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Abstract: In this paper, we study the maximum likelihood estimates (MLEs) of

expected frequencies under a loop order restriction in an I × J contingency table.

Some properties of the MLEs are given and an algorithm for computing the MLEs

is detailed. The proposed methods are illustrated by using the data from Wing

(1962).
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1. Introduction

Consider a 3 × 3 contingency table with observed frequencies mij and cor-
responding expected frequencies µij, i, j = 1, 2, 3. The local odds ratios ψij
are written as ψij = (µij × µi+1,j+1)/(µi,j+1 × µi+1,j) for i, j = 1, 2. The local
odds ratios are said to obey a loop order if the inequalities ψ11 ≤ ψ12 ≤ ψ22 and
ψ11 ≤ ψ21 ≤ ψ22 are satisfied. We write this as the loop order by

ψ11 ≤ ψ12, ψ21 ≤ ψ22. (1)

The problem is to find the MLE of µij under the above restriction.
Fienberg (1978), Haberman (1974), Simon (1974), Goodman (1979), Agresti

(1987) and others formulate associations based on scores of column and row ef-
fects in contingency tables and obtain estimates of expected frequencies. Loop
order is a particular model in their papers. We consider estimating expected
frequencies under the loop order without assigning the scores of row and column
effects. Darroch and Ratcliff (1972) give an algorithm for generalized scaling
loglinear models when the expected frequencies are restricted by some equalities.
For the case of local homogeneous odds ratios several authors, such as Agresti
(1984) and Yanagawa and Fujii (1990, 1995), consider estimating expected fre-
quencies and give an algorithm to obtain MLEs. For 2 × r contingency tables,
Shi (1991) discusses MLEs when the simple order or loop order of odds ratios
is satisfied. Agresti and Coull (1998) consider the order-restricted inference for
monotone trend alternatives in contingency table. Lemke and Dykstra (1984)
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propose an algorithm of the multinomial maximum likelihood estimates with
multiple cone restrictions. In our paper, based on iterative proportional fitting
(Darroch and Ratcliff (1972)) and isotonic regression, an algorithm to obtain
the estimates under the loop order is presented. Some results about isotonic
regression are given in Section 2. Iterative proportional fitting (IPF) was first
presented by Deming and Stephan (1940), further details on uses of IPF, see
Agresti (1990, pp.185-186), (1984, pp.65-66) and Bishop, Fienberg and Holland
(1975, pp.76-102).

In Section 2 of this paper, isotonic regression is reviewed. Section 3 describes
the existence and uniqueness of the MLE of µij, i, j = 1, 2, 3 under the loop order
restriction. Section 4 is devoted to the proposed algorithm for computing the
MLEs. In Section 5, we show how the algorithm may be generalized to I × J

tables. In Section 6, an example of the use of the algorithm is presented.

2. Isotonic Regression

We review certain results about isotonic regression which may be found in
Robertson, Wright and Dykstra (1988). In n-dimensional Eucliean space Rn,
define an inner product with weight ω = (ω1, . . . , ωn) and a norm as

(y, z)ω =
n∑
i=1

yiziωi (2)

for any y, z ∈ Rn, where ωi ≥ 0, i = 1, . . . , n, and
∑n
i=1 ωi = 1. The vector

θ = (θ1, . . . , θn) is said to satisfy the simple loop order if θ1 ≤ θi ≤ θn for
i = 2, . . . , n− 1. Let G denote the loop order cone G = {θ} when θ satisfies the
loop order.

Definition 1. Let x ∈ Rn. Then x∗ = (x∗1, . . . , x∗n) is called isotonic regression of
x on G with weight vector ω if x∗ ∈ G and (x−x∗, x−x∗)ω = minθ∈G(x−θ, x−θ)ω.
Theorem 2.1. If x∗ is isotonic regression of x on G with weight vector ω if
(x− x∗, x∗)ω = 0 and (x− x∗, y)ω ≤ 0, for any y ∈ G.

Corollary 2.1. For any real function g, we have (x − x∗, g(x∗))ω = 0, where
g(x∗) = (g(x∗1), . . . , g(x∗n)).

The pool-adjacent-violater algorithm (PAVA) is commonly used to compute
the isotonic regression x∗ of x on G with weight ω. Let M = (M1, . . . ,Mn) be
the subscript set of x after permutating (x2, . . . , xn−1) in increasing order with
M1 = 1 and Mn = n. Let z = (z1, . . . , zn) where zi = xMi for all i. Let ω̃ =
(ω̃1, . . . , ω̃n) be the weight where ω̃i = ωMi . Let G0 = {θ} where θ satisfies the
simple order θ1 ≤ θ2 ≤ · · · ≤ θn. Let AV (B) =

∑
i∈B ziωi/(

∑
i∈B ωi), where B
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is a subset of i, . . . , n. To obtain the isotonic regression z∗ of z to G0 under the
weight ω̃, one uses the following.

