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Abstract: This paper extends the 4m2n minimum aberration designs (MA designs)

of Wu and Zhang (1993) to the case of (S2)Sn−k, where S is any prime or prime

power. Some basic properties of (S2)Sn−k MA designs, including the relations

with Sn−k MA designs, are discussed. The (9)3n−k MA designs with 27 runs and

(16)4n−k MA designs with 64 runs are tabulated, and some (4)2n−k MA designs

are constructed using the above relations.
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1. Introduction

A factorial design in which the numbers of levels of the factors are not all
equal is called an asymmetrical or mixed factorial design. In practice, many
experiments require that the factors have different numbers of levels. Usually we
use Sn1

1 · · ·Snq
q to denote a design with n1 S1-level factors, . . ., nq Sq-level factors.

Addelman (1962) established some methods for constructing 4m2n orthogonal
arrays. By using a grouping scheme, Wu, Zhang and Wang (1992) constructed a
large class of asymmetrical orthogonal arrays.

When S is a prime or prime power, the grouping scheme for constructing
(S2)Sn orthogonal array is as follows. Let OA(Sp, SL) be a regular saturated
orthogonal array, where L = (Sp − 1)/(S − 1), and x1, . . . , xp be p independent
columns of the array. Then each column of the array can be represented as∑p

i=1 aixi, where ai is an element of the finite field GF (S) of S elements. For
simplicity, every column can be represented by a vector V = (a1, . . . , ap), where
the first nonzero component ai is 1. For any two independent p-vectors V1 and
V2, let H2,p be the set of the S + 1 columns of the form c1V1 + c2V2, where

ci ∈ GF (S), at least one ci is nonzero and the first nonzero ci is 1. (1)

We then use an S2-level column to replace the S +1 S-level columns of H2,p, and
select n S-level columns from the array OA(Sp, SL)\H2,p. Then an asymmetrical
array OA(Sp, (S2)Sn) is obtained, where n ≤ (Sp − 1)/(S − 1) − S − 1 and
(S2) denotes the S2-level column in the design. For simplicity, we use V c1

1 V c2
2
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to denote the operation c1V1 + c2V2 in GF (S) and we write H2,p as H2,p =
{V1, V2, V1V2, . . . , V1V

S−1
2 }, where superscripts 1, . . . , S − 1 ∈ GF (S).

For any fixed n, there are many such designs. A natural question is how
to find an optimal one. First, we need a criterion of goodness. Wu and Zhang
(1993) described some basic ideas on asymmetrical minimum aberration factorial
designs and constructed a class of minimum aberration (MA) design of the type
4m2n. In this paper, we extend their results to (S2)Sn designs, where S is a
prime or prime power.

We only consider regular (S2)Sn designs, wherein there are an S2-level factor
and n S-level factors and, for some k, among the n S-level factors, n− k of them
are independent of each other and the S+1 S-level factors grouped as the S2-level
factor while the other k factors are defined by k independent defining relations.
To emphasize the parameter k, (S2)Sn−k denotes this kind of designs hereafter.

In Section 2 we give some related concepts and three criteria for selecting
(S2)Sn−k MA designs. Some properties of (S2)Sn−k MA designs are studied and
the (9)3n−k MA designs with 27 runs and (16)4n−k MA designs with 64 runs are
given in Section 3. In Section 4 we utilize the relation between (S2)Sn−k MA
designs and Sn−k MA designs to give some (4)2n−k MA designs for certain k and
n.

2. MA Criteria and Some Related Concepts

A design with n S-level factors and Sn−k runs is called a regular Sn−k design
if k of its factors can be defined by k independent defining relations from its n−k

independent columns. For example, to construct a 35−2 design, we first write a
27× 3 matrix whose rows consist of all the level combinations of factors 1, 2 and
3 (0, 1 and 2 stand for the three levels of each factor). Clearly, the three factors
(columns) are independent. Then we can define the factors 4 and 5 by say,

4 = 123, 5 = 232, (2)

where the levels of factors 4 and 5 are determined by addition and multiplication
module 3 according to (2). The equations in (2) are called defining relations and
I = 12342 and I = 23252 are called defining contrasts. From the two defining
relations we get the following:

I = 12342 = 23252 = 1224252 = 132425 = 1222324 = 2235 = 12245 = 123452,

(3)
where I = (0, . . . , 0)′ is the identity element of the group, and 12342, 23252,

1224252, 132425 are called words. If a word contains c letters, then it is said to
have wordlength c. Generally, for a regular Sn−k design obtained by k defining
relations, I and all the words generated by the k defining relations form a group.



