(g) + 2, where J(g) := E{u2

t (g
′(ut)/g(ut))

2}. Symmetry of g(·)
makes the asymptotics related to g(·) simple. Also it is known that the symmetry

is essential for adaptive estimation in ARCH (see Linton (1993)). The variables

{zt} can be both non-random and random, and satisfy the following condition.

Assumption 4. The matrix n−1∑n
t=1 ztz

′
t/σ

2
t converges to a finite limit M(0)

in L2-sense, where M(0) is positive definite.

We write θ = (β ′, η′)′ ∈ Θ and dimΘ = r = p+ q, where Θ is an open subset

of R
r. Then the σ′

ts are functions of θ and Yt−j, j ≥ 1. In order to stress the

dependence of θ, we sometimes write σt = σt(θ). Let P
(n)
θ be the distribution of

(us, s ≤ 0, Y1, . . . , Yn). For two hypothetical values θ, θ′ ∈ Θ, the log-likelihood

ratio is written as

Λn(θ, θ′) := log
dP

(n)
θ′

dP
(n)
θ

= 2
n
∑

t=1

log Φ
(n)
t (θ, θ′), (2.4)

where Φ
(n)
t (θ, θ′) = [{g{φt(θ

′)}σt(θ)}/{g{φt(θ)}σt(θ
′)}]1/2 with φt(θ) = (Yt −

β
′

zt)/σt(θ). From Giraitis et al. (2000), (Yt−β′zt) can be expressed as a nonlinear

function of {ut, ut−1, . . .}, say, f(ut, ut−1, . . .). In (2.4) we understand that all

the (Yt − β′zt)
′s are replaced by f(ut, ut−1, . . .) if t ≤ 0. We denote by H(g; θ)
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the hypothesis under which the underlying parameter is θ ∈ Θ and the density

of ut is g = g(·). We define θn = θ + (
√

n)−1ξ, ξ = (κ′, h′)′ ∈ S ⊂ R
r, where

κ = (κ1, . . . , κp)
′, h = (h1, . . . , hq)

′, and S is an open subset of R
r. We write

θn = (β′
n, η′n)′, and take n so that θn ∈ Θ. Henceforth we denote by R

Z the

product space · · · ×R×R×R ×R× · · · , whose component spaces correspond to

the coordinate spaces of (. . . , u−1, u0, Y1, Y2, . . .), and write its Borel σ-field by

BZ.

Now we state the LAN theorem for the ARCH(∞)-SM model (2.1).

Theorem 2.1. Suppose that Assumptions 1 − 4 hold. Then the sequence of ex-

periments En = {R
Z,BZ, {P (n)

θ : θ ∈ Θ ⊂ R
r}}, n ∈ N, is locally asymptotically

normal and equicontinuous on compact subset C of S. That is,

(i) For all θ ∈ Θ, the log-likelihood ratio Λn(θ, θn) admits the following asymp-

totic representation under H(g; θ):

Λn(θ, θn) = (κ′, h′)
1√
n

n
∑

t=1

(∆1,t,∆2,t)
′ − 1

2
ξ′Fξ + oP (1), (2.5)

where ∆1,t = −(zt/σt)(g
′(φt)/g(φt))−(2σ2

t )−1(∂σ2
t /∂β){1+φt(g

′(φt)/g(φt))},
∆2,t = −(2σ2

t )
−1{1 + φt(g

′(φt)/g(φt))}(∂/∂η)σ2
t , and

F =

(

F11, F12

F21, F22

)

with F11 = I(g) · M(0) + {J(g) − 1}E[(4σ4
t )−1(∂σ2

t /∂β)(∂σ2
t /∂β′)], F12 =

{J(g)−1} E[(4σ4
t )−1(∂σ2

t /∂β)(∂σ2
t /∂η′)], F22 ={J(g)−1}E[(4σ4

t )−1(∂σ2
t /∂η)

(∂σ2
t /∂η′)].

(ii) Under H(g; θ), ∆n
d−→ N(0, F ), where ∆n = n−1/2∑n

t=1(∆1,t,∆2,t)
′

.

(iii)For all n ∈ N and ξ ∈ S, the mapping ξ → P n
θn

is continuous with respect to

the variational distance ‖P − Q‖ = sup{|P (A) − Q(A)|;A ∈ BZ}.
The term ∆n, called the central sequence, is measurable with respect to us,

s ≤ 0, Yj, zj, 1 ≤ j ≤ n, but it is not so with respect to the observable sequence

Yj, zj, 1 ≤ j ≤ n. Therefore, we will make a (Y1, . . . , Yn, z1, . . . , zn)-measurable

version ∆̃n of ∆n. For this task, we introduce the truncated versions of σ2
t and

φt: σ̃2
t = σ̃2

t (β, η) := a +
∑t−1

j=1 bj(Yt−j − β′zt−j)
2, and φ̃t := (Yt − β

′

zt)/σ̃t, and

assume the following.

Assumption 5.

(i) For some r ∈ [0, 1), the coefficients bj = bj(η) satisfy bj(η) = O(rj) for all j

≥ 1 and η ∈ H.

(ii) For some v1, . . . , vq ∈ [0, 1), the derivatives (∂bj(η)/∂ηk), k = 1, . . . , q, satisfy

|(∂bj(η)/∂ηk)| = O(vj
k) for all j ≥ 1 and η ∈ H.
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The following theorem shows that the starting values {us; s ≤ 0} have no

influence on the LAN form in (2.6) below.

