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Abstract: We proposed a new approach to model longitudinal data consisting of

transitional frequencies classified according to an ordered categorical response vari-

able. Following an approach of Kalbfleisch and Lawless (1985), the responses are as-
sumed to be sampled from an underlying continuous-time finite-state-space Markov

chain, with the further assumption that direct transitions are strictly between ad-

jacent states, owing to the ordered categorical nature of the response variable. The

model admits a parsimonious parameterization in terms of the transition probabil-

ity rates (intensity parameters) between adjacent states over an infinitesimal period.

It is assumed that after a suitable transformation (link function), the intensity pa-

rameters are linear functions of some (possibly time-dependent) covariates. We

show that under very mild regularity conditions including a full-rank condition

on the “design” matrix, the maximum likelihood (ML) estimators are consistent

and asymptotically normal. We also show that, under the same set of regularity

conditions and under the null hypothesis of no model misspecification, the likeli-

hood goodness-of-fit test is asymptotically equivalent to the Pearson Chi-square

goodness-of-fit test, with the usual limiting Chi-square distribution. We illustrate

the new approach with two data sets.

Key words and phrases: Asymptotic normality, continuous-time finite-state-space

Markov chain, goodness-of-fit test, maximum likelihood estimation.

1. Introduction

The analysis of repeated measurements of ordered categorical response vari-

able can be broadly classified as:

1. transitional models which model the transition probabilities, and

2. marginal models which model the marginal probabilities.

See Agresti (1989, 1999) for surveys and Kaufmann (1987) for some asymptotic

results for marginal models. For transitional modeling, there are a number of

approaches. Goodman (1962) considered the use of homogeneous Markov chain

of first and higher orders. However, for the case of first order Markov chain this

approach requires as many as K(K−1) parameters for each transition probability

matrix, where K is the number of categories. Also, there is no natural way to

incorporate covariates in this approach.
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Göttlein and Pruscha (1992) modeled the cumulative transition probabilities

by adapting the method suggested by McCullagh (1980). Their model can in-

clude covariates. However their method requires specifying a baseline probability

transition matrix which is often specified subjectively.

Kalbfleisch and Lawless (1985) considered analyzing a panel of categorical

data by assuming that the data are obtained from sampling a latent continuous-

time finite-state-space Markov process; this approach is also referred to as the

multi-state Markov model and has found applications in biomedical studies. See,

e.g., Kay (1986), Gentleman, Lawless, Lindsey, and Yan (1994), Lee and Kim

(1998), and Perez-Ocon, Ruiz-Castro and Gamiz-Perez (2001). For a continuous-

time Markov process the transition intensity parameters determine the transition

probabilities. See Section 2 for a brief account of the theory. Kalbfleisch and Law-

less (1985) pointed out that in some cases the transition intensity matrix may

have a simple structure which admits a parsimonious parameterization. For ex-

ample, Kay (1986) considered the case where direct transitions of the underlying

Markov chain must be between adjacent states, or between any state and an ab-

sorbing state (death). Similarly, Lee and Kim (1998) considered the case where

the states are ordered and the Markov chain proceeds irreversibly and sequen-

tially from a lower state to a higher state with the final state (death) being an

absorbing state. The multi-state Markov model allows for the incorporation of

covariates via a link function of the intensity parameters. However, as far as we

know, this approach has not been adapted to modeling ordered categorical data.

Here, we model ordered categorical panel data using an approach similar to

the approach developed by Kalbfleisch and Lawless (1985). However, it is as-

sumed that for the underlying continuous-time finite-state-space Markov chain,

any transition over an infinitesimal period must occur between adjacent cate-

gories. Hence the intensity matrix is tridiagonal resulting in at most 2(K − 1)

non-zero intensity parameters. It is assumed that after applying a link trans-

formation (e.g., the log-transformation), the vector of intensity parameters is a

linear function of some covariates. We propose to estimate the unknown coeffi-

cients by the method of Maximum Likelihood (ML).

The tridiagonal form of the intensity matrix has the additional advantage

of rendering the implementation of the ML method more stable than a general

intensity matrix does (see Section 2). Moreover, the intensities are the rates

of transitions between adjacent categories, and hence a model parameterized in

terms of the intensity parameters may be interpreted readily. In Section 3, we

derive some formulas useful for numerically optimizing the likelihood function.

In fact, we consider the likelihood function conditional on the covariates and

the initial frequency distribution of the categories. We then discuss the asymp-

totic distribution of the parameter estimates, as the number of subjects tends
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to infinity and the initial relative frequency distribution tends to a fixed positive

frequency distribution. We show that, under very mild regularity conditions, the

ML estimators of the unknown coefficients are asymptotically jointly normal with

the true parameter vector as the mean and the inverse of the Fisher information

matrix as the covariance matrix. Moreover, the goodness of fit of the model may

be assessed via the likelihood ratio statistic or the Pearson goodness-of-fit statis-

tic which, under the null hypothesis that the model is not misspecified, are shown

to be asymptotically equivalent, and asymptotically χ2 distributed. The degree

of freedom of the limiting χ2-distribution equals the number of free parameters

in the saturated model minus the number of parameters in the fitted model. We

note that, for the general case where direct transition can be between two ar-

bitrary states, Gentleman, Lawless, Lindsey, and Yan (1994) advocated the use

of Pearson goodness-of-fit statistic for assessing the model fit, but they did not

give sufficient conditions under which the asymptotic null χ2-distribution holds.

Finally, we illustrate the method with two data sets in Section 4. All proofs are

collected in an appendix.

2. A Markov Model

We consider the modeling of longitudinal data consisting of transitional fre-

quencies classified according to an ordered categorical response variable. The

responses may be obtained from natural or controlled experiments, which are re-

peatedly measured at different time points and take values from a set of finitely

many ordered categories. Without loss of generality let the categories be denoted

by 1, . . . ,K and the subjects be sampled over times 0, . . . , T . The series of re-

sponses, Y (t), t = 0, . . . , T , for each individual in the sample forms a time series.