MINIMUM ABERRATION (S2)Sn−k DESIGNS 215

Since the levels in experimental designs can be treated as symbols, we have a
convention: the words x and xλ are considered to be same, where λ ∈ GF (S)
and λ �= 0, and the word with the first nonzero superscript being 1 is a delegate.
We use G to denote the group and call it contrast subgroup (Chen (1990)). The
k independent contrasts in G are called generating elements of G. From the
group theory, it follows that the number of elements in G is |G| = Sk and the
number of delegate words in the group is (Sk − 1)/(S − 1). In the following, for
convenience, we also use G to denote the set of all the different words and I in
the group and still call it a contrast subgroup.

Now, let us consider a regular (S2)Sn−k design. In such a design, the S2-
level factor is obtained by the grouping scheme. Without loss of generality, let
it be A = (1, 2, 12, . . . , 12S−1). Let 3, . . . , n + 2 − k be n − k independent S-
level factors, and the other k S-level factors are determined by k independent
defining relations, where the k relations involve the n + 2 letters 1, . . . , n + 2.
The k independent relations also generate a contrast subgroup and the design
can be completely described by this group. For example, to obtain a (4)27−3

design, we take A = (1, 2, 12) as the 4-level factor, 3, 4, 5, 6 as the 4 independent
2-level factors, and the other 3 factors can be obtained by 3 defining relations,
for instance, 7 = 1234, 8 = 245, and 9 = 346. Then its contrast subgroup is
I = 12347 = 2458 = 3469 = 13578 = 12679 = 235689 = 1456789.

Let D denote a regular (S2)Sn−k design described as above. If the S2-
level factor in D is replaced by the S + 1 S-level factors of A, then D can be
regarded as a symmetric S(n+S+1)−(k+S−1) design, denoted by E . Let G(D)
denote the contrast subgroup of D generated by its k defining relations. We
notice that for 12, 122, . . . , 12S−1, every one is considered to relate one factor in
D, but in its corresponding S(n+S+1)−(k+S−1) design, every one of them involves
two factors. Therefore, when calculating wordlength, if a word in the (S2)Sn−k

design contains 12t, t ∈ GF (S), t �= 0, then its wordlength in D is 1 less than its
length in the S(n+S+1)−(k+S−1) design.

We partition the words in the group G(D) into two types: type 0 and type
1. A word which does not include any 1 and 2 is of type 0, otherwise it is
of type 1. Similar to symmetric designs, we define the wordlength pattern of
the asymmetrical design D to be a nested vector W (D) = {Ai(D)}i≥3, where
Ai(D) = (Ai0(D), Ai1(D)), and Aij(D) denotes the number of words of type j
with wordlength i. The wordlength pattern of the S(n+S+1)−(k+S−1) design E
defined by the k + S − 1 defining relations is denoted by W ∗(E). Similarly, we
define the rth moment of D to be Mr(D) =

∑
j jrAj(D). If the two types of

words are treated as equally important, we also define the combined wordlength
pattern of D as W c(D) = {Bi(D)}i≥3, where Bi(D) = Ai0(D) + Ai1(D), and the
combined r-moment of D as M c

r (D) =
∑

j jrBj(D).
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To find an optimal design, we first find maximum resolution designs. When
two designs have the same resolution, according to the hierarchical principle of
factor effects in experiments, we choose the one with least aberration. To meet
different requirements, we define the following three minimum aberration criteria
for selecting optimal (S2)Sn−k designs.

1. Minimum aberration criterion of type 0. Let D1 and D2 be two (S2)Sn−k

designs and let r be the smallest i such that Ai(D1) �= Ai(D2). If Ar0(D1) <

Ar0(D2) or if Ar0(D1) = Ar0(D2) and Ar1(D1) < Ar1(D2), D1 is said to have less
aberration of type 0 than D2. If there is no design which has less aberration of
type 0 than D1, D1 is said to be a minimum aberration design of type 0 (MA0

design, for short).