Theorem 2.2. Under Assumptions 1 − 5, the log-likelihood ratio Λn(θ, θn) ad-

mits, under H(g; θ), as n → ∞, the asymptotic representation

Λn(θ, θn) = (κ′, h′)∆̃n − 1

2
ξ′ F ξ + oP (1), (2.6)

where ∆̃n = n−1/2∑n
t=1(∆̃1,t, ∆̃

′
2,t), ∆̃1,t = −(ztσ̃t)(g

′(φ̃t)/g(φ̃t))− (2σ̃2
t )

−1(∂σ̃2
t /

∂β){1+φ̃t(g
′(φ̃t)/g(φ̃t))}, ∆̃2,t = −(2σ̃2

t )
−1{1+φ̃t(g

′(φ̃t)/g(φ̃t))}(∂/∂η)σ̃2
t . Here,

∆̃n
d−→ N(0, F ) under H(g; θ).

3. Applications to Estimation and Testing Problems

First, we discuss the estimation theory for θ. In what follows the distribution

law of a random vector Yn under P
(n)
θ is denoted by L(Yn|P (n)

θ ), and the weak

convergence to Z is denoted by L{Yn|P (n)
θ } d−→ Z. We define the class A of

sequences of estimators of θ, {Sn}, as

A = [{Sn};L{
√

n(Sn − θn)|P (n)
θn

} d−→ Zθ, a probability distribution ],

where Zθ, in general, depends on {Sn}. Let L be the class of all loss functions

l : R
r → [0,∞) of the form l(x) = τ(|x|) which satisfies τ(0) = 0 and τ(a) ≤ τ(b)

if a ≤ b. Typical examples are l(x) = I(|x| > a) and l(x) = |x|p, p ≥ 1, where

I(·) denotes the indicator.

Assume that the LAN property (2.5) holds. Then, a sequence {θ̂n} of es-

timators of θ is said to be a sequence of asymptotically centering estimators if√
n(θ̂n−θ)−F−1∆n = oP (1) in P

(n)
θ . The following proposition can be verified

by following the arguments in Strasser (1985, Section 83), Jeganathan (1995),

and Taniguchi and Kakizawa (2000, p.69).

Proposition 3.1. Assume the LAN property (2.5) for the ARCH(∞)-SM model.

Let {Sn} be a sequence of estimators of θ that belongs to A. Let ∆ be a random

vector distributed as N(0r, F ). Then the following statements hold.

(i) For any l ∈ L with El(∆) < ∞, lim infn→∞ E[l{√n(Sn − θ)}|P (n)
θ ] ≥

E{l(F−1∆)}.
(ii) If lim supn→∞ E[l{√n(Sn−θ)}|P (n)

θ ] ≤ E{l(F−1∆)} for a nonconstant l ∈ L

with El(∆) < ∞, then Sn is a sequence of asymptotically centering estima-

tors.

In view of the above result, a sequence of estimators {θ̂n} ∈ A of θ is

asymptotically efficient if it is a sequence of asymptotically centering estima-

tors. Then we can construct an asymptotically efficient estimator. For any
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sequence of estimators θ̃n, the discretized estimator θ̄n of θ̃n is defined by the

nearest vertex of {θ; θ = n−1/2(i1, . . . , ir)
′, ij integers}. First we assume that

the innovation density g(·) is known. We denote the Fisher information ma-

trix F and the central sequence ∆̃n by F (θ, g) and ∆̃n(θ, g), respectively. Let

θ̂n = θ̄n + n−1/2F (θ̄n, g)−1∆̃n(θ̄n, g), where θ̄n is a discrete and
√

n-consistent

estimator of θ (for technical justification for our use of discrete estimators, see

Kreiss (1987, p.120). In our model, we can use the least squares estimator (LSE)

β̂LS for β. Then η is estimated by the conditional LSE (see Tjøstheim (1986)),

η̂(β̂LS) = argminη

n
∑

t=2

[(Yt − β̂′
LSzt)

2 − a(η) −
t−1
∑

j=1

bj(η)(Yt−j − β̂′
LSzt−j)

2]2

= argminη S(β̂LS , η), say.

Strictly speaking, Tjφstheim’s conditional LSE is η̂(β). However, in view of

Assumptions 1, 4 and 5, we can show that Var (β̂LS) = O(n−1), n−1/2[(∂/∂η)

S(β̂LS , η) − (∂/∂η)S(β, η)] = op(1) and n−1[(∂2/∂η∂η′)S(β̂LS , η) − (∂2/∂η∂η′)

S(β, η)] = op(1). Thus η̂(β̂LS) has the same asymptotics as η̂(β). Hence the

estimator (β̂′
LS , η̂′(β̂LS))′ becomes a candidate of θ̃n. Here, similarly to LeCam

(1986) and Linton (1993), it can be shown that θ̂n is asymptotically efficient.

If g(·) is unknown, substituting an appropriate nonparametric density estimator

ĝn(·) for g(·), we can suggest
ˆ̂
θn = θ̄n + n−1/2F (θ̄n, ĝn)−1∆̃n(θ̄n, ĝn), but we

cannot guarantee its asymptotic efficiency. For the ARCH(p) case, Linton (1993)

reparameterized the model, and gave an asymptotic efficient estimator of the

coefficients of ARCH model. Our case is not straightforward because infinitely

many b′js depend on unknown parameter η.