PAVA

Step 1. if z ∈ G0, then z∗ = z.
Step 2. if there exists j that satisfies zj > zj+1, let B = {j, j + 1}, zB =

AV (B), ω̃B = ω̃j + ω̃j+1, ẑ = (z1, . . . , zj−1, zB , zj+2, . . . , zn) and ω̂ =
(ω̃1, . . . , ω̃j−1, ω̃B , ω̃j+1, . . . , ω̃n).

Step 3. Repeat Step 2 until the subscripts are partitioned into l blocks B1, . . .,
Bl satisfying AV (B1) < · · · < AV (Bl), then z∗i = AV (Bt), i ∈ Bt,
t = 1, . . . , l.

3. The Model and Some Properties of MLEs

We assume that the data are distributed as the multinomial distribution.
The log-likelihood function is of the form L(µ) =

∑3
i=1

∑3
j=1mij log µij + c,

where
3∑
i=1

3∑
j=1

µij =
3∑
i=1

3∑
j=1

mij = m. (3)

Here µ = (µij, i = 1, 2, 3; j = 1, 2, 3) and c is a constant which does not depend
on the parameters. Now we suppose, in particular, that logµ11 = α0 + αr1 + αc1,
log µ12 = α0 +αr1 +αc2, log µ13 = α0 +αr1 +αc3, log µ21 = α0 +αr2 +αc1, log µ22 =
α0 + αr2 + αc2 + ψ1, log µ23 = α0 + αr2 + αc3 + ψ1 + ψ2, log µ31 = α0 + αr3 + αc1,
log µ32 = α0 + αr3 + αc2 + ψ1 + ψ3, log µ33 = α0 + αr3 + αc3 + ψ1 + ψ2 + ψ3 + ψ4.
Assume that

∑3
i=1 α

r
i =

∑3
j=1 α

c
j = 0, i.e., αr3 = −αr1 − αr2 and αc3 = −αc1 − αc2.

The loop order in our particular case has

ψ1 ≤ ψ2, ψ3 ≤ ψ4. (4)

For the convenience, the likelihood function L(µ) is denoted by L(α,ψ) where
α = (α0, α

r
1, α

r
2, α

c
1, α

c
2) and ψ = (ψ1, ψ2, ψ3, ψ4). It is clear that if (α∗, ψ∗) is

the MLE of (α,ψ) in L(α,ψ) under (3) and (4), the corresponding values {µ∗ij},
based on the log-linear model, are the MLEs of {µij} under (3) and (4). We call
µ∗ij the restricted MLE of µij. Let

F (α,ψ) =
3∑
i=1

3∑
j=1

(mij log µij − µij) +m. (5)

The Hessian matrix of F (α,ψ) for α and ψ is negative definite, so F (α,ψ) is
strictly concave for α and ψ. This implies that there exists a unique point
(α∗, ψ∗) satisfying F (α∗, ψ∗) = maxα,ψ F (α,ψ). In Appendix, a proof may be



286 NING-ZHONG SHI AND SHU-RONG ZHENG

found to show that the maximum point (α∗, ψ∗) of F (α,ψ) under (4) is just
the MLEs of (α,ψ) in L(α,ψ) under (3) and (4). We introduce the notation
A1 = m22 + m23 + m32 + m33, A2 = m23 + m33, A3 = m32 + m33, A4 = m33.
By substituting µ∗ij for mij in Ai, we obtain A∗

i , i=1, 2, 3, 4. For instance,
A∗

1 = µ∗22 + µ∗23 + µ∗32 + µ∗33.
We need to find the solution (α∗, ψ∗) which maximizes F (α,ψ) under (3).