2. Minimum aberration criterion of type 1. Exchanging Ar0 and Ar1 in the
above definition gives the definition of minimum aberration criterion of type 1.
Also, for short, we denote the minimum aberration of type 1 by MA1.

3. Combined minimum aberration criterion. Let D1 and D2 be two designs.
Suppose that r is the smallest i such that Bi(D1) �= Bi(D2). If Br(D1) < Br(D2),
D1 is said to have less combined aberration than D2. If there is no design which
has less combined aberration than D1, D1 is said to be a combined minimum
aberration design (MAc design, for short).

Experimenters can choose one of the three criteria above according to prac-
tical requirements. When the S2-level factor and all S-level factors are consid-
ered to be equally important, we can choose Criterion 3; if the S2-level factor
is regarded to be more important, we can choose Criterion 2; otherwise choose
Criterion 1.

Example 2.1. Let OA(34, 340) denote a regular saturated 3-level design with
independent factors 1, 2, 3 and 4. Suppose that by applying grouping schemes
to OA(34, 340), we have the following three (9)34−2 designs: D1 : A,B,C,D =
342, E = 14, D2 : A,B,C,D = 13, E = 24, D3 : A,B,C,D = 134, E = 2342,

where A = (1, 2, 12, 122), B = 3, and C = 4. Then for D1, we have words
BC2D2, 1CE2, 1BD2E2, 1B2C2DE2 and W (D1) = {(1, 1), (0, 1), (0, 1)}; for
D2, we have words 1BD2, 2CE2, 12BCD2E2, 122BC2D2E and W (D2) = {(0, 2),
(0, 0), (0, 2)}; for D3, we have words 1BCD2, 2BC2E2, 12B2D2E2, 122C2D2E

and W (D3) = {(0, 0), (0, 4), (0, 0)}. Comparing D1 and D2, D1 is better than D2

with respect to Criterion 2, but D2 is better than D1 under Criteria 1 and 3.
Under all three criteria D3 is better than D1 and D2.

For small values of parameters n and k, we can find MA designs by exhaustive
computation. We obtain some (9)3n−k MA designs with 27 runs, (16)4n−k MA
designs with 64 runs and we give their wordlength patterns for all the three
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criteria. These are tabulated in Tables 1 and 2 respectively. (For large n and k,
this method is not feasible.)

3. Properties of (S2)Sn−k MA Designs

In this section, we study properties of (S2)Sn−k MA designs. We still use
A = (1, 2, 12, 122, . . . , 12S−1) to denote the S2-level factor in an (S2)Sn−k design,
and G denotes the contrast subgroup generated by its k independent defining
contrasts. We only consider the case where all the n + 2 letters appear in G, for
otherwise the resolution or wordlength of the design is reduced (see Theorem 1
below). Suppose that T is a subgroup consisting of the words not including 1
and 2 and denote it by T = I ∪ F . Then it is not difficult to verify that one of
the following holds:

G = T ∪ 12txQ, for some t ∈ GF (S) and t �= 0,

where Q = I ∪ F ∪ F 2 ∪ · · · ∪ FS−1, F i stands for the set iF, (4)

i ∈ GF (S), x and F do not contain factors 1 and 2;

G = T ∪ 1xQ ∪ 2yQ ∪ 12xyQ ∪ · · · ∪ 12S−1xyS−1Q,

where Q is as in (4), x, y, and F do not contain factors 1 and 2. (5)

In the following we give some results on (S2)Sn−k MA designs under Crite-
rion 3. For simplicity, we use the notation MA design instead of MAg design for
this case. We have

Theorem 1. Let D be an (S2)Sn−k MA design and G(D) denote the contrast
subgroup generated by its k defining relations. Then
1. G(D) contains all the letters.
2. If k > 1, G(D) satisfies (5).
3. If D satisfies (5), then the first moment M c

1(D) of the wordlength pattern of
D is Sk−2(Sn + S + 1).

4.
∑

i≥3 Bi(D) = (Sk − 1)/(S − 1).