Next, we discuss the problem of testing. Let M(B) be the linear space

spanned by the columns of a matrix B. The problem consists of testing the null

hypothesis H, under which
√

n(θ − θ0) ∈ M(B) for some given r×(r−l) matrix

B of full rank and given vector θ0 ∈ R
r. Then, similarly to Strasser (1985, Section

8.2) and Taniguchi and Kakizawa (2000, p.78), we can see that the test based on

the quadratic form ‖[Ir − F 1/2B(B′FB)−1B′F 1/2]F−1/2∆̃n ‖2
θ=θ̄n

, which has

the χ2
l null distribution asymptotically, is locally asymptotically optimal. Here

Ir denotes the r × r identity matrix.

4. Residual Empirical Process

In this section we study the residual empirical process from ARCH(q)-SM

models. Consider the model
{

Yt = β
′

zt + σtut,

σ2
t = a +

∑q
j=1 bj(Yt−j − β

′

zt−j)
2,

(4.1)
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where β is a p-dimensional unknown vector, a > 0, bj ≥ 0, and 0 ≤∑q
j=1 bj < 1,

{ut} is a sequence of i.i.d. r.v.’s, such that ut is independent of zs, s ≤ t, and

{zt} is a strictly stationary and ergodic process.

Assumption 6.

(i) The density g(·) of {ut} is positive and differentiable; it is ‘increasing and

convex’ on (−∞,−M ] and ‘decreasing and convex’ on [M,∞) for some pos-

itive real number M ; |x|g(x) → 0 as |x| → ∞ and supx x2|g′

(x)| < ∞.

(ii) Eut = 0, Eu2
t = 1, Eu4

t < ∞ and E||zt||4 < ∞.

Note that the normal density satisfies Assumption 6 (i). Let â, b̂j and β̂ be

the estimators of a, bj and β with

n1/2(â − a) = OP (1), n1/2(b̂j − bj) = OP (1), and n1/2(β̂ − β) = OP (1).(4.2)

Then the residuals are given by ût = (Yt−β̂
′

zt)/σ̂t, where σ̂2
t = â+

∑q
j=1 b̂j(Yt−j−

β̂
′

zt−j)
2.

Our goal here is to investigate the asymptotic behavior of Ên, where

Ên(x) = n−1/2
n
∑

t=1

{I(ût ≤ x) − G(x)}, −∞ < x < ∞, (4.3)

where G(x) =
∫ x
−∞ g(v)dv. We split Ên(x) into En(x) + In + IIn, where

En(x) = n−1/2
n
∑

t=1

{I(ut ≤ x) − G(x)}

In = n−1/2
n
∑

t=1

{G(σ̂tx/σt + (β̂ − β)
′

zt/σt) − G(x)}

IIn = n−1/2
n
∑

t=1

{I(ût ≤ x) − G(σ̂tx/σt + (β̂ − β)
′

zt/σt) + G(x) − I(ut ≤ x)}.

Since

sup
x

|IIn| = oP (1), (4.4)

for which the proof is provided in Section 5, only En and In determine the limiting

distribution of Ên. In particular, In involves the estimators β̂, â and b̂j, so that

the asymptotic behavior of the residual empirical process is affected by a choice

of estimators. Below we analyze In and see how the estimators affect the limiting

distribution of Ên.
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Using Taylor’s series expansion, we can write

In = n−1/2
n
∑

t=1

{ ˆ(σt/σt − 1)x + (β̂ − β)
′

zt/σt}g(x) (4.5)

+n−1/2
n
∑

t=1

{ ˆ(σt/σt − 1)x + (β̂ − β)
′

zt/σt}2g′(ζtx)/2,

= I1n + I2n, say,

where ζtx is a real number between x and xσ̂t/σt + (β̂ − β)zt/σt.

First, we deal with I1n. Note that

σ̂2
t = â +

q
∑

j=1

b̂jξt−j − 2
q
∑

j=1

bj(β̂ − β)
′

νt−j + θnt, (4.6)

where ξt = σ2
t u

2
t , νt = σtutzt, and θnt = −2

∑q
j=1(b̂j − bj)(β̂ − β)

′

νt−j +
∑q

j=1 b̂j [(β̂ − β)
′

zt−1]
2. Utilizing Assumption 6 (ii) and (4.2), we can readily

check that

max
1≤t≤n

|θnt| = oP (n−1/2), (4.7)

and n−1/2∑n
t=1(σ̂

2
t −σ2

t )
2 = oP (1). Then, by simple algebra using this and (4.7),

we have that

I1n = n1/2(β̂ − β)
′

E(zt/σt)g(x) (4.8)

+{n1/2(â − a)E(1/2σ2
t ) + n1/2

q
∑

j=1

(b̂j − bj)E(u2
t−jσ

2
t−j/2σ

2
t )}xg(x) + ηn(x)

with supx |ηn(x)| = oP (1).

Now we deal with I2n. Let K > 0 be any real number. In view of (4.2), (4.6)

and (4.7), we can write

sup
x

|x2g′(ζtx)| ≤ K2 sup
x

|g′(x)| + sup
|x|≥K

(
x

ζtx
)2 sup

x
|x2g′(x)|

≤ O(1) + sup
|x|≥K,|θ|≤δn,|θ̃|≤δ̃n

| x

(1 + θ)x + θ̃
|2 = OP (1), (4.9)

where {δn} and {δ̃n} are some sequences of r.v.’s with δn = oP (1) and δ̃n = oP (1).