A set of static (time-independent) or dynamic (time-dependent) covariates may

also be available for every subject at each sampling time point. Some examples

of static covariates are sex, marital status, and the dummy variable indicating

which experiment a subject receives. Ordinarily, the static covariates are discrete

and their values stratify the population into strata within each of which the pop-

ulation is homogeneous and subject to the same temporal changes. We assume

that the subjects are accordingly (post-) stratified into G groups. Because the

analysis will be done conditional on the covariates, with no loss of generality, we

assume that we have G independent samples from the G populations.

Although the response variable is measured at a finite set of time points, it

is often plausible that the responses are sampled from an underlying continuous

time process. In other words, we assume that there is an underlying latent

process {Y (t), t ∈ R, t ≥ 0} but the process is only observed at t = 0, . . . , T .

Henceforth, it is assumed that the responses of any subject from each of the
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G populations are obtained from sampling a continuous-time (inhomogeneous)

latent Markov process whose transition mechanism depends on a set of dynamic

covariates utilized for modeling trend, seasonality and/or intervention.

Quite often, we only have aggregate data in the form of transition frequencies

between consecutive time points. Therefore, we need to determine the transition

probabilities in terms of the transition parameters. First, we briefly summa-

rize some useful results of continuous-time finite-state space Markov chain; see

Cox and Miller (1968) for a systematic account. For simplicity, we assume that

all the dynamic covariates are constant between two consecutive sampling time

points and that, within this section, G = 1; that is, there is only one popula-

tion. All probabilities and expectations are conditioned on the covariates and

the initial frequency distribution of Y (0). Let

puvst=P (the response is in state v at time t given that it is in state u at time s)

=P (Y (t) = v|Y (s) = u).

The transition probabilities are determined by the quv’s, the intensity pa-

rameters over short time intervals:

puvt,t+∆t = quv∆t + o(∆t), u 6= v (1)

puut,t+∆t = 1 + quu∆t + o(∆t), (2)

where quv, u 6= v ∈ {1, . . . ,K}, are nonnegative numbers. The larger the intensity

parameter quv is, the greater is the probability of transition from category u to v

over a short time period. For simplicity, we assume that the quv’s are constants

(in practice, they depend on the covariates and hence are piecewise constant). It

follows from (1) and (2) that quu+
∑

u6=v quv = 0; consequently, quu = −∑

u6=v quv.

Assuming that equations (1) and (2) hold for all t, it can be shown that the

derivatives of puvst (with respect to t) satisfy the Chapman-Kolmogorov equation:

p′uvst =
∑

r purstqrv, or in matrix notation

P ′(s, t) = P (s, t)Q, (3)

where the (u, v) entry of P (s, t) and Q are respectively puvst and quv. In fact,

P (s, t) also satisfies the backward equation:

P ′(s, t) = QP (s, t). (4)

The initial condition for both the forward and backward equations is P (s, s) = I,

where I is the identity matrix. It can be shown that

P (s, t) = exp((t − s)Q), (5)
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where, for any square matrix M = (mij),

exp(M ) =
∞
∑

n=0

Mn

n!
. (6)

For all c > 0, the partial sums on the RHS of (6) converges uniformly for |M | ≤ c

where |M |2 =
∑

i,j m2
i,j is the squared Euclidean norm of M ; see Horn and John-

son (1991). Suppose that M is diagonalizable and M = H∆H−1, where ∆ is a

diagonal matrix of the eigenvalues of M and H is the matrix of the correspond-

ing eigenvectors. Then exp(M) = H exp(∆)H−1, where exp(∆) is the diagonal

matrix whose (j, j) entry equals the exponential of the (j, j) entry of ∆, ∀j.

The ordering of the categories implies that over an infinitesimal period the

continuous-time Markov chain can only jump between adjacent categories, re-

sulting in a tridiagonal intensity transition matrix:

Q =





















−q12 q12 0 · · · 0 0 0

q21 −q21 − q23 q23 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 · · · qK−1,K−2 −qK−1,K−2 − qK−1,K qK−1,K

0 0 0 · · · 0 qK,K−1 −qK,K−1





















.

Interpretation of the quv’s is aided by the following two well-known results:

Given that Y (t) = k, the waiting time for the next transition is exponential with

the reciprocal of −qkk as its mean. The second result is that, given a transition

out of category k and assuming k is an intermediate category, the odds of the

transition being to category k + 1 is qk,k+1/qk,k−1.

Let q = (q12, q23, . . . , qK−1,K, q21, q32, . . . , qK,K−1)
T , where the superscript

T denotes taking the transpose; that is, q consists of the first super-diagonal

elements of Q, followed by the first sub-diagonal elements.

It is assumed that there is a link function h, e.g., the logarithmic transfor-

mation, such that

h(q) = X(t)θ, (7)

where h is applied entry-wise to q, X(t) is a known 2(K − 1) × m covariate

matrix, and θ = (θ1, . . . , θm)T is an m × 1 vector of unknown parameters.

Let P (t, t+1) be the transition probability matrix whose (u, v) entry equals

puvt,t+1. It follows from (5) that

P (t, t + 1) = exp(Q), t = 0, . . . , T − 1. (8)

In practice, X(t) is piecewise constant, being constant between two consecutive

sampling points. However, (8) still holds with Q replaced by Q(t,θ), its value
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at time t. The tridiagonal structure of Q implies that it can be diagonalized (see

Exercise 5, p.174 in Horn and Johnson (1985)). Hence P (t, t+1) can be computed

easily. Note that when the intensity parameters are small in magnitude, P (t, t+

1) ≈ I+Q(t,θ). This crude approximation may be used to obtain starting values

for ML estimation. As a function of θ, the transition matrix P (t, t + 1) enjoys

two properties stated below.