To find (S2)Sn−k MA designs, we establish some ties between (S2)Sn−k

designs and Sn−k designs.
Suppose that D is an (S2)Sn−k design and that its contrast subgroup G(D)

satisfies (5). By dropping letters 1 and 2 from (5) we get

G− = T ∪ xQ ∪ yQ ∪ xyQ ∪ · · · ∪ xyS−1Q.

Obviously, G− nominally can be regarded as the contrast subgroup of an Sn−k

design which does not contain factors 1 and 2. Denote the design by D−, then
G− = G(D−). For such a design D− we can similarly define its wordlength and
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wordlength pattern. Conversely, given an Sn−k design D− without factors 1 and
2, by a selection for T, x, and y adding factors 1 and 2, we get an (S2)Sn−k de-
sign. For example, suppose D is a (4)27−3 design with A = (1, 2, 12), 3, 4, 5, 6, 7 =
134, 8 = 12456, 9 = 345. Then G(D) = {I, 1347, 124568, 3459, 235678, 1579,
123689, 246789}, D− is 3, 4, 5, 6, 7 = 34, 8 = 456, 9 = 345, and G(D−) =
{I, 347, 4568, 3459, 35678, 579, 3689, 46789} with T = {I, 3459}, x = 347 and
y = 4568. If we select T = {I, 35678}, x = 347 and y = 579 from G(D−),
we obtained another (S2)Sn−k design D1: A = (1, 2, 12), 3, 4, 5, 6, 7 = 134, 8 =
1456, 9 = 12345, which is better than D. It can be seen that the construction of
a design D depends on the choice of D− and related Q, x and y in G(D−). It
is needed to note that, in a design D−, x and y can involve exactly two letters.
In this case, the design D− may have resolution II and hence may not be a main
effect plan. But this does not affect Theorem 2, since the formula (A.1) in the
proof of the theorem is still true.

Theorem 2. Let D be an (S2)Sn−k design and let G(D) satisfy (5). Then under
Criterion 3:

1. For k = 2, a necessary and sufficient condition for D to be an (S2)Sn−k

MA design is that D− is an Sn−k MA design;
2. For k = 3, either D− is an Sn−k MA design or there is an Sn−k MA

design, say D−
1 , such that through an appropriate selection of T , x and y, the

corresponding (S2)Sn−k design D1 has the same wordlength pattern as D, i.e.,
D1 is also an (S2)Sn−k MA design.

For k ≥ 4, we can use the following method to construct a good (S2)Sn−k

design. Partition the wordlength pattern W (D−) of D− into two parts, one T ,
denoted by W 1(D−) = {B1

i (D−)}i≥3, and the other for xQ∪yQ∪· · ·∪xyS−1Q, de-
noted by W 2(D−) = {B2

i (D−)}i≥3. Therefore, the combined wordlength pattern
of D is W c(D) = {Bi(D)}i≥3 = {B1

i (D−) + B2
i−1(D−)}i≥3, where B2

2(D−) = 0.
Thus, the wordlength pattern of D is determined by W 1(D−) and a 1-component
right-shifting of W 2(D−). On the other hand, for any k > 2, the number of words
in T is (Sk−2 − 1)/(S − 1) and that in xQ∪ yQ∪ · · · ∪ xyS−1Q is (Sk − 1)/(S −
1) − (Sk−2 − 1)/(S − 1). The total number of words in D− is (Sk − 1)/(S − 1)
and the number of words in the second part is α ≡ 1 − (Sk−2 − 1)/(Sk − 1)
times the total number. Obviously, the proportion α is at least 1− 1/S2 for any
k. For example, for S = 2, 3, 5, α ≥ 3

4 , 8
9 , 24

25 respectively. Thus a 1-component
right-shifting of W 2(D−) contributes substantially to the wordlength pattern of
D. So, if D− has small aberration then D also has small aberration. We call the
best design obtained by this method a nearly MA design.

According to Theorem 2 and the above analysis, we can construct an (S2)
Sn−k MA design (at least for k = 2, 3) or a nearly MA design through an Sn−k

MA design.
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4. Some (4)2n−k MA Designs

Wu and Zhang (1993) constructed 4m2n MA designs for certain parameters.
Using the relation between an (S2)Sn−k design D and its corresponding Sn−k

design D− of the last section, and the known results about 2n−k MA designs
(Chen (1990)), we construct more (4)2n−k MA designs under Criterion 3. In the
following, take A = (1, 2, 12) as the 4-level factor.