Also,

n−1/2{
n
∑

t=1

(σ̂t/σt−1 − 1)2 + ((β̂ − β)
′

n
∑

t=1

(zt/σt))
2} = oP (1).
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Hence, supx |I2n| = oP (1) which, together with (4.8), yields

In = n1/2(β̂ − β)
′

E(zt/σt)g(x)

+{n1/2(â − a)E(1/2σ2
t ) + n1/2

q
∑

j=1

(b̂j − bj)E(u2
t−jσ

2
t−j/2σ

2
t )}xg(x) + η̃n(x),

with supx |η̃n(x)| = oP (1). This leads to the following theorem.

Theorem 4.1. Under Assumption 6 and the conditions in (4.5), we have

Ên(x) = En(x) + Nn(x) + η∗n(x), (4.10)

where Nn(x) = n1/2(β̂−β)
′

E(zt/σt)g(x)+{n1/2(â−a)E(1/2σ2
t )+n1/2∑q

j=1(b̂j−
bj)E(u2

t−jσ
2
t−j/2σ

2
t )}xg(x), and supx |η∗n(x)| = oP (1).

Notice that Nn is not independent of the true empirical process En. This

phenomenon is not a surprise and even occurs in the empirical process with

parameter estimators in i.i.d. samples (cf. Durbin (1973)). Although we do not

pursue this matter in detail here, one can guess that the REP in the ARCH(∞)-

SM process would have the same representation with q = ∞ as in (4.10) in view

of the result of Theorem 4.1 and the fact that
∑∞

j=1 bj < 1.

The following is a direct result of Theorem 4.1.

Theorem 4.2. Under Assumption 6 and the conditions in (4.5), we have

Ên(G−1(s)) = En(G−1(s)) + Nn(G−1(s)) + η∗∗n (s), 0 ≤ s ≤ 1, (4.11)

where sups |η∗∗n (s)| = oP (1).

From the above theorem it transpires that the REP depends upon the es-

timators of parameters and therefore its limiting distribution is not a standard

Brownian bridge. A fundamental difference between the REP of the ARCH-SM

model and the usual AR model is that the limiting distribution of the former

depends upon the estimator of β as well as those of ARCH parameters, while it

is not true for the latter (cf. Boldin (1982)).

As we mentioned in the Introduction, Boldin already showed that the REP

of the ARCH(1) model depends upon the estimators of the ARCH parameters.

However, Theorem 4.2 indicates that special attention should be paid in applying

Boldin’s result to the ARCH-SM model. For example, the Kolmogorov-Smirnov

(KS) test in Boldin (2000), aimed at performing a Gaussian test, is no longer

applicable in the presence of β̂. Indeed, β̂ makes the situation somewhat com-

plicated when applying Theorem 4.2 to a goodness of fit test. Considering this

complexity, one might be able to use the chi-square type test statistic as proposed

in Lee (1996). For instance, if Ên(G−1(·)) converges weakly to a Gaussian process
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Z(·), we reject the null hypothesis H0 : {ut} ∼ G when Tn := l
′

kΣ̂klk is large,

where lk = (Ên(G−1(s1), . . . , Ên(G−1(sk))
′

for some sj ∈ (0, 1), j = 1, . . . , k,

and Σ̂k is a consistent estimator of Σ whose (j, l)th entry is Cov(Z(sj),Z(sl)).

Obviously, Tn asymptotically follows a chi-square distribution with k degrees of

freedom.

As mentioned above, in order to apply Theorem 4.2 to a goodness of test,

the asymptotic expansion form of the parameter estimators should be addressed.

Usually, the estimators of ARCH parameters after normalization appear to be the

sum of martingale differences. This guarantees that the REP converges weakly

to a Gaussian process. Here we give an example of an ARCH(1)-SM model in

which we employ the least squares estimator for the regression parameter and

the Gaussian MLE for the ARCH parameters.

Consider the ARCH(1)-SM model, viz., the model (4.1) with p = q = 1:

{

Yt = βzt + σtut,

σ2
t = a + b(Yt−1 − βzt−1)

2.

Assuming y0 = z0 = 0, the Gaussian MLE is obtained to maximize the Gaussian

log-likelihood function with the estimator β̂ substituted:

l(a, b) = c − (1/2)
n
∑

t=2

log(a + bε̂2
t−1)

−(1/2)
n
∑

t=2

ε̂2
t /(a + bε̂2

t−1) − log a/2 − ε̂2
1/2a,

where c is a constant and ε̂t = Yt − β̂zt. Then it can be seen that the following

expressions hold:

n1/2(â − a) = n−1/2
n
∑

t=1

{(u2
t − 1)(τ11 + τ12u

2
t−1σ

2
t−1)/σ

2
t } + oP (1), (4.12)

n1/2(b̂ − b) = n−1/2
n
∑

t=1

{(u2
t − 1)(τ12 + τ22u

2
t−1σ

2
t−1)/σ

2
t } + oP (1), (4.13)

where τij is the (i, j)-th entry of the 2×2 matrix D−1 and D = (Dij)
2
i,j=1 is

the matrix with D11 = −E(1/σ4
t ), D12 = D21 = −E(σ2

t−1u
2
t−1/σ

4
t ), D22 =

−E(u4
t−1σ

4
t−1/σ

4
t ).