The Lagrangian

−F (α,ψ, λ) = −F (α,ψ)+λ1(ψ1−ψ2)+λ2(ψ1−ψ3)+λ3(ψ2−ψ4) + λ4(ψ3−ψ4)

= −
3∑
i=1

3∑
j=1

(mij log µij − µij) −m+ λ1(ψ1 − ψ2) + λ2(ψ1 − ψ3)

+λ3(ψ2 − ψ4) + λ4(ψ3 − ψ4),

where λ = (λ1, λ1, λ3, λ4) and the λ′is are the Lagrangian multipliers. The Kuhn-
Tucker conditions, (see Mokhtar and Shetty (1979) or Anthony, Francis and Uhl
Jr. (1992)) are usually used to deal with such problems. As −F (α,ψ) is a strictly
convex function, (α∗, ψ∗) is the solution if


ψ∗
1 ≤ ψ∗

2 , ψ
∗
3 ≤ ψ∗

4 ,

λi ≥ 0, i = 1, 2, 3, 4,

− ∂F

∂α0

∣∣∣
(α∗,ψ∗)

= −
3∑
i=1

3∑
j=1

(mij − µ∗ij) = −m+
3∑
i=1

3∑
j=1

µ∗ij = 0,

− ∂F

∂αri

∣∣∣
(α∗,ψ∗)

= −mi+ + µ∗i+ +m3+ − µ∗3+ = 0, i = 1, 2,

− ∂F

∂αcj

∣∣∣
(α∗,ψ∗)

= −m+j + µ∗+j +m+3 − µ∗+3 = 0, j = 1, 2,

− ∂F

∂ψ1
|(α∗,ψ∗) = −(m22+m23+m32+m33−µ∗22−µ∗23−µ∗32−µ∗33)+λ1+λ2 =0,

− ∂F

∂ψ2

∣∣∣
(α∗,ψ∗)

= −(m23 +m33 − µ∗23 − µ∗33) − λ1 + λ3 = 0,

− ∂F

∂ψ3

∣∣∣
(α∗,ψ∗)

= −(m32 +m33 − µ∗32 − µ∗33) − λ2 + λ4 = 0,

− ∂F

∂ψ4

∣∣∣
(α∗,ψ∗)

= −(m33 − µ∗33) − λ3 − λ4 = 0,

λ1(ψ2 − ψ1) = 0,

λ2(ψ3 − ψ1) = 0,

λ3(ψ4 − ψ2) = 0,

λ4(ψ4 − ψ3) = 0.
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The above equations correspond to

(A) ψ∗
1 ≤ ψ∗

2 , ψ
∗
3 ≤ ψ∗

4 ,

(B)

{
mi+ = µ∗i+, i = 1, 2, 3

m+j = µ∗+j , j = 1, 2, 3,

(C)




A1 ≥ A∗
1 (∗1)

A1 +A2 ≥ A∗
1 +A∗

2 (∗2)
A1 +A3 ≥ A∗

1 +A∗
2 (∗3)

A1 +A2 +A3 ≥ A∗
1 +A∗

2 +A∗
3 (∗4)

A1 +A2 +A3 +A4 = A∗
1 +A∗

2 +A∗
3 +A∗

4 (∗5)
” = ”holds in (∗1) if ψ∗

1 < ψ∗
2 and ψ∗

1 < ψ∗
3

” = ”holds in (∗2) if ψ∗
1 < ψ∗

3 and ψ∗
2 < ψ∗

4

” = ”holds in (∗3) if ψ∗
1 < ψ∗

2 and ψ∗
3 < ψ∗

4

” = ”holds in (∗4) if ψ∗
2 < ψ∗

4 and ψ∗
3 < ψ∗

4 .

Finally, we have the following theorem.

Theorem 3.1. (α∗, ψ∗) is the unique point satisfying F (α∗, ψ∗) = max(α,ψ)∈G
F (α,ψ) if (A), (B) and (C) hold.

4. The Iterative Algorithm

In this section, we propose an iterative algorithm based on Theorem 3.1 to
compute the MLEs of µij under the loop restriction. In step (n, 1) and (n, 2),
similar to IPF, we mainly want to assure that the sum of expected frequencies
in every row and column is that of observation frequencies. In Step (n, 3), our
main thought is to place weights on the µij in order to assure the loop order. Let
the starting point µ(0,3)

ij be mij for i = 1, 2, 3, j = 1, 2, 3. As one cycle has three
steps, we go to the stage where Step (n− 1, 1), Step (n− 1, 2) and Step (n− 1, 3)
are satisfied.

Step(n, 1) µ(n,1)
ij = µ

(n−1,3)
ij mi+/µ

(n−1,3)
i+ for i = 1, 2, 3, j = 1, 2, 3.