Case (1) k = 2.
Set n− 2 = 3m + r, 0 ≤ r < 3, and let 3, . . . , n, (n + 1),(n + 2) denote the n

2-level factors.
For r = 0, 1, and 2, the defining relation of a (4)2n−k MA design can be

taken as, respectively,

(n + 1) = 134 · · · (2m + 1)(2m + 2),
(n + 2) = 2(m + 3)(m + 4) · · · (3m + 2),

(6)

(n + 1) = 134 · · · (2m + 2)(2m + 3),
(n + 2) = 2(m + 3)(m + 4) · · · (3m + 2)(3m + 3),

(7)

(n + 1) = 134 · · · (2m + 2)(2m + 3),
(n + 2) = 2(m + 3)(m + 4) · · · (3m + 3)(3m + 4).

(8)

Case (2) k = 3.
Set n = 7m + r, 0 ≤ r < 7, and also let 3, 4, . . . n, (n + 1), (n + 2) denote

the 2-level factors. Define Ci = I(n − i + 3)(n − i + 3 − 7) · · · (n − i + 3 − 7m),
i = 1, · · · , 7, where n− i + 3 ≥ 3, n− i + 3− 7m = r − i + 3 ≥ 3. Then we choose
the defining contrasts to be I = 1C1C4C5C6 = 2C2C4C5C7 = 12C3C4C6C7 to
obtain a (4)2n−3 MA design.

Case (3) k = 4.
Set n = 15m+ r, 0 ≤ r < 15. Define Ci = I(n− i+3)(n− i+3− 15) · · · (n−

i + 3− 15m), i = 1, . . . , 15, where n− i + 3 ≥ 3, n − i + 3− 15m = r − i + 3 ≥ 3.
Then we choose the defining contrasts

I = 1C1C6C7C8C9C12C14C15 = 2C2C5C7C8C9C11C13C15

= 12C3C5C6C8C10C11C14C15 = C4C5C6C7C10C12C13C15

to obtain a (4)2n−3 nearly MA design.

Example 4.1. Consider a 64-run (4)28−4 design. According to the above method
we have C1 = 10, C2 = 9, C3 = 8, C4 = 7, C5 = 6, C6 = 5, C7 = 4, C8 = 3, C9 =
C10 = I and the defining contrasts I = 110345 = 29346 = 128356 = 7456. This
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gives a 64-run (4)28−4 nearly MA design (1, 2, 12), 3, 4, 5, 6, 456, 12356, 2346, 1345
which has resolution IV and wordlength pattern ((2,0), (0,12), (0,0), (0,0), (1,0)).

Table 1. Minimum aberration (9)3n−k designs with 27 runs under the three criteria.

n k Design D {Ai(D)}i≥3

2 1 A, 3, 123 (0,1)
3 2 A, 3, 13, 23 (0,3)(0,1)
4 3 A, 3, 13, 23, 123 (0,6)(1,4)(0,2)
5 4 A, 3, 13, 23, 123, 1223 (1,10)(3,9)(0,12)(0,5)
6 5 A, 3, 13, 23, 123, 1223, 232 (2,15)(9,18)(0,36)(2,30)(0,9)
7 6 A, 3, 13, 23, 123, 1223, 132, 232 (5,21)(15,30)(9,90)(8,96)(3,69)(0,18)
8 7 A, 3, 13, 23, 123, 132, 1223, 1232, 12232 (8,28)(30,48)(24,180)(32,256(24,276)

(3,144)(0,40)

Table 2. Minimum aberration (16)4n−k designs with 64 runs under the three criteria.

n k Design D {Ai(D)}i≥3

2 1 A, 3, 123 (0,1)
3 2 A, 3, 13, 23 (0,3)(0,2)
4 3 A, 3, 13, 23, 123 (0,6)(1,8)(0,6)
5 4 A, 3, 13, 23, 123, 12α3α (0,10)(4,18)(1,26)(0,26)
6 5 A, 3, 13, 23, 1231+α, 121+α3α, 12α31+α (0,15)(10,40)(5,90)(6,120)(0,55)
Remark: GF (22) = {0, 1, α, 1 + α}, A = (1, 2, 12, 12α, 121+α)
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Appendix A. Proof of Theorem 1