Meanwhile, if β̂ is the least squares estimator, we have n1/2(β̂ − β) =

n−1/2(Ez2
t )−1∑n

t=1 ztσtut + oP (1). In view of this, (4.12), (4.13), and Theo-

rem 4.2, utilizing the Martingale Central Limit theorem one can see that the

REP converges weakly to a Gaussian process. In fact, simple algebra shows
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that Ên(G−1(·)) converges weakly to a Gaussian process E ∗ with mean 0 and the
covariance structure such that, for all 0 ≤ s, t ≤ 1,

Cov(E∗(s), E∗(t)) = s ∧ t − st

+Eλ11(Eu2
1I(u1 ≤ G−1(s)) − s)G−1(t)g(G−1(t))

+Eλ21Eu1I(u1 ≤ G−1(s))g(G−1(t))

+Eλ11(Eu2
1I(u1 ≤ G−1(t)) − t)G−1(s)g(G−1(s))

+Eλ21Eu1I(u1 ≤ G−1(t))g(G−1(s))

+Eλ11λ21Eu3
1(G

−1(s) + G−1(t))g(G−1(s))g(G−1(t))

+Eλ2
11E(u2

1 − 1)2G−1(s)G−1(t)g(G−1(s))g(G−1(t))

+Eλ2
21g(G−1(s))g(G−1(t)),

where

λ11 = {E1/2σ2
1}(τ11 + τ12u

2
0σ

2
0)/σ

2
1 + {Eu2

0σ
2
0/2σ

2
1}(τ12 + τ22u

2
0σ

2
0)/σ

2
1

and λ21 = {Ez2
1}−1E(z1/σ1)z1σ1. Although we do not pursue details, the above

can be naturally extended to a more general case as long as the asymptotic
behavior of the estimators is known.

5. Proofs

In this section, we give the proofs of the theorems presented in the previous
sections. In order to prove Theorem 2.1, we need the following. Recall that
g(·) is the innovation density satisfying Assumption 3. For given a > 0 and
p-dimensional vector b, we introduce G(x; ρ, δ) := g1/2[{1 + aρ}(x − b′δ)]{1/a +
ρ}1/2{a/g(x)}1/2 − 1, so

DG(x) :=

(

(1
2g(x)−1g′(x)ax + a

2

−1
2g(x)−1g′(x)b

)

which denotes the derivative of G(x; ρ, δ) with respect to ρ and δ evaluated at
ρ = 0 and δ = 0. In the same way as in Garel and Hallin (1995), we can prove
the following lemma.

Lemma 5.1. Suppose that Assumption 3 holds. Let v = (ρ, δ ′)′ and Ḡ(x; v)
:= G(x; ρ, δ)g(x)1/2 , then the following statements hold.

(i) For all v ∈ R
p+1,

∫

[G(x; ρ, δ) − v′DG(x)]2g(x)dx = O(a2ρ2) + O{(δ′b)2}.
(ii) For all v → 0 (0 6= v ∈ R

p+1), (v′v)−1
∫

[Ḡ(x; v) − v′DG(x)g(x)1/2]2dx → 0.
(iii)For any vn → 0 (vn ∈ R

p+1) and c > 0,

lim
n→∞

sup
‖u‖≤c

∫

‖n− 1

2 u + vn‖−2{Ḡ(x;n− 1

2 u + vn)

−(n− 1

2 u + vn)′DG(x)g(x)
1

2 }2dx = 0.
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Now we write U
(n)
t = Φ

(n)
t (θ, θn) − 1 and W

(n)
t = (2

√
n)−1{κ′∆1,t + h′∆2,t},

where Φ
(n)
t , is given in (2.4), and ∆i,t, i = 1, 2, are defined in Theorem 2.1.

Proof of Theorem 2.1. In order to prove the theorem, we check the LAN con-

ditions (S1)-(S6) below (cf. Swensen (1985)). Let Ft be the σ-algebra generated

by {us, s ≤ 0, Y1, . . . , Yt}.
(S1) E{W (n)

t |Ft−1} = 0 a.e. is easily checked.

(S2) limn→∞ E[
∑n

t=1{U
(n)
t −W

(n)
t }2] = 0. This condition is checked by show-

ing (a) limn→∞ E[
∑n

t=1{U
(n)
t − W

∗(n)
t }2] = 0, and (b) limn→∞ E[

∑n
t=1{W

∗(n)
t

−W
(n)
t }2] = 0, where W

∗(n)
t = (ρ, δ′)DG(x)|x=φt,ρ=(σt(θn))−1−(σt(θ))−1,δ=n−1/2κ =

v′DG(φt), say. For every c1 > 0, we have

E[
n
∑

t=1

{U (n)
t − W

∗(n)
t }2] =

n
∑

t=1

E[I(
√

n‖v‖ ≤ c1){U (n)
t − W

∗(n)
t }2]

+
n
∑

t=1

E[I(
√

n‖v‖ > c1){U (n)
t − W

∗(n)
t }2]

= E1 + E2, say.

From Lemma 5.1 (iii), it follows that

E1 =
n
∑

t=1

E[I(
√

n‖v‖ ≤ c1)E{(U (n)
t − W

∗(n)
t )2|Ft−1}] ≤ [

n
∑

t=1

E‖v‖2]oc1(1),

where limn→∞ oc1(1) = 0 for any given c1 > 0. Here, E‖v‖2 ≤ 2E|ρ|2 + O(n−1).