Theorem 2.1. Assume the link function h : (0,∞) → R is continuously differ-

entiable and its first derivative never vanishes. Then, for fixed t, the transition

matrix P (t, t + 1) : θ ∈ Rm → exp(Q(t, θ)) is an element-wise positive and

continuously differentiable function of θ.

We note that the condition of the preceding theorem is satisfied if we take

the logarithm function as the link function. To compute the scores, we need the

partial derivatives of P (t, t +1) w.r.t. θj , the j-th component of θ, which satisfy

an equation obtained by differentiating both sides of the backward equation w.r.t.

θj: for s, t between two consecutive integers,

∂P ′

∂θj

(s, t) =
∂Q

∂θj

P (s, t) + Q
∂P

∂θj

(s, t). (9)

Noting that ∂2

∂t∂θj
= ∂2

∂θj∂t
and the initial condition ∂P

∂θj
(s, s) = 0, the preceding

equation can be solved to obtain (see, e.g., Graham (1986, p.10))

∂P

∂θj

(t, t + 1) = H{G ◦ (H−1 ∂Q

∂θj

(t, θ)H)}H−1 (10)

where, for two matrices of identical dimension, A ◦ B = (aijbij) denotes the

Hadamard product of A and B; λi’s are the eigenvalues of Q(t, θ); H is the

matrix whose ith column vector is the eigenvector corresponding to λi; and G is

a matrix whose (i, j) element equals [exp(λj−λi)−1]/(λj−λi)] (defined as exp(λi)

if λi = λj). See Kalbfleisch and Lawless (1985) and Horn and Johnson (formula

(6.6.28), (1991)) for alternative derivations of (10).

3. Maximum Likelihood Estimation

Let nguvst (pguvst) be the number of subjects (probability of a subject) in the

gth group and whose response at time t is v, given that at time s the response

is u. We abbreviate nguvt,t+1 (pguvt,t+1) by nguvt (pguvt). Then the conditional

log-likelihood function is

l(θ) =
G

∑

g=1

T−1
∑

t=0

K
∑

u,v=1

nguvt log(pguvt(θ)). (11)
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The score is

∂l(θ)

∂θj
=

G
∑

g=1

T−1
∑

t=0

K
∑

u,v=1

nguvt

pguvt

∂pguvt

∂θj
, j = 1, . . . ,m,

the second derivatives are

∂2l(θ)

∂θi∂θj
=

∑

g

∑

t

∑

u,v

nguvt

pguvt

∂2pguvt

∂θi∂θj
−

∑

g

∑

t

∑

u,v

nguvt

p2
guvt

∂pguvt

∂θi

∂pguvt

∂θj
,

and the observed Fisher information matrix Iobs(θ) = (−∂2l(θ)
∂θi∂θj

). Kalbfleisch

and Lawless (1985) approximated the observed Fisher information matrix by

its expectation. Here, we adopt a slightly different approximation for the Fisher

information matrix by dropping the first term on the right side of the last formula.

These approximations are asymptotically equivalent. The ML estimator can be

obtained numerically via the method of scoring.

The saturated model treats all the transition probabilities pguvt as parame-

ters. Because ∀t, ∀u,
∑

v pguvt = 1, there are GTK(K − 1) free parameters in

the saturated model. The non-parametric ML estimator of pguvt is rguvt =
nguvt

ngut
,

where ngut =
∑

v nguvt. The expected number of subjects whose responses are u

at time t equals E(ngut) =
∑

k ngk0pgku0t(θ). Because all the transition proba-

bilities are positive, so are the pgku0t’s. Let θ∗ be the true parameter, n be the

number of subjects, and assume that φgk0 = limn→∞ ngk0/n, ∀k, g, exist and are

positive. Then,

lim
n→∞

E(ngut)/n =
∑

k

φgk0pgku0t(θ
∗). (12)

The RHS of (12) will be denoted as γgut = γgut(θ
∗). We prove that θ̂n, the ML

estimator of θ∗, is consistent and asymptotically normal. The goodness of fit of

the model may be assessed by the likelihood ratio statistic which is defined as

follows:

G2 = 2(l(saturated model) − l(θ̂n)) = −2
∑

g

∑

t

∑

u,v

nguvt log(pguvt(θ̂n)/rguvt).

Alternatively, we may use the Pearson goodness-of-fit statistic,

X2 =
∑

g

∑

t

∑

u,v

(eguvt − nguvt)
2/eguvt, (13)

where eguvt = ngutpguvt(θ̂n) is the expected count of transitions in the gth group

from state u at time t to state v at time t+1. We show below that the likelihood

ratio statistic and the Pearson goodness-of-fit statistic are asymptotically equiv-

alent under the null hypothesis that the model is not misspecified, and that they
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are asymptotically chi-square with GTK(K − 1)−m degree of freedom. (Recall

that the dimension of θ is m.)

Theorem 3.1. Let ngk0 be the number of subjects in the gth group for which

Y (0) = k. Write ng =
∑

k ngk0 and n =
∑G

g=1 ng, assume the following.

(A1) limn→∞ ngk0/n = φgk0 > 0, ∀k, g.

(A2) rank(X ) = dim(θ) = m, where X is the matrix formed by stacking X g(t)

vertically, g = 1, . . . , G, t = 0, . . . , T − 1. The dim(X ) is 2(K − 1)TG × m.

(A3) The link function h : (0,∞) → R is continuously differentiable and its first

derivative never vanishes.

