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Abstract: When observations are costly or time-consuming but the ranking of the

observations without actual measurement can be done relatively easily, ranked-

set sampling (RSS) can be employed instead of simple random sampling (SRS) to

gain more information. In this article, we deal with RSS under multi-parameter

parametric families. It is proved that the Fisher information matrix of an RSS

sample is the sum of its counterpart of an SRS sample and an additional positive

definite matrix. This insures that the maximum likelihood estimates (MLE) based

on RSS are always more efficient than their counterparts based on SRS. The effect

of certain features of the underlying distribution such as skewness and kurtosis on

the relative efficiency of the MLE is also investigated. Some other aspects of RSS

are discussed as well.
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1. Introduction

In certain practical problems, actual measurements of a variable of interest
are costly or time-consuming, but the ranking of items according to the variable
is relatively easy without actual measurement. Under such circumstances a sam-
pling scheme called ranked-set sampling (RSS) can be employed to gain more
information than simple random sampling (SRS) while keeping the cost of, or
the time constraint on, the sampling about the same. The RSS scheme goes as
follows. A sample of size k is drawn from the population under investigation.
Then the items of the sample are ranked by judgment based on certain knowl-
edge of subject, without actual measurement. After the ranking only one item
is actually measured (or quantified), say, the rth smallest one. The procedure is
repeated N =

∑k
r=1 nr times, where nr ≥ 1 is the number of samples for which

the rth smallest item is quantified. In this article, we deal with the case of equal
nr’s. The case of non-equal nr’s will be considered elsewhere. When all the nr’s
are equal to n, say, the procedure can be described as n cycles. In each cycle,
k samples of size k are drawn and one and only one of the items with the same
order in these k samples is quantified.
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The RSS was first applied by McIntyre (1952) in his study on estimation
of mean pasture yields. Measuring yield of pasture plots requires mowing and
weighing the hay, but an experienced person can fairly accurately rank a small
number of plots without actual measurement. Later, more applications of RSS
were made in agriculture, e.g., Halls and Dell (1966) and Cobby, Ridout, Bassett
and Large (1985). Recently, the interest in RSS has been found in environmental
studies, see Johnson, Patil and Sinha (1993), Patil and Taillie (1993), Patil, Sinha
and Taillie (1993a, b), and Gore, Patil and Sinha (1994). Applications have
also been suggested in situations where judgment ranking can be done through
personal interviews, by use of photographs plus supplementary data, etc.

The properties of RSS have been investigated by several authors. McIntyre
(1952) stated without rigor that µ̂∗, the sample mean of an RSS sample, is an
unbiased estimate of the population mean, and the relative precision RP (µ̂∗, µ̂)
of µ̂∗ to the sample mean of an SRS sample µ̂, the ratio of the variance of µ̂

and the variance of µ̂∗, is slightly less than (k + 1)/2. To make the compari-
son between RSS and SRS meaningful, the number of quantified sampled items
is set equal for both samples. Dell and Clutter (1972) investigated RP further
and derived an explicit formula for it. They computed the RP for a variety of
distributions for k = 2 to 5, and provided supporting evidence for McIntyre’s
statement. The above authors only considered the problem of estimating pop-
ulation means. Stokes (1980) considered the method-of-moment estimation of
variance and showed that improved estimates of variance can be produced from
RSS samples as well. Stokes and Sager (1988) characterized an RSS sample as
a sample from a conditional distribution, conditioning on a multinomial random
vector, and applied RSS to the estimation of the cumulative distribution func-
tions. They showed that RP (F̂ ∗(t), F̂ (t)) ≥ 1 for all t, where F̂ ∗ and F̂ are the
empirical distribution functions of the RSS sample and the SRS sample, respec-
tively. Bohn and Wolfe (1992) used the RSS empirical distribution function to
construct distribution-free competitors to the standard Mann-Whitney-Wilcoxon
estimation and testing procedures. Hettmasperger (1995) investigated properties
of the sign test along with the median and corresponding confidence interval for
RSS. In all the problems investigated in the literature, RSS results in improved
procedures over SRS.