Step(n, 2) µ(n,2)
ij = µ

(n,1)
ij m+j/µ

(n,1)
+j for i = 1, 2, 3, j = 1, 2, 3.
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Step(n, 3)




µ
(n,3)
ij = µ

(n,2)
ij × Â

An
, for i = 1 or j = 1,

µ
(n,3)
22 = µ

(n,2)
22 × (

a
(n)
1

ψ
(n−1,3)
1

)t × (
Â

An
)1−t,

µ
(n,3)
23 = µ

(n,2)
23 × (

a
(n)
2

ψ
(n−1,3)
2

)t × (
a

(n)
1

ψ
(n−1,3)
1

)t × (
Â

An
)1−2t,

µ
(n,3)
32 = µ

(n,2)
32 × (

a
(n)
3

ψ
(n−1,3)
3

)t × (
a

(n)
1

ψ
(n−1,3)
1

)t × (
Â

An
)1−2t,

µ
(n,3)
33 = µ

(n,2)
33 × (

a
(n)
4

ψ
(n−1,3)
4

)t × (
a

(n)
3

ψ
(n−1,3)
3

)t × (
a

(n)
2

ψ
(n−1,3)
2

)t

×(
a

(n)
1

ψ
(n−1,3)
1

)t × (
Â

An
)1−4t.

where t = 1/9 and Â =
∑3
j=1m1j +

∑3
i=2mi1 + 8/9m22 + 7/9m23 + 7/9m32 +

5/9m33.
By substituting {µ(n,2)

ij } for mij in Â and Ai, we obtain An and A
(n)
i , by

substituting {µ(n−1,3)
ij } for µij in ψij , we obtain the corresponding ψ(n−1,3)

i . For

example, ψ(n−1,3)
1 = µ

(n−1,3)
11 × µ

(n−1,3)
22 /(µ(n−1,3)

12 × µ
(n−1,3)
21 ). The isotonic regres-

sion of x(n) = (x(n)
i , i = 1, 2, 3, 4) onto G with the weight vector ω(n) = (ω(n)

i ,
i = 1, 2, 3, 4) is denoted by �a(n) = Pω(n)(x(n)|G), where �a(n) = (a(n)

i , i = 1, 2, 3, 4)
and G is the convex cone formed by the loop order restriction (4). Note that, in
the above algorithm, the weights ω(n)

i are A(n)
i , i = 1, 2, 3, 4, and x(n)

i is denoted
by Aiψ

(n−1,3)
i /A

(n)
i , i = 1, 2, 3, 4. The µ(n,1)

ij satisfy µ
(n,1)
i+ = mi+ for all i, and

the µ(n,2)
ij satisfy µ(n,1)

+j = m+j for all j. Furthermore, we have ψ(n,2)
i = ψ

(n,1)
i =

ψ
(n−1,3)
i and ψ(n,3)

i = (ψ(n−1,3)
i )8/9(a(n)

i )1/9(An/Â)1/9, i = 1, 2, 3, 4.
Now, we explain Step(n, 3). We propose Step(n, 3) for Conditions (A) and

(C). First, since (a(n)
i , i = 1, 2, 3, 4) is the isotonic regression of x(n) onto G,

we have a(n)
1 ≤ a

(n)
2 , a(n)

3 ≤ a
(n)
4 . Thus ψ(n,3)

i satisfies ψ(n,3)
1 ≤ ψ

(n,3)
2 , ψ(n,3)

3 ≤
ψ

(n,3)
4 , that is, the above algorithm assures the loop order restriction in each step.

Furthermore, for Condition (C), we want to place weights on µ
(n,2)
ij . Now µ∗22

only exists in A∗
1, µ

∗
23 exists in both A∗

1 and A∗
2, µ

∗
23 exists in both A∗

1 and A∗
3, and

µ∗33 exists in all A∗
i , i = 1, 2, 3, 4, allowing Step(n, 3). The weight t in Step(n, 3),

satisfies 0 < 4t < 1, the exponents of a(n)
i /ψ

(n−1,3)
i are all the same and the sum

of exponents of weights in every µ
(n,3)
ij is 1. In our algorithm, without loss of

generality, we set t = 1/9.

Proposition 1. If
∑k
i=1 pi ≥

∑k
i=1 ri, where pi, ri > 0, for all i, then

∑k
i=1 pi log
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(pi/ri) ≥ 0. Furthermore,
∑k
i=1 pi log(pi/ri) = 0 if and only if pi = ri, i =

1, . . . , k (See Lemke and Dykstra (1984)).

In order to guarantee that this algorithm sequence converges to the MLE,
we need some lemmas. Proofs of Lemmas 1, 2 and 3 are given in the Appendix.

Lemma 1. For any n ≥ 1, we have
∑3
i=1

∑3
j=1 µ

(n,3)
ij ≤ m and

∑3
i=1

∑3
j=1 µ

(n,1)
ij

=
∑3
i=1

∑3
j=1 µ

(n,2)
ij = m.