Then (1) the model is identifiable and (2) the ML estimator θ̂n exists and is

asymptotically N(θ∗, I−1(θ∗)), where I(θ∗) = E(
∑

g

∑

t

∑

u,v
nguvt

p2

guvt

∂pguvt

∂θ
i

∂pguvt

∂θ
j

)

evaluated under the true model. Finally, under the null hypothesis of no misspec-

ification of the model, the likelihood ratio statistic and the Pearson goodness-of-fit

statistic are asymptotically equivalent, and asymptotically χ2 with GTK(K−1)−
m degree of freedom.

Remarks. If the link function is twice continuously differentiable, then I(θ∗) =

E(Iobs(θ
∗)) is the expected Fisher information matrix. Assumption (A1) means

that there is a positive limiting fraction of subjects in each group and whose

response at t = 0 equals any fixed but arbitrary category. Consider the associated

regression model

qt = Xg(t)θ + εt, g = 1, . . . , G, t = 0, . . . , T − 1.

Assumption (A2) is equivalent to the condition that the design matrix of the

preceding regression model is of full rank; that is, the preceding linear regression

model is identifiable. Assumption (A3) is the same condition assumed in The-

orem 2.1. It can be seen from the proof of the theorem that the conclusions of

Theorem 3.1 holds for a general Markov chain model, as outlined in the following.

Let p(θ) denote the vector consisting of puvt(θ), 1 ≤ u, v ≤ K, 1 ≤ t ≤ T − 1 in

“lexicographical” order (see the definition below Lemma A.3). Then the conclu-

sions of Theorem 3.1 hold if (A1) and the following two assumptions hold.

(A4) p(θ) is a one-to-one function and is continuously differentiable;

(A5) ∂p(θ∗)/∂θT is of full-rank, with rank m = dim(θ).

4. Examples

It can be verified that conditions (A1)−(A3) are satisfied for all the models

fitted for the two examples discussed below.
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Example 1. This example is taken from Agresti (1989). In a double-blind

clinical trial, an active hypnotic drug and a placebo were randomly administrated

to two independent samples of patients with insomnia. Each individual was asked

at the start and at the end of a two-week treatment period the question: “How

quickly did you fall asleep after going to bed?”. The responses were classified

into the one of the four categories: “< 20”, “20 − 30”,“30 − 60” and “> 60” (in

minutes).

Table 1. Time to fall asleep (minutes), by treatment and occasion.

Initial Follow-up occasion

Treatment occasion < 20 20 − 30 30 − 60 > 60

Active drug < 20 7 4 1 0

20 − 30 11 5 2 2

30 − 60 13 23 3 1

> 60 9 17 13 8

Placebo < 20 7 4 2 1

20-30 14 5 1 0

30-60 6 9 18 2

> 60 4 11 14 22

The data are reproduced in Table 1. Although the response variable, “time

to fall asleep”, could hardly be considered a continuous-time process, the lag

time of 14 days between the two measurements may render the continuous time

process a useful approximation of the transition mechanism. Table 1 shows that

for those subjects whose initial responses belong to the first two categories, there

seems to be no difference between the treatment and the control group in terms

of the transitions frequencies. The effectiveness of the drug may, however, be

argued for subjects initially classified into the last two categories; that is, those

with greater sleeping difficulty. It appears that for the treatment group, there

are more transitions from the third category to the first two categories, than

there are for the control group. Also, there are more transitions from the fourth

category to the lower categories in the treatment group than are in the control

group. Otherwise, the transition frequencies seem very similar for the two groups.

Therefore, we set log(q32) = θ5 + I[δ = 1]θ7 and log(q43) = θ6 + I[δ = 1]θ8, where

δ is 1 for the treatment group and 0 otherwise, and I[ ] the indicator variable

of the enclosed expression. Hence the Q intensity matrix below is modeled on

the log-scale by assigning θ1 to θ3 to the upper off-diagonal, then θ4, etc. on the
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lower off-diagonal:

Q =













−eθ1 eθ1 0 0

eθ4 −eθ4 − eθ2 eθ2 0

0 eθ5+θ7I[δ=1] −eθ5+θ7I[δ=1] − eθ3 eθ3

0 0 eθ6+θ8I[δ=1] −eθ6+θ8I[δ=1]













. (14)

A set of starting values was obtained using the procedure mentioned just
above Theorem 2.1. The MLE’s are shown in Table 2. Note that both θ̂7 and
θ̂8 are positive and significant, suggesting that the treatment is effective. Thus,
the fitted model suggests that over the period of this experiment the sleeping
problem tends to get less severe for patients in the control group that have great
sleeping difficulty. This may be due to the placebo effect or some uncontrolled
factors such as, for example, a change to a more comfortable weather towards
the end of the experiment. Since some observed cells are small or zero, we pre-
fer to assess the goodness of fit of the model via the likelihood ratio statistic
G2. The Pearson goodness-of-fit statistic and the G2 are distributed asymptoti-
cally as chi-square with G(K − 1)K − dim(θ) degrees of freedom. However for
moderate sample size, the accuracy of the asymptotic distribution for the Pear-
son goodness-of-fit statistic is known to suffer when there are some very small
counts, see Cochran (1952). Fienberg (1979) suggested that previous simulation
results indicate that the G2 statistic may be more conservative than the Pearson
goodness-of-fit statistic. In this and the next example, the Pearson goodness-of-
fit statistics are all larger than the G2 statistics, perhaps due to the existence of
several very small expected counts. Further comparison on the performance of
these two statistics seems desirable. For these data the G2 statistic turns out to
be 25.81 on 24− 8 = 16 d.f., which is insignificant at 5% level. The expected cell
counts are shown in Table 3. Comparing these expected values with the data in
Table 1, it can be seen that the estimated model provides a reasonably good fit
to the two transition matrices.

Table 2. MLE of the parameters and their standard errors for the model (14).

Parameters MLE Standard Error

θ̂1 0.0376 0.47

θ̂2 -0.472 0.47

θ̂3 -1.23 0.48

θ̂4 0.389 0.30

θ̂5 0.0818 0.24

θ̂6 0.0185 0.21

θ̂7 0.981 0.29

θ̂8 0.612 0.28
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Table 3. Time to fall asleep (minutes), by treatment and placebo:

expected counts based on the estimated model (14).