From Assumption 1 (iii), we have σ2
t (θ) ≥ ã and σ2

t (θn) ≥ ã, and thus E‖v‖2 ≤
O[E|σt(θn) − σt(θ)|2] + O(n−1). By the Mean Value Theorem, we can see that

σt(θn) − σt(θ) is equal to

(θn − θ)′
( − 1

σt(θ∗)

∑t−1
j=1 bj(η

∗)(Yt−j − β∗′zt−j)zt−j

1
2σt(θ∗){∂a

∂η (η∗) +
∑t−1

j=1
∂bj(η∗)

∂η (Yt−j − β∗′zt−j)2 +
∑∞

j=t
∂bj(η∗)

∂η u2
t−j}

)

,

(5.1)

where θ∗, η∗ and β∗ are on the segments θ 7→ θn, η 7→ ηn and β 7→ βn, respectively.

Thus, from Assumption 1 (iii) and (iv) and Assumption 2, it follows that E‖v‖2 =

O(n−1), which implies limn→∞ E1 = 0 for any given c1 > 0. We next evaluate

E2. Using Lemma 5.1 (i), one can see that

E2 ≤
n
∑

t=1

E[I(
√

n‖v‖ ≥ c1){O(σ2
t (θ) · ρ2) + O(δ′

ztz
′
t

σ2
t (θ)

δ)}]. (5.2)
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From Assumptions 1 and 2, we can see that (5.2) is dominated by

1

n

n
∑

t=1

E[I(
√

n‖v‖ ≥ c1) · O{‖√nv‖2}]. (5.3)

In view of (5.1), it is not difficult to show that
√

nv converges to a random vector

v0 in L2-sense. Hence,
√

nv is uniformly integrable (e.g., Ash (1972, p.297)),

which implies that (5.3) converges to zero as c1 → ∞. Therefore, E2 → 0, and

(a) is proven. The assertion (b) follows from the definition of W
∗(n)
t and W

(n)
t ,

(5.1), and Assumptions 1, 2 and 3. Hence, (S2) is established.

(S3) supn E{∑n
t=1 W

(n)
t

2
} < ∞. Recall the definition of W

(n)
t :

W
(n)
t = − κ′zt

2σ2
t (θ)

√
n

g′(φt)

g(φt)
− 1

4σ2
t (θ)

κ′

√
n

∂σ2(θ)

∂β
{1 + φt

g′(φt)

g(φt)
}

− 1

4σ2
t (θ)

√
n

h′ ∂

∂η
σ2

t (θ){1 + φt
g′(φt)

g(φt)
}.

From the stationarity of Yt and Assumption 4, we have that

E{
n
∑

t=1

W
(n)
t

2
} =

1

n

n
∑

t=1

E{nW
(n)
t

2
}

= κ′M(0)I(g)κ + o(1)

+{J(g) − 1}[κ′E{ 1

16σ4
t (θ)

∂σ2
t (θ)

∂β

∂σ2
t (θ)

∂β′
}κ

+h′E{ 1

16σ4
t (θ)

∂σ2
t (θ)

∂η

∂σ2
t (θ)

∂η′
}h

+κ′E{ 1

16σ4
t (θ)

∂σ2
t (θ)

∂β

∂σ2
t (θ)

∂η′
}h] =

τ2

4
+ o(1), say,

which implies (S3).

The remaining (S4), (S5) and (S6) can be shown similarly as in Taniguchi

and Kakizawa (2000, pp.44-45), and their proofs are omitted for brevity.

(S4)
∑n

t=1 W
(n)
t

2 P−→ τ2/4,

(S5) max1≤t≤n |W (n)
t | P−→ 0,

(S6)
∑n

t=1 E[W
(n)
t

2
I(|W (n)

t | > δ)|Ft−1]
P−→ 0 for some δ > 0.

Finally, part (iii) of the theorem follows from Scheffé’s theorem (cf. Bhat-

tacharya and Rao (1976)) and the continuity of g(·).
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Proof of Theorem 2.2. By the Mean Value Theorem, there exists σ∗
t ∈ (σ̃t, σt)

such that

φ̃t − φt = {σt − σ̃t

σ̃t
}φt =

1

2

∑∞
j=t bj(Yt−j − β′zt−j)

2

σ̃tσ∗
t

φt.

From Assumption 1 (i) and (ii) and Assumption 5 (i), we have φ̃t−φt = rtOP (1).

Similarly, it is shown that

g′(φ̃t)

g(φ̃t)
=

g′(φt)

g(φt)
+ (φ̃t − φt)(

g′

g
)′φt=φ∗

t
=

g′(φt)

g(φt)
+ rtOP (1), (5.4)

where φ̃t ≤ φ∗
t ≤ φt or φt ≤ φ∗

t ≤ φ̃t. Then, from Assumption 5 (i) and (ii), it

follows that

∂

∂η
σ̃2

t =
∂

∂η
σ2

t +
q
∑

k=1

O(vt
k) · OP (1), (5.5)

∂

∂β
σ̃2

t =
∂

∂β
σ2

t + rtOP (1).

In view of (5.4)-(5.5), we can see that ∆n−∆̃n
P−→ 0 under H(g; θ), which yields

∆̃n
d−→ N(0, F ) under H(g; θ).

The following two lemmas are useful for proving (4.4).

Lemma 5.2. Let G be a strictly increasing distribution function and let g = G
′

.

Suppose that h : R → R is continuous with lim|x|→∞ |h(x)| = 0. Then for any

sequence of positive real numbers {δn} decaying to 0, sup|G(x)−G(y)|≤δn
|h(x) −

h(y)| → 0 as n → ∞.