Let W (n)
1 =

∑3
i=1mi+ log(mi+/µ

(n−1,3)
i+ ), W (n)

2 =
∑3
j=1m+j log(m+j/µ

(n−1,3)
+j ),

W
(n)
3 = (1/9)

∑4
i=1Ai log(a(n)

i /ψ
(n−1,3)
i ) + Â log(Â/An) and m(n,2) =

∑3
i=1

∑3
j=1

µ
(n,2)
ij = m.

Lemma 2. W (n)
i ≥ 0 for i = 1, 2 or 3.

Theorem 4.1.
∑3
i=1

∑3
j=1mij log µ(n,s)

ij is increasing in n and converges for
fixed s, s = 1, 2, 3, that is, the likelihood function converges.

Proof. We have W (n)
1 =

∑3
i=1

∑3
j=1mij log(µ(n,1)

ij /µ
(n−1,3)
ij ), W (n)

2 =
∑3
i=1

∑3
j=1

mij log(µ(n,2)
ij /µ

(n,1)
ij ) and W (n)

3 =
∑3
i=1

∑3
j=1mij log(µ(n,3)

ij /µ
(n,2)
ij ). So by Lemma

2,
∑3
i=1

∑3
j=1mij log µ(n,s)

ij is increasing in n for any fixed s, where s = 1, 2, 3. By

Lemma 1 and Proposition 1, we have
∑3
i=1

∑3
j=1mij log(mij/µ

(n,s)
ij ) ≥ 0. Then∑3

i=1

∑3
j=1mij log(µ(n,s)

ij ) is bounded by
∑3
i=1

∑3
j=1mij logmij for s = 1, 2, 3. So∑3

i=1

∑3
j=1mij log µ(n,s)

ij converges, that is, the likelihood function converges for
any fixed s, where s = 1, 2, 3.

Lemma 3. If all mij (i = 1, 2, 3, j = 1, 2, 3) are positive, then limn→+∞
(a(n)
i /ψ

(n−1,3)
i ) = 1, i = 1, 2, 3.

Theorem 4.2. If all mij are positive, the sequence {µ(n)
ij } given in the algorithm

converges to the uniquely restricted MLEs of {µij}.
Proof. Since µ(n,s)

ij is bounded by Lemma 1, for any sequence there exists a

subsequence, say {nq}, which satisfies limq→+∞ µ
(nq ,s)
ij = µ∗ij , s = 1, 2, 3). By

the proposed algorithm, we have
∑3
j=1 µ

(nq,1)
ij = mi+. Hence µ∗i+ = mi+ and

µ∗+j = m+j . From ψ
(nq ,3)
1 ≤ ψ

(nq ,3)
2 , ψ

(nq ,3)
3 ≤ ψ

(nq ,3)
4 , one has ψ∗

1 ≤ ψ∗
2 , ψ

∗
3 ≤ ψ∗

4.

This implies that µ∗ij satisfies (A) and (B), and ψ = (ψ∗
1 , ψ

∗
2 , ψ

∗
3 , ψ

∗
4) falls under

one of nine conditions:

ψ∗
1 = ψ∗

2 = ψ∗
3 = ψ∗

4 ; ψ
∗
1 = ψ∗

2 < ψ∗
3 < ψ∗

4 ; ψ∗
1 = ψ∗

3 < ψ∗
2 < ψ∗

4 ;

ψ∗
1 < ψ∗

2 = ψ∗
3 < ψ∗

4 ; ψ
∗
1 < ψ∗

2 < ψ∗
3 = ψ∗

4 ; ψ∗
1 < ψ∗

3 < ψ∗
2 = ψ∗

4 ;

ψ∗
1 = ψ∗

2 = ψ∗
3 < ψ∗

4 ; ψ
∗
1 < ψ∗

2 = ψ∗
3 = ψ∗

4 ; ψ∗
1 < ψ∗

2 < ψ∗
3 < ψ∗

4 .
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For the situation ψ∗
1 = ψ∗

2 < ψ∗
3 < ψ∗

4 , we prove that {µ∗ij} satisfies (C). Since

ψ
(nq ,3)
i =(ψ(nq−1,3)

i )8/9(a(nq)
i )1/9(Anq/Â)1/9, i=1, 2, 3, then by Lemma 3, limq→+∞

ψ
(nq−1,3)
i = limq→+∞ ψ

(nq ,3)
i = ψ∗

i = limq→+∞ a
(nq)
i . So there exists a sufficiently

large q satisfying a(nq)
1 ≤ a

(nq)
2 <a

(nq)
3 <a

(nq)
4 . By the PAVA algorithm of isotonic

regression (see Robertson, Wright and Dykstra (1988)), we obtain a
(nq)
3 =x

(nq)
3 ,

a
(nq)
4 = x

(nq)
4 , that is, Aiψ

(nq−1,3)
i /a

(nq)
i =A

(nq)
i , i= 3, 4. By Corollary 2.1 where

g(x∗) = (1.0/a(nq )
1 , . . . , 1.0/a(nq )

4 ), we have
∑4
i=1Aiψ

(nq−1,3)
i /a

(nq)
i =

∑4
i=1A

(nq)
i .