Initial Follow-up occasion

Treatment occasion < 30 20 − 30 30 − 60 > 60

Treatment < 20 7.2 4.1 0.7 0.1

20 − 30 9.7 8.2 1.8 0.2

30 − 60 15.3 17.4 5.9 1.4

> 60 10.3 17.1 10.8 8.8

Placebo < 20 8.2 4.4 1.3 0.1

20 − 30 8.9 7.1 3.4 0.5

30 − 60 7.7 10.3 13.4 3.6

> 60 3.9 7.9 18.1 21.0

Example 2. The second data set is taken from a panel survey of potential voters

in Erie County, Ohio, 1940. A group of 445 people responded to six interviews

from May to October. They were asked for their vote intention and their answers

were classified as either “Republican” (R), “Do not know” (U) or “Democratic”

(D); see Anderson and Goodman (1957), Goodman(1962) and Bishop, Fienberg

and Holland (1975).

The data are reproduced in Table 4. Although the three categories R, U and

D are not, strictly speaking, ordered, it might be argued that the category U is

intermediate between R and D. Thus, the tridiagonal structure of the intensity

matrix seems plausible. The response variable can be considered as a continuous-

time process. As the election got closer, people might gradually firm up their

decision. Thus, a simple model including a trend term in the transition rates is

first fitted. The parameterization for Q is as follows:

Q =









−eθ5t+θ1 eθ5t+θ1 0

eθ6t+θ3 −eθ6t+θ3 − eθ5t+θ2 eθ5t+θ2

0 eθ6t+θ4 −eθ6t+θ4









. (15)

The estimates are in Table 5. This model is called the six-parameter model

whereas another model studied below will be referred to as the nine-parameter

model. As θ̂5 and θ̂6 are (marginally) significant and negative, this confirms that

the transition intensities get smaller over time, that people were firming up their

decisions as the election got closer.

The likelihood ratio statistic turns out to be 95.00, on 30 − 6 = 24 d.f. and

provides evidence of lack of fit at 5% level of significance (χ2
24,0.05 = 36.415).
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One plausible explanation for the bad fit of the model is that we have not con-

sidered the possible intervention of the Democratic convention held between July

and August. This intervention may partially explain the difference between the

June-July, the July-August and the August-September transition matrices in the

case of the “undecided” people. Anderson (see Goodman (1962)) suggested that

the July-August matrix shows changes up to twice the speed of the August-

September transition matrix. A second model is now fitted with a parameter ac-

counting for the faster speed on the political decision induced by the Democratic

convention for the July-August matrix. A closer examination shows that the

May-June and the June-July matrices are similar. So are the August-September

and the September-October matrices. Finally the following parameterization for

Q is adopted, with the convention that t = 1 for May, t = 2 for June, etc.

Q =







−eθ1+θ9I[t=3]+θ5I[t≥3] eθ1+θ9I[t=3]+θ5I[t≥3] 0

eθ3+θ9I[t=3]+θ7I[t≥3] * eθ2+θ9I[t=3]+θ6I[t≥3]

0 eθ4+θ9I[t=3]+θ8I[t≥3] −eθ4+θ9I[t=3]+θ8I[t≥3]






, (16)

where “∗” denotes the negative of the sum of the (2, 1) and the (2, 3) entries.

Table 4. Vote intention in Erie County, Ohio.

June July

May R U D Totals June R U D Totals

R 125 16 5 146 R 124 16 3 143

U 11 142 18 171 U 22 142 9 173

D 7 15 106 128 D 6 14 109 129

Totals 143 173 129 445 Totals 152 172 121 445

August September

July R U D Totals August R U D Totals

R 146 4 2 152 R 184 7 1 192

U 40 96 36 172 U 10 82 12 104

D 6 4 111 121 D 4 5 140 149

Totals 192 104 149 445 Totals 198 153 94 445

October

September R U D Totals

R 192 5 1 198

U 11 71 12 94

D 2 5 146 153

Totals 205 81 159 445
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Table 5. MLE of the parameters and their standard errors, six-parameter model.

Parameters MLE Standard Error

θ̂1 -2.07 0.19

θ̂2 -1.46 0.19

θ̂3 -1.39 0.18

θ̂4 -1.86 0.18

θ̂5 -0.126 0.058

θ̂6 -0.101 0.053

This parameterization implies that the Q matrix is the same for the May-

June and June-July periods. Also the Q matrix is the same for the August-

September and September-October periods. The corresponding transition ma-

trix for July-August is equal to the August-September transition matrix raised

to the power eθ9 . This is because Q(3, θ) = exp(θ9)Q(4, θ), hence P (3, 4) =

exp(exp(θ9)Q(4, θ)) = (exp(Q(4, θ))exp(θ9) = P (4, 5)exp(θ9). The MLE’s are dis-

played in Table 6. The parameters θ1 to θ4 describe the baseline transition

pattern. All their estimates are negative and significant. Based on the mag-

nitude of the estimates, Republicans were less likely than Democrats to switch

to the undecided category, whereas in the case of a change of mind, an unde-

cided voter was more likely to switch to the democratic position with an odds

exp(2.14−1.89) = 1.28. Both θ̂6 and θ̂7 are insignificant, suggesting that the un-

decided have similar transition patterns over time, except possibly with a faster

speed over the July-August period. On the other hand, both θ̂5 and θ̂8 are sig-

nificant and negative, suggesting that both the Republicans and the Democrats

were less likely to change their mind over the August to October period than

over the earlier period of May to July.

Table 6. MLE of the parameters and its standard errors, nine-parameter model.