Proof. Suppose that the lemma does not hold. Then we can find a positive

real number c and a subsequence n
′

of positive integers, such that (a) |h(xn′ ) −
h(yn′ )| ≥ c > 0 for all n

′

, and (b) |G(xn′ ) − G(yn′ )| ≤ δn′ . If there is a

subsequence {xn′′} of {xn′} with xn′′ → ±∞, then yn′′ should diverge to ±∞ by

(5.6). But this is in contradiction to (a). Thus (xn′ , yn′ ) must be in a compact

subset of R2 and has a limit point (x0, y0). Then, by the continuity of h and (a),

we have |h(x0) − h(y0)| ≥ c > 0. Furthermore, from (b) we have G(x0) = G(y0)

and so x0 = y0, which leads to a contradiction. This completes the proof.

Lemma 5.3. Suppose that a density function g is positive and differentiable.

Furthermore, assume that g is decreasing and convex on [M,∞) and increasing

and convex on (−∞,−M ] for some M > 0. Let xi denote the real numbers such

that −∞ = x0 < · · · < xn = ∞ and G(xi) = i/n, where G is the distribution

function corresponding to g. Then, sup1≤i≤n supj=i,i−1(xi − xi−1)g(xj) → 0.
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Proof. Put S+
n = {i;M ≤ xi−1}, S−

n = {i;xi ≤ −M}, and S0
n = {1, . . . , n} −

S+
n − S−

n . If i ∈ S+
n ,

(xi − xi−1)g(xi) ≤ G(xi) − G(xi−1) = 1/n. (5.6)

Now we write (xi − xi−1)g(xi−1) = I + II, where

I = {g′

(xi)(xi−1 − xi) + 2g(xi)}(xi − xi−1)/2,

II = {2g(xi−1) − g
′

(xi)(xi−1 − xi) − 2g(xi)}(xi − xi−1)/2.

Note that I − II ≥ g(xi)(xi − xi−1) ≥ 0 and I ≤ G(xi) − G(xi−1) = 1/n.

Hence, we have (xi − xi−1)g(xi−1) ≤ 2I ≤ 2/n. This together with (5.6)

yields supi∈S+
n

supj=i,i−1 (xi − xi−1) g(xj) ≤ 2/n → 0. Similarly, we have

supi∈S−

n
supj=i,i−1(xi − xi−1)g(xj) ≤ 2/n → 0. Since the following holds mani-

festly, supi∈S0
n

supj=i,i−1(xi − xi−1)g(xj) → 0, the lemma is established.

Proof of (4.4). Let xi be real numbers such that −∞ = x0 < x1 < · · · <

xn = ∞ and G(xi) = i/n. For si ∈ Rp, i = 1, 4, s3 ∈ Rq and s2, s5 ∈
R, we define Γt(x, s

′

1, s2, s
′

3, s
′

4, s5) = n−1/2s
′

1zt/σt + Γ∗
t (x, s2, s

′

3, s
′

4, s5), where

Γ∗
t (x, s2, s

′

3, s
′

4, s5) = (Λt(s2, s3, s4)x)/(σt(2σt + s5/n
1/2)), and

Λt(s2, s3, s4) = s2/n
1/2 +

q
∑

j=1

s3jξt−j/n
1/2 + s

′

4

q
∑

j=1

bjνt−j/n
1/2

+s
′

4

q
∑

j=1

s3jνt−j/n +
q
∑

j=1

[(n−1/2s3j + bj)s
′

4zt−j ]
2/n,

where sij denotes the j-th entry of si. We set S = (s
′

1, s2, s
′

3, s
′

4, s5) = (S1, . . . , Sr)

with r = 2q + p + 2. In view of (4.2), (4.6), (4.7) and the identity σ̂t/σt − 1 =

(σ̂2
t − σ2

t )/σt(2σt + (σ̂t − σt)), it suffices to prove

sup
T

|n−1/2
n
∑

i=1

{I(ut ≤ x + Γt(x,S)) − G(x + Γt(x,S))

+G(x) − I(ut ≤ x)}| = oP (1)

for any K > 0 and 0 < λ < a, where a is the real number in (4.1), and

T = {(x,S);−∞ < x < ∞, |Si| ≤ K, i = 1, . . . , r − 1, |Sr| ≤ λ}.

For i = 1, . . . , r − 1 and j = 1, . . . , n2, we put Sij = −K + 2Kj/n2 and let

Srj = −λ + 2λj/n2. We denote by {Cj}, j = 1, . . . , Nn = n2r, the subrectangles

generated by the vertices Sij ’s. We define Γ+
t (i, j) = sup{Γt(x,S);xi−1 < x ≤
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xi, S ∈ Cj} and Γ−
t (i, j) = inf{Γt(x,S);xi−1 < x ≤ xi, S ∈ Cj}. Then for

x ∈ (xi−1, xi] and S ∈ Cj , using Taylor’s series expansion we have

n−1/2
n
∑

t=1

{G(xi + Γ+
t (i, j)) − G(x + Γt(x,S))}

= n−1/2
n
∑

t=1

{G(xi) − G(x)}

+n−1/2
n
∑

t=1

{Γ+
t (i, j))g(xi) − Γt(x,S)g(x)}

+n−1/2
n
∑

t=1

{(Γ+
t (i, j))2g′(ζti) − (Γt(x,S))2g′(ζ̃ti)}/2

= I1 + I2 + I3 say,

where ζti is a real number between xi and xi + Γ+
t (i, j), and ζ̃ti is a real number

between x and x + Γt(x,S).