Then A1ψ
(nq−1,3)
1 /a

(nq)
1 + A2ψ

(nq−1,3)
2 /a

(nq)
2 = A

(nq)
1 + A

(nq)
2 and x

(nq)
1 ≥ a

(nq)
1 ,

that is, A(nq)
1 a

(nq)
1 ≤ A1ψ

(nq−1)
1 . Furthermore, we have

A1 +A2 − (A∗
1 +A∗

2) = lim
q→+∞(

A1ψ
(nq−1,3)
1

a
(nq)
1

+
A2ψ

(nq−1,3)
2

a
(nq)
2

) − (A∗
1 +A∗

2)

= lim
q→+∞(A(nq)

1 +A
(nq)
2 ) − (A∗

1 +A∗
2) = 0,

A1 −A∗
1 = A1 − lim

q→+∞A
(nq)
1

a
(nq)
1

ψ
(nq)
1

= A1 − lim
q→+∞A

(nq)
1 × a

(nq)
1

ψ∗
1

≥ A1 − lim
q→+∞A1

ψ
(nq−1,3)
1

ψ∗
1

= A1 −A1 = 0.

By Lemma 3, we have A4 − A∗
4 = A4 − limq→+∞A

(nq)
4 = A4 − limq→+∞A4 ×

(ψ(nq−1,3)
4 /a

(nq)
4 ) = A4 − A4 = 0. Similarly A3 − A∗

3 = 0. So we have A1 ≥ A∗
1,

A1 + A2 = A∗
1 + A∗

2, A1 + A3 ≥ A∗
1 + A∗

2, A1 + A2 + A3 = A∗
1 + A∗

2 + A∗
3,

A1 +A2 +A3 +A4 = A∗
1 +A∗

2 +A∗
3 +A∗

4.
The remaining eight situations are proved by the same method. So {µ∗ij}

satisfy (C) of Theorem 3.1, that is, {µ∗ij} are the MLE of {µij} under (4).

5. A Generalization of the Algorithm for an I × J Table

Now we show that the algorithm and the results in Section 4 are also suitable
for an I × J table. Here the loop order is

ψij ≤ ψkl for i+ j < k + l. (6)

The following algorithm will provide us with a useful tool for computing the MLE
of the expected frequencies under the loop order. Fortunately, the theorem for
convergence in Section 4 is also suitable for the present algorithm. Notations are
similar to those in Section 4.

Start the algorithm with µ(0,3)
ij = mij for all i and j.

Step(n, 1) µ(n,1)
ij = µ

(n−1,3)
ij mi+/µ

(n−1,3)
i+ , for all i and j.
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Step(n, 2) µ(n,2)
ij = µ

(n,1)
ij m+j/µ

(n,1)
+j , for all i and j.

Step(n, 3)



µ

(n,3)
ij = µ

(n,2)
ij Â/An, for i = 1 or j = 1

µ
(n,3)
ij = µ

(n,2)
ij

∏i,j
p,q=1(

a
(n)
pq

ψ
(n−1,3)
pq

)1/K(
Â

An
)(K−(i−1)(j−1))/K , otherwise,

where Â =
∑I
i=2mi1 +

∑J
j=2m1j +m11 +

∑I
i=2

∑J
j=2(K − (i− 1)(j − 1))mij/K

and K = I(I − 1)J(J − 1)/4. If we substitute µ(n,2)
ij for mij in Â, we obtain A(n).

Let �a(n) = (a(n)
ij , i = 1, . . . , I − 1, j = 1, . . . , J − 1) denote the weighted isotonic

regression of x(n) = (x(n)
ij ) under G, where the weight vector is ω(n) = (ω(n)

ij )
and G denotes the cone consisting of vectors restricted by the loop order(6).
Here we let ω(n)

ij = A
(n)
ij , and x

(n)
ij is denoted by Aijψ

(n−1,3)
ij /A

(n)
ij where Aij =∑I

p=i+1

∑J
q=j+1mpq and A

(n)
ij =

∑I
p=i+1

∑J
q=j+1 µ

(n,2)
pq , for i = 1, . . . I − 1, j =

1, . . . J − 1.

Theorem 5.1. If all mij are positive, the sequence {µ(n)
ij } converges to the MLEs

of {µij} under the loop order (6).