Parameters MLE Standard Error

θ̂1 -1.820 0.16

θ̂2 -2.140 0.17

θ̂3 -1.890 0.15

θ̂4 -1.650 0.16

θ̂5 -1.600 0.28

θ̂6 0.250 0.23

θ̂7 0.101 0.22

θ̂8 -1.250 0.26

θ̂9 0.698 0.15
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Anderson’s hypothesis implies that θ9 = log(2) = 0.693 . . .. Since θ̂9 is not

significantly different from log(2), Anderson’s hypothesis could not be rejected.

A test for the goodness of fit of the model is performed and G2 equals 20.2 on

30 − 9 = 21 d.f., which is insignificant (χ2
21,0.05 = 35.2). This suggests that

the fitted model provides a good fit to the data. The nine-parameter model

assumes that the Democratic convention affects the three categories equally. This

common-effect assumption may be tested by fitting a larger model with the first

(second) occurrence of θ9 on the second row of Q replaced by θ10 (θ11), and θ9

on the third row of Q replaced by θ12 so that the Democratic convention may

have different effects on the three categories. Twice the increase in the log-

likelihood from the 9-parameter model to the 12-parameter model equals 1.844

which is insignificant (χ2
3,0.05 = 7.815), suggesting the validity of the common-

effect assumption.

5. Conclusion and Acknowledgment

We have developed a new model for analyzing longitudinal data consisting

of ordered categorical response data and a set of covariates. The large-sample

properties of the ML estimator of the new model have been derived under mild

regularity conditions. We illustrated the potential usefulness of the proposed

approach via two examples in the preceding section. However, the Markov as-

sumption fundamental to this approach is a strong assumption. It is of interest

to develop methods for checking the Markov assumption, and to develop new

frameworks for analyzing data in the case that the Markov assumption fails. So

far, we have assumed that the covariates are categorical. An interesting problem

is to extend the model to include continuous covariates. We thank an associate

editor for helpful comments.

Appendix: Proofs of Theorems 2.1 and 3.1

Proof of Theorem 2.1. Since the first derivative of h never vanishes, h−1 :

R → (0,∞) exists and is continuously differentiable. Therefore, q = h−1(X(t)θ)

is positive. (Again, h−1 is applied to X(t)θ element-wise.) Because q is positive,

there is positive probability that the underlying process moves from any state

to any of its adjacent states over any fixed but arbitrary short time interval.

Consequently, the Markov chain moves with positive probability from any state

to any other state over a finite time interval, so P (t, t + 1) is positive.

First some definitions. A function g : Ω ⊂ Rk → R is analytic if (1) it is

infinitely differentiable, (2) Ω is an open set and (3) g equals its Taylor series

expansion locally, that is, for all x0 ∈ Ω, there exists an r > 0 such that if

the Euclidean norm |x − x0| < r, g(x) =
∑

α Dαg(x0)(x − x0)
α/α!, where

x = (x1, . . . , xk)
T , α = (α1, . . . , αk)

T is a k-tuple of non-negative integers, Dαg
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is the partial derivative ∂α1 · · · ∂αkg/∂xα1

1 · · · ∂xαk

k , α! =
∏k

i=1 αi and xα =
∏

xαi

i .

A matrix valued function is analytic if it is analytic element-wise. Henceforth

in this proof, we identify a K × K matrix with a K2 by 1 vector formed by

stacking its K columns. It follows from (6) that exp(M) is an analytic function

of M . Since Q is a continuously differentiable function of θ and the composition

of two such functions is still continuously differentiable, P (t, t + 1) = exp(Q(θ))

is continuously differentiable in θ. This completes the proof of the theorem.

Proof of Theorem 3.1. With no loss of generality, it is assumed throughout

the proof that G = 1, that is, there is a single population. Hence, all subscripts

indicating the population will be omitted in the notation. For clarity, we some-

times write q(t, θ), Q(t, θ) and P (t, t + 1, θ) instead of q, Q and P (t, t + 1).

We write p∗uvt, γ∗
ut for puvt(θ

∗), γut(θ
∗), etc. (recall that γ∗

ut is the expected

number of subjects whose responses equal u at time t, under the true model).

Assumption (A2) implies that for distinct parameters θ 6= θ ′, there exists a

t ∈ {0, . . . , T − 1} such that X(t)θ 6= X(t)θ ′, and hence q(t, θ) 6= q(t, θ′). This

is because (A3) entails that the link function h is one-to-one. Since the expo-

nential function exp(M ) is also a one-to-one function in the matrix argument

M , we have P (t, t + 1, θ) 6= P (t, t + 1, θ′). This demonstrates that the model is

identifiable.

The rest of the theorem will be proved through a number of lemmas whose

proofs are deferred. Our proof is inspired by Dudley (1976) which provides an

elegant exposition on the asymptotic theory of the ML estimation of categorical

data models. In particular, the proofs of Lemmas A.1, A.5, and the derivation

of the common asymptotic χ2-distribution for the likelihood and the Pearson

goodness-of-fit tests under the null hypothesis of no model misspecification are

similar to those of Lemmas 15.1, 15.5 and Theorem 17.4 in Dudley (op cit.);

hence they are omitted.

Lemma A.1. ∀x, y > 0, ∃w between x and y such that 2x log(x/y) = (x −
y)2/w.

Let

l̃(θ) =
2

n
{l(saturated model) − l(θ)} = 2

T−1
∑

t=1

∑

u,v

nuvt

n
log

ruvt

puvt(θ)

= 2
∑

t,u

nut

n

∑

v

ruvt log
ruvt

puvt

. (17)

Lemma A.2. It holds a.s. that there exists a constant c > 0 such that for n

sufficiently large, for all θ ∈ Rm, l̃(θ) ≥ c
∑

t,u γ∗
ut

∑

v (ruvt − puvt(θ))2/p∗uvt.