If no word in G(D) contains some letter j, we can obtain another design D′

by adding the letter j to the defining relations of D. Comparing the lengths of
words in the two contrast subgroups G(D′) and G(D), we can see that the length
of any word in G(D′) is 1 greater than or equal to that of its corresponding word
in G(D), and there is at least one word in G(D′) whose length is greater than
the length of its corresponding word in G(D). This means D′ is better than D,
which contracts the assumption that D is an MA design, thus completing the
proof of 1.
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Suppose that D is an MA design but satisfies (4). Without loss of generality
let G(D) = I ∪ F ∪ 12x(I ∪ F ∪ F 2 ∪ · · · ∪ FS−1), and by the assumption k > 1,
the subgroup T = I ∪ F is not trivial (i.e. it does not only contain I). Then by
the properties of a group there is a z such that F = H ∪ z(I ∪ H ∪ · · · ∪ HS−1),
where I ∪ H is a subgroup. Thus, G(D) can be written as

G(D) = I ∪ H ∪ z(I ∪ H ∪ · · · ∪ HS−1) ∪ 12x(I ∪ H ∪ z(I ∪ H ∪
· · · ∪ HS−1) ∪ · · · ∪ HS−1 ∪ zS−1(I ∪ H ∪ · · · ∪ HS−1)S−1)

= I ∪ H ∪ z(I ∪ H ∪ · · · ∪ HS−1) ∪ 12x(I ∪ H ∪ · · · ∪ HS−1

∪z(I ∪ H ∪ · · · ∪ HS−1) ∪ · · · ∪ zS−1(I ∪ H ∪ · · · ∪ HS−1))

= T ∗ ∪ zQ∗ ∪ 12xQ∗ ∪ 12xzQ∗ ∪ · · · ∪ 12xzS−1Q∗,

where T ∗ = I ∪ H and Q∗ = I ∪ H ∪ · · · ∪ HS−1.
Now we take another design D′ which is obtained by changing z in D to 2z.

Then we have

G(D′) = T ∗ ∪ 2zQ∗ ∪ 12x(Q∗ ∪ 2zQ∗ ∪ · · · ∪ 2S−1zS−1Q∗)
= T ∗ ∪ 1xzS−1Q∗ ∪ 2zQ∗ ∪ 12xQ∗ ∪ 122xzQ∗ ∪

· · · ∪ 12S−1xzS−2Q∗.

Since the length of every word of 2zQ∗ in G(D′) is 1 greater than that of every
word of zQ∗ in G(D), and the wordlengths of the remaining words in G(D′) and
G(D) are the same, this implies that D′ is better than D, also contradicting the
assumption. Thus the proof of 2 is completed.

Now we prove 3. Let c be the number of words containing 12t in G, i0
be the number of words of length i not containing 12t, and i1 be the number
of words of length i containing 12t. Suppose that the combined wordlength
pattern of an (S2)Sn−k MA design is W c = {Bi} and the wordlength pattern
of its corresponding S(n+S+1)−(k+S−1) design is W ∗ = {B′

i}. Then we have
Bi = Bi0 + Bi1 , B

′
i = B′

i0
+ B′

i1
, where B′

i0
= Bi0, B′

i1
= B(i−1)1 . Hence the first

moment of D is

M c
1(D) =

∑
iBi =

∑
iBi0 +

∑
iBi1

=
∑

iB′
i0 +

∑
iB′

(i+1)1
=

∑
iB′

i −
∑

iB′
i1 +

∑
iB′

(i+1)1

=
∑

iB′
i −

∑
iB′

i1 +
∑

(i − 1)B′
i1 =

∑
iB′

i −
∑

B′
i1 ,

where
∑

is taken over i ≥ 3. Since G(D) has the form (5), by a simple com-
putation we get c =

∑
Bi1 =

∑
B′

i1 = Sk−2(S − 1) and
∑

iB′
i = (n + 2)Sk−1
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(Chen (1990)). Therefore we have M c
1(D) = (n + 2)Sk−1 − Sk−2(S − 1) =

Sk−2(Sn + S + 1), which is the required result.
The result of 4 is obvious. The proof of the theorem is complete.