Obviously, supx |I1| = oP (1). Since the sup is taken over a bounded set, we
can write

Γ+
t (i, j) = (s∗1)

′

zt/σtn
1/2 +

Λ(s∗2, s
∗
3, s

∗
4)yi

σt(2σt + s∗5/n
1/2)

for some S∗ = S∗
t ∈ C̄j , where yi is either xi or xi−1 according to whether

Λ(s∗2, s
∗
3, s

∗
4) is positive or negative. Then, using Lemmas 5.2 and 5.3, we have

that

|n−1/2
n
∑

t=1

{Γ+
t (i, j)g(xi) − Γt(x,S)g(x)}|

= n−1/2|
n
∑

t=1

{(s∗1 − s1)
′

ztg(xi)/σtn
1/2|

+n−1/2|
n
∑

t=1

{(s∗1 − s1)
′

zt(g(xi) − g(x))/σtn
1/2}|

+n−1/2|
n
∑

t=1

{ Λ(s∗2, s
∗
3, s

∗
4)

σt(2σt + s∗5/n
1/2)

− Λ(s2, s3, s4)

σt(2σt + s5/n1/2))
}yig(xi)|

+n−1/2 |
n
∑

t=1

{ Λ(s∗2, s
∗
3, s

∗
4)

σt(2σt+s∗5/n
1/2)

− Λ(s2, s3, s4)

σt(2σt+s5/n1/2)
}(yig(xi)−xg(x))| = oP (1),

which implies I2 = oP (1).
For I3, notice that due to our assumption, maxj=i,i−1 sup|θ|≤an,|θ̃|≤bn

|x2
jg

′

(xi

+θ + θ̃xj)| = OP (1) for any sequences of r.v.’s an = oP (1) and bn = oP (1), and
similarly, sup|θ|≤an,|θ̃|≤bn

|x2g
′

(x + θ + θ̃x)| = OP (1) (cf. (4.9)). Hence, in view of
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(4.2), (4.6) and (4.7), we have I3 = oP (1). As a consequence,

sup
Tij

|n−1/2
n
∑

t=1

{G(xi + Γ+
t (i, j)) − G(x + Γt(x,S)}| = oP (1), (5.7)

where Tij = {(x,S);xi−1 < x ≤ xi,S ∈ Cj}. Similarly, we have

sup
Tij

|n−1/2
n
∑

t=1

{G(xi−1 + Γ−
t (i, j)) − G(x + Γt(x,S)}| = oP (1). (5.8)

In view of (5.7), (5.8), the fact that for S ∈ Cj, one has I(ut ≤ xi−1 +

Γ−
t (i, j)) ≤ I(ut ≤ x + Γt(x,S)) ≤ I(ut ≤ xi + Γ+

t (i, j)), and the fact that

sup|G(x)−G(y)|≤τn
n−1/2|∑n

t=1{I(ut ≤ x)−G(x) + G(y) − I(ut ≤ y)}| = oP (1) for

any sequence of positive real numbers {τn} decaying to 0 (cf. Billingsley (1968,

p.106)), we can see that supx |IIn| = oP (1) if

sup
1≤i≤n

sup
1≤j≤Nn

|n−1/2
n
∑

t=1

{I(ut ≤ xi + Γ+
t (i, j)) − G(xi + Γ+

t (i, j))

+G(xi) − I(ut ≤ xi)}| = oP (1), (5.9)

sup
1≤i≤n

sup
1≤j≤Nn

|n−1/2
n
∑

t=1

{I(ut ≤ xi−1 + Γ−
t (i, j)) − G(xi−1 + Γ−

t (i, j))

+G(xi−1) − I(ut ≤ xi−1)}| = oP (1). (5.10)

Here, we only prove (5.9) since (5.10) can be proven in a similar fashion.

To this end, we set dt = I(ut ≤ xi+Γ+
t (i, j))−G(xi+Γ+

t (i, j))+G(xi)−I(ut ≤
xi) and Dt

L = (
∑t

i=1 |ξi−j | ≤ Ln,
∑t

i=1 ||νi−j|| ≤ Ln,
∑t

i=1 ||zi−j ||2 ≤ Ln, j =

1, . . . , q). Since P ((Dn
L)c) can be made arbitrarily small by taking a large L due

to (4.8), it suffices to prove that

P ( sup
1≤i≤n

sup
1≤j≤Nn

n−1/2|
n
∑

t=1

dt| > δ,Dn
L) → 0 for all L, δ > 0. (5.11)

For each t, we define d̃t = dtI(Dt
L). Then (5.11) holds if

∑n
i=1

∑Nn
j=1 P (n−1/2

|∑n
t=1 d̃t| > δ) → 0 for all L, δ > 0. Since P (δt 6= d̃t for some t = 1, . . . , n,Dn

L) =

P (∅) = 0. Note that |d̃t| ≤ 1, Ed̃t = 0 and

n
∑

t=1

E|d̃t|2 ≤ E
n
∑

t=1

|G(xi + Γ+
t (i, j)) − G(xi)| ≤ K̃n1/2 for some K̃ > 0.

Applying Bernstein’s inequality for a sequence of martingale differences, as in

Lee and Wei (1999), we obtain P (n−1/2|∑n
t=1 d̃t| > δ) ≤ e−ηn1/2

for some η > 0,
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which immediately implies
∑n

i=1

∑Nn
j=1 P (n−1/2|∑n

t=1 d̃t| > δ) ≤ nNne−ηn1/2 →
0. Hence, the theorem is established.
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