Lemma A.3.The ML estimator θ̂n exists and is consistent.
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Let p(θ) denote the vector consisting of puvt(θ), 1 ≤ u, v ≤ K, 1 ≤ t ≤ T −1,

ordered in “lexicographical” order; that is puvt precedes pxys if and only if either

(1) t < s or (2) t = s, u < x or (3) t = s, u = x and v < y. We write p(θ) instead

of p to emphasize its dependence on θ. Similarly, r denotes the vector of all ruvt’s

ordered in a manner analogous to that of p. Let V = {p(θ) : θ ∈ Rm}. Then, V

is a smooth sub-manifold with a single co-ordinate map θ ∈ Rm → p(θ) ∈ V . For

an introduction to the concept of a manifold, see 16.1−16.6 in Dudley (1976).

The derivative of the co-ordinate map at θ is Dp(θ) = ∂p/∂θT . Note that Dp(θ)

is a d × m matrix where d = TK(K − 1).

Lemma A.4. Assume that (A2) and (A3) hold, then Dp(θ) is of rank m for

all θ.

Henceforth, we denote Dp(θ∗) by D∗ or simply by D. It follows from

Lemma A.4 that V is a m-dimensional manifold. The tangent flat to V at θ∗ is

the hyper-plane F = {u(θ) = p(θ∗) + D(θ − θ∗), θ ∈ Rm} ⊂ Rd. Below, the

ambient space Rd is assumed to be endowed with the inner product defined by the

following formula where a and b are vectors in Rd with their elements denoted

as auvt and buvt respectively: < a, b >p=
∑

t,u γ∗
ut

∑

v (auvt − buvt)
2/p∗uvt. This

inner product induces the vector norm |a|p =
√

< a,a >p, for any a ∈ Rd. The

Euclidean norm of a is |a| =
√

∑

uvt a2
uvt. Note that the norm | · |p is equivalent

to the Euclidean norm, i.e., there exists two fixed positive constants M1 and M2

such that for all a ∈ Rd, M1|a| ≤ |a|p ≤ M2|a|. It follows from the equivalence

of these two norms that O(|a|) = O(|a|p), and similarly for other asymptotic

relations involving Op, o and op. Let f : a ∈ Rd → f(a) ∈ F be the orthogonal

projection onto F where f(a) = minb∈F
|a − b|2p. The projection f(a) has an

explicit form which is derived below. Let W denote the symmetric matrix for

which

|b|2p = bT Wb, ∀b ∈ Rd. (18)

Then f(a) = minb∈F
(a − b)T W (a − b), which is simply a weighted regression

problem whose solution is well-known:

f(a) = p∗ + D(DT WD)−1DT W (a − p∗). (19)

It follows from the definition of the orthogonal projection that |f(a) − p∗|2p ≤
|a − p∗|2p for all a ∈ Rd.

Lemma A.5. |p(θ̂n) − f(r)| = op(|r− p|).
We make use of this result to derive the asymptotic distribution of θ̂n from

that of r. Anderson and Goodman (1957) have shown that for fixed u and t,

the random vector (ruvt, 1 ≤ v ≤ K)T has the same asymptotic distribution as
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the estimates of the multinomial probabilities p∗
uvt’s and with the sample size

as if it was E(nut) = γ∗
ut. Moreover, they showed that the random variables

ruvt for two different values of u or two different values of t are asymptotically

independent. Anderson and Goodman (op. cit.) implies that
√

n(r − p∗) is

asymptotically N(0,C) where C is specified below. Recall that r consists of sub-

vectors rut = (ru1t, . . . , ruKt)
T , u = 1, . . . ,K, t = 0, . . . , T − 1, with the indices

ut ordered in “lexicographical” order. Similarly defined are the put. The matrix

C is block diagonal with each block being the asymptotic covariance matrix, of√
n(rut−p∗

ut), which equals Cut = γ∗
ut(diag(p∗

ut)−p∗
ut(p

∗
ut)

T ), where diag(p∗
ut) is

a diagonal matrix with p∗
ut being the diagonal vector. Clearly, Cut1 = 0 where

1 is a vector of 1’s. Hence Cut is of rank K − 1 and C is of rank TK(K − 1).

W , defined by (18), can be verified to be a block diagonal matrix whose (u, t)

(in “lexicographical” order) block equals W ut = γ∗
ut diag(1/p∗

ut), where division

is defined element-wise. It can be verified that

W utCutW ut = W ut − γ∗
ut11

T , (20)

CutW utCut = Cut. (21)

However, it follows from the identity
∑

v puvt(θ) ≡ 1 that for all l,
∑

v ∂puvt(θ)

/∂θl = 0. Consequently, we get

DT WCW = DT W , (22)

CWC = C, (23)

with (22) following from (20), and (23) from (21).

It follows from Lemma A.5 and the fact that
√

n(r − p∗) = Op(1) that√
n(p(θ̂n) − p∗) =

√
n(f(r) − p∗) + op(1). Because |p(θ̂n) − p∗ − D(θ̂n − θ)| =

op(|θ̂n − θ|), we have

√
nD(θ̂n − θ) =

√
n(f(r) − p∗) + op(1). (24)

It follows from (19) and Anderson and Goodman (op. cit.) that the RHS, and

hence the LHS, of (24) is asymptotically N(0,Λ) where Λ = D(DT WD)−1DT W

×CWD(DT WD)−1DT . From (22), Λ becomes D(DT WD)−1DT whose rank

is m. Because D is of full rank,
√

n(θ̂n − θ) is asymptotically N(0,Σ) for

some strictly positive definite matrix Σ. From (24), we have DΣDT = Λ =

D(DT WD)−1DT . As D is of full rank, Σ = (DT WD)−1. It can be veri-

fied that I(θ∗)/n = DT WD. This completes the proof of the claim on the

asymptotic distribution of the ML estimator θ̂n. This completes the proof of the

theorem.