Appendix B. Proof of Theorem 2

1. For k = 2, the length of every word in G(D) is equal to that of its
corresponding word in G(D−) plus 1. Actually, the wordlength pattern of D can
be obtained by a 1-component right-shifting of the wordlength pattern of D−.
This proves Part 1 of the theorem.

2. For k = 3, by assumption, there is only one 0-type word in G(D). We
denote the length of the 0-type word by b, and denote the wordlength pattern for
all 1-type words in D by {Ai1(D)}i≥3. Then the wordlength pattern of G(D−)
corresponding to D, denoted by {Bi(D−)}i≥3, satisfies the conditions:

Bi(D−) = Ai+1,1(D), if i �= b,

Bi(D−) = Ai+1,1(D) + 1, if i = b.

If D− is not an Sn−k MA design, let D−
1 be an Sn−k MA design (not including

factors 1 and 2). Denote the wordlength pattern of D−
1 by {Bi(D−

1 )}i≥3 and
assume that the longest word in G(D−

1 ) has length a. Choose a word with length
a from D−

1 as a generator of T (see Theorem 1), properly add letters 1, 2, or 12t

to the other words in G(D−
1 ) and take A = (1, 2, 12, . . . , 12S−1) as the S2-level

factor. Then we obtain an (S2)Sn−k design D1 corresponding to D−
1 .

There are two cases to be considered.
(i) a ≥ b. In this case, since D−

1 has less aberration than D−, it is clear that
the corresponding design D1 has less aberration than D according to Criterion
3. This contradicts the assumption that D is an (S2)Sn−k MA design. So D−

must be an Sn−k MA design.
(ii) a < b. Let r denote the smallest i such that Bi(D−) �= Bi(D−

1 ). Then
r < a and Br(D−) > Br(D−

1 ) since D−
1 has less aberration than D−. There are

two possibilities. (iia) r < a−1 or Br(D−)−Br(D−
1 ) > 1. For this case, it is easy

to show that D1 has less aberration than D, which contradicts the assumption.
Thus D− must be an Sn−k MA design. (iib) r = a−1 and Br(D−)−Br(D−

1 ) = 1.
For this case, we first note the formulas:

∑

i

Bi = (Sk − 1)/(S − 1),
∑

i

iBi = nSk−1, (A.1)

where k is the number of defining words and n the number of letters in the design
(Pless (1963)). Therefore, we have

Ba−1(D−
1 ) + Ba(D−

1 ) =
∑

i≥a−1

Bi(D−), (A.2)
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(a − 1)Ba−1(D−
1 ) + aBa(D−

1 ) =
∑

i≥a−1

iBi(D−). (A.3)

From Ba−1(D−) > Ba−1(D−
1 ) and Bb(D−) ≥ 1, it follows that Ba(D−

1 ) −
Ba(D−) ≥ 2. Now we show that Ba(D−

1 ) − Ba(D−) = 2. Denote Ba(D−
1 ) −

Ba(D−) = l. By (A.2) we have
∑

i≥a+1

Bi(D−) = l − 1. (A.4)

On the other hand, by (A.3) we have la = a − 1 +
∑

i≥a+1 iBi(D−). This means
that if l > 2,

∑
i≥a+1 iBi(D−) = la − a + 1 < (a + 1)(l − 1). However, by (A.4)

we have
∑

i≥a+1 iBi(D−) ≥ (a + 1)(l − 1), which leads to a contradiction. As a
result, Ba(D−

1 ) − Ba(D−) must be equal to 2.
Since Ba−1(D−) − Ba−1(D−

1 ) = 1 and Ba(D−
1 ) − Ba(D−) = 2, from (A.2)

and (A.3) it follows that b = a + 1, Bb(D−) = 1, and Bi(D−) = 0 for i > a + 1.
Furthermore, this implies that the design D1 resulting from D−

1 has the same
wordlength pattern as that of D, which proves Part 2 of the theorem. The proof
of the theorem is complete.
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