It is readily seen that the proof of Theorem 5.1 is the same as that of Theorem
4.2.

6. Numerical Example

For illustration, the proposed algorithm is used to study the data given by
Wing (1962) comparing frequency of visits with length of stay for 132 long-term
schizophrenic patients in two London mental hospitals (Table 1).

Table 1. Frequency of visits by length of stay for 132 long-term schizophrenic
patients (Wing (1962)).

Length of stay in hospital
at least at least

Frequency of At least 10 years but 2 years but Totals
visits 20 years less than less than

20 years 10 years
Goes home, or visited 3 16 43 62
regularly
Visited less than once 10 11 6 27
a month. Does not go
home
Never visited and 16 18 9 43
never goes home
Totals 29 45 58 132
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These data were analyzed by Haberman (1974), see also Fienberg (1978).
From their models, we see that the odds ratios of the data satisfied ψ1 = ψ2 <
ψ3 = ψ4, a special case of the loop order. In their papers, they first assigned
the scores of row and column effects and then obtained the MLE of the expected
frequencies. In this paper, we use a method different from that of Haberman
(1974). If we only assume the loop order, what can we obtain the MLE of
expected frequencies? We can obtain the MLE by the proposed algorithm. The
computed results of estimating the expected frequencies are listed in Table 2.

Table 2. MLE of expected frequencies under the loop order for data in Table 1.

Length of stay in hospital
at least at least

Frequency of at least 10 years but 2 years but
visits 20 years less than less than

20 years 10 years
Goes home, or visited 2.93 16.22 42.85
regularly
Visited less than once 9.9 11.12 5.95
a month. Does not go
home
Never visited and 16.15 17.64 9.19
never goes home
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Appendix

Remark. The maximum point of F (α,ψ) under (3) is just the MLE of (α,ψ)
in L(α,ψ) under (2) and (3), that is, the maximum point of F (α,ψ) under (3)
satisfies (2).

Proof. Let (α∗, ψ∗) be the maximum point of F (α,ψ) under (3), µ∗ij is the
corresponding expected frequency, λ = m/

∑3
i=1

∑3
j=1 µ

∗
ij and µij = λµ∗ij. Then

3∑
i=1

3∑
j=1

{mij log µ∗ij − µ∗ij} −
3∑
i=1

3∑
j=1

{mij log µij − µij}

= λ
3∑
i=1

3∑
j=1

µ∗ij −
3∑
i=1

3∑
j=1

µ∗ij −m log λ
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= (λ− 1)
3∑
i=1

3∑
j=1

µ∗ij −m log λ

= λ
3∑
i=1

3∑
j=1

µ∗ij{1 − 1/λ− log λ}.

Let f(λ) = λ(1−1/λ−log λ), so f(λ) ≤ 0 and f(1) = 0 if and only if λ = 1. Then
the maximum point (α∗, ψ∗) of F (α,ψ) under (3) satisfies

∑3
i=1

∑3
j=1 µ

∗
ij = m,

that is, it satisfies (2).

Proof of Lemma 1. By Jensen’s inequality, xa11 · xa22 · · · xan
n ≤ a1x1 + a2x2 +

· · · + anxn, where xi ≥ 0, ai ≥ 0, i = 1, . . . , n and
∑n
i=1 ai = 1. Thus

µ
(n,3)
22 ≤ 1

9
µ

(n,2)
22

a
(n)
1

ψ
(n−1,3)
1

+
8
9
µ

(n,2)
22

Â

An
.

µ
(n,3)
23 ≤ 1

9
µ

(n,2)
23

a
(n)
2

ψ
(n−1,3)
2

+
1
9
µ

(n,2)
23

a
(n)
1

ψ
(n−1,3)
1

+
7
9
µ

(n,2)
23

Â

An
.

µ
(n,3)
32 ≤ 1

9
µ

(n,2)
32

a
(n)
3

ψ
(n−1,3)
3

+
1
9
µ

(n,2)
32

a
(n)
1

ψ
(n−1,3)
1

+
7
9
µ

(n,2)
32

Â

An

µ
(n,3)
33 ≤ 1

9
µ

(n,2)
33

a
(n)
4

ψ
(n−1,3)
4

+
1
9
µ

(n,2)
33

a
(n)
3

ψ
(n−1,3)
3

+
1
9
µ

(n,2)
33

a
(n)
2

ψ
(n−1,3)
2

+
1
9
µ

(n,2)
33

a
(n)
1

ψ
(n−1,3)
1

+
5
9
µ

(n,2)
33

Â

An
.