Proof of Lemma A.2. By the Law of Large Numbers, nut/n → γ∗
ut > 0 a.s.

Hence, for n sufficiently large, ∀u, ∀t, nut/n ≥ γ∗
ut/2. Combining this result with
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Lemma (A.1), we have that for n sufficiently large, l̃(θ) ≥ ∑

t,u γ∗
ut/2

∑

v p∗uvt(ruvt

−puvt(θ))2/p∗uvt. Letting c = min{p∗uvt/2, 1 ≤ u, v ≤ K, 1 ≤ t ≤ T − 1}, we

obtain the desired result.

Proof of Lemma A.3. Note that maximizing the log likelihood function is

equivalent to minimizing l̃( ). Let δ > 0 be an arbitrary but fixed number.

Because p(θ) is a one-to-one function of θ and is continuous, ∃ε > 0 such that

|θ − θ∗| > δ implies that there exists u, v, t such that |puvt(θ) − p∗uvt| > ε.

Because ruvt → p∗uvt, it holds a.s. that for n sufficiently large, |θ − θ∗| > δ

implies that there exists u, v, t such that |puvt(θ) − ruvt| > ε/2. Consequently,

Lemma A.2 implies that there exists c1 > 0 such that, for n sufficiently large and

|θ − θ∗| > δ, l̃(θ) ≥ c1ε. However, l̃(θ∗) → 0 a.s. Therefore, the infinmum of l̃

must occur somewhere inside the region {θ, |θ − θ∗| ≤ δ}, a compact set. So the

ML estimator θ̂n exists. (In the case that there are several global maxima, θ̂n

can be taken as any of them.) Moreover, |θ̂n − θ∗| ≤ δ for n sufficiently large a.s.

Since δ > 0 is arbitrary, θ̂n is consistent.

Proof of Lemma A.4. Let A = [A1, . . . , As] be a matrix consisting of s column

vectors. Then vec(A) denotes the vector consisting of all the column vectors of

A, specifically, vec(A) = (AT
1 , . . . , AT

s )T . The vec operator enjoys the property

that vec(ABC) = (CT ⊗ A)vec(B) where all matrices are assumed to be of

compatible dimensions and, for any two matrices R and S, R ⊗S denotes their

Kronecker product defined by (rijS); see Horn and Johnson (1991). It can be

readily verified that for any two matrices, say A and B of the same dimension,

vec(A ◦ B) = vec(A) ◦ vec(B). (Recall that A ◦ B = (aijbij) denotes the

Hadamard product of A and B.) It follows from (10) that

vec(
∂P

∂θj
(t, t + 1)) = (H−T ⊗H)

(

vec(G) ◦
{

(HT ⊗H−1)vec(
∂Q

∂θj
(t, θ))

})

. (25)

Assume, for simplicity, that t is fixed and write Q(t, θ) and Xlj(t) ( the (l, j)

element of X(t)) as Q and Xlj respectively. We have

∂Q

∂θj

=
2K−2
∑

l=1

∂Q

∂ql

∂ql

∂θj

=
2K−2
∑

l=1

∂Q

∂ql

1

h′(ql)
Xlj, (26)

where h′ denotes the first derivative of h.

Let α1, . . . , αm be m arbitrary numbers. Then

m
∑

j=1

αjvec(
∂P

∂θj

) = (H−T ⊗ H)
(

vec(G) ◦
{

(HT ⊗ H−1)vec(
m

∑

j=1

αj
∂Q

∂θj

)
})

.
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But,
m

∑

j=1

αj
∂Q

∂θj

(t, θ) =
2K−2
∑

l=1

∂Q

∂ql

1

h′(ql)

m
∑

j=1

αjXlj(t).

It is readily checked that {vec( ∂Q
∂ql

), l = 1, . . . , (2K−2)} are independent vectors.

It follows from (A2) that for any non-zero α = (α1, . . . , αm)T , there exist l and

t such that
∑m

j=1 αjXlj(t) 6= 0, and hence
∑m

j=1 αj
∂Q
∂θj

(t) 6= 0. (Recall that h′(ql)

is always non-zero.) Because all the elements of G are positive and the matrix H

is non-singular,
∑m

j=1 αjvec
∂P
∂θj

(t, t + 1) 6= 0, demonstrating that ∂P
∂θT is of rank

m.

References

Agresti, A. (1989). A survey of models for repeated ordered categorical response data. Statist.

Medicine 8, 1209-1224.

Agresti, A. (1999). Modeling ordered categorical data: recent advances and future challenges.

Statist. Medicine 18, 2191-2207.

Anderson, T. and Goodman, L. (1957). Statistical inference about Markov chains. Ann. Math.

Statist. 28, 89-110.
Bishop Y., Fienberg, S. and Holland P. W. (1975). Discrete Multivariate Analysis, Theory and

Practice. The MIT Press, Cambridge.

Cochran W. (1952). The χ
2 test of goodness of fit. Ann. Math. Statist. 23, 315-345.

Cox, D. and Miller, H. (1968). The Theory of Stochastic Processes. Chapman and Hall, London.

Dudley, R. M. (1976). Probabilities and Metrics: Convergence of Laws on Metric Spaces, With a

View to Statistical Testing. Aarhus Universitet, Matematisk Institut, Lecture Notes Series

No. 45.

Fienberg, S. (1979). The use of chi-squared statistics for categorical data problems. J. Roy.

Statist. Soc. Ser. B 41, 54-64.

Gentleman R. C., Lawless J. F., Lindsey, J. C. and Yan, P. (1994). Multistate Markov-models

for analyzing incomplete disease history data with illustrations for HIV disease. Statist.

Medicine 13, 805-821.

Goodman, L. (1962). Statistical methods for analyzing processes of change. Amer. J. Sociology

68, 57-78.
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