By Theorem 2.1, (x− x∗, y)ω ≤ 0. Thus
∑4
i=1(A

(n)
i a

(n)
i /ψ

(n−1,3)
i ) ≤ ∑4

i=1Ai

where ω = (A(n)
1 , A

(n)
2 , A

(n)
3 , A

(n)
4 ), x∗ = (a(n)

1 , a
(n)
2 , a

(n)
3 , a

(n)
4 ), x = (x1, x2, x3, x4),

where xi = AiA
(n)
i /ψ

(n−1,3)
i , and y = (y1, y2, y3, y4) where yi = −1/ψ(n−1,3)

i . So
we have

µ
(n,3)
22 + µ

(n,3)
23 + µ

(n,3)
32 + µ

(n,3)
33

≤ 1
9

4∑
i=1

A
(n)
i a

(n)
i

ψ
(n−1,3)
i

+
Â

An
(
8
9
µ

(n,2)
22 +

7
9
µ

(n,2)
23 +

7
9
µ

(n,2)
32 +

5
9
µ

(n,2)
33 )

≤ 1
9

4∑
i=1

Ai +
Â

An
(
8
9
µ

(n,2)
22 +

7
9
µ

(n,2)
23 +

7
9
µ

(n,2)
32 +

5
9
µ

(n,2)
33 ).

Hence
∑3
i=1

∑3
j=1 µ

(n,3)
ij ≤ (1/9)

∑4
i=1Ai + (Â/An)An = (1/9)

∑4
i=1Ai + Â = m.
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Proof of Lemma 2. By Corollary 2.1, we have
∑4
i=1(Aiψ

(n−1,3)
i /a

(n)
i ) =∑4

i=1A
(n)
i =m(n,2)−An, where ω=(A(n)

1 , A
(n)
2 , A

(n)
3 , A

(n)
4 ), x=((A1/A

(n)
1 )ψ(n−1,3)

1 ,
. . . , (A4/A

(n)
4 )ψ(n−1,3)

4 ) and x∗ = (a(n)
1 , . . . , a

(n)
4 ), y = (−1/a(n)

1 , . . . ,−1/a(n)
4 ).

Since − log x is a convex function, we have by Jensen’s inequality

W
(n)
3 =

1
9

4∑
i=1

Ai log
a

(n)
i

ψ
(n−1,3)
i

+ Â log
Â

An

≥ −(m− Â) log
4∑
i=1

1
9Aiψ

(n−1,3)
i

a
(n)
i (m− Â)

+ Â log
Â

An

= (m− Â) log
(m− Â)

m(n,2) −An
+ Â log

Â

An
,

where m(n,2) = m. By Proposition 1, we have W (n)
i ≥ 0, i = 1, 2, 3.

Proof of lemma 3. By the expressions given for W (n)
i , we have

∑3
k=1W

(n)
k =∑(3)

i=1

∑(3)
i=1mij log(µ(n,3)

ij /µ
(n−1,3)
ij ). By Theorem 1, limn→+∞

∑3
k=1W

(n)
k = 0.

Because W
(n)
k is nonnegative, we have limn→+∞W

(n)
k = 0 k = 1, 2, 3. From

Proposition 1, we have limn→+∞
∑4
i=1A

(n)
i =

∑4
i=1Ai limn→+∞An = Â. Fur-

thermore, because
∑4
i=1Aiψ

(n−1,3)
i /a

(n)
i =

∑4
i=1A

(n)
i , we may have : ∃ M > 0,

∀n, ψ(n−1,3)
i /a

(n)
i ≤M(i = 1, 2, 3, 4). Then for any sequence, there exist a subse-

quence {nj} and a constant ai(i = 1, 2, 3, 4) satisfying limj→+∞ ψ
(nj−1,3)
i /a

(nj)
i =

ai; limn→+∞W
(nj)
3 = 1/9

∑4
i=1Ai log a

−1
i = 0 and

∑4
i=1Aiai = limj→+∞

∑4
i=1

Aiψ
(nj−1,3)
i /a

(nj)
i = limj→+∞

∑4
i=1A

(nj)
i =

∑4
i=1Ai. Since − log x is a strictly

convex function, by Jensen’s inequality we have

0 =
4∑
i=1

Ai log a−1
i

≥ −
4∑
i=1

Ai log(
4∑
i=1

Aiai/
4∑
i=1

Ai)

= −
4∑
i=1

Ai log(
4∑
i=1

Ai/
4∑
i=1

Ai) = 0.

Furthermore we have a1 = a2 = a3 = a4 = 1, so limn→+∞ ψ
(n−1,3)
i /a

(n)
i = 1,

i = 1, 2, 3.
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