The studies mentioned above focus on non-parametric settings, i.e., no as-
sumption on the distribution of the observations is made. Studies on RSS in
parametric settings have also attracted the attentions of researchers, e.g., Shen
(1994) and Stokes (1995). Specifically, Stokes (1995) considered estimation of
µ and σ for location-scale families with cumulative distribution functions of the
form F ((x − µ)/σ). She investigated the asymptotic relative efficiency (ARE)
of the maximum likelihood estimates (MLE) from an RSS sample to the MLE
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from an SRS sample and showed the following. When σ is known, the Fisher
information on µ from an RSS sample is

I∗nk(µ) = Ink(µ) +
nk(k − 1)

σ2
E

{
[f(Z)]2

F (Z)[1 − F (Z)]

}
,

where f(z) is the density function of F , Z ∼ F and Ink(µ) denotes the Fisher
information on µ from an SRS sample of size nk. Hence, the ARE of the MLE
µ̂∗

ML from an RSS sample to the MLE µ̂ML from an SRS sample is given by

ARE(µ̂∗
ML, µ̂ML) = 1 + (k − 1)E

{
[f(Z)]2

F (Z)[1 − F (Z)]

}/
E

{
f

′
(Z)

f(Z)

}2

.

When µ is known, the Fisher information on σ from an RSS sample is

I∗nk(σ) = Ink(σ) +
nk(k − 1)

σ2
E

{
[Zf(Z)]2

F (Z)[1 − F (Z)]

}
,

and hence, the ARE of the MLE σ̂∗
ML from an RSS sample to the MLE σ̂ML

from an SRS sample is given by

ARE(σ̂∗
ML, σ̂ML) = 1 + (k − 1)E

{
[Zf(Z)]2

F (Z)[1 − F (Z)]

}/
E

{
Zf

′
(Z)

f(Z)

}2

− 1


 .

When both µ and σ are unknown, Stokes pointed out that if f is symmetric
then the off-diagonal elements in the information matrix about (µ, σ) are zero
so that |Ink(µ, σ)| < |I∗nk(µ, σ)| and the ARE in estimating µ and σ remain the
same though the MLE’s might differ. However, in general, it is not obvious
that |Ink(µ, σ)| < |I∗nk(µ, σ)|, and hence it can not be determined whether or
not the MLE from an RSS sample is more efficient than its counterpart from an
SRS sample. Stokes stated that it does not appear to be possible to determine
that |Ink(µ, σ)| < |I∗nk(µ, σ)| generally for non-symmetric distributions unless k

is sufficiently large, (see Stokes (1995), p.472).
From a statistical point of view, an RSS sample should always contain more

information than an SRS sample, since an RSS sample contains not only the
information carried by the quantified observations but also the information pro-
vided by the judgment ranking. It is this belief that motivated our study. In this
article, we consider a multi-parameter family of distributions F (x, θ), where θ is
a vector of unknown parameters. In this general setting, we find a nice struc-
ture of the information matrix of the RSS sample about θ and prove that the
information matrix from an RSS sample is the sum of the information matrix of
the corresponding SRS sample and an additional non-negative definite matrix,
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whether the ranking is perfect or not. Thus the MLE of any function of θ from
an RSS sample is always more efficient than its counterpart from an SRS sample,
at least, asymptotically. We first consider the case of perfect ranking and deal
with the ARE of the MLE of θ from an RSS sample relative to the MLE from
an SRS sample. We also investigate, in the case of perfect ranking, how certain
characteristics of F (x, θ) such as skewness and kurtosis affect the ARE of the
MLE’s. Then we consider the case of imperfect ranking. In Section 2, we derive
the Fisher information matrix on θ from an RSS sample in the case of perfect
ranking. The ARE of the MLE’s in the case of perfect ranking is dealt with in
Section 3. In Section 4, we consider a particular model for the case of imperfect
ranking and derive the Fisher information matrix of the RSS sample in this case.
Some remarks are given in Section 5.

2. The Fisher Information Matrix from an RSS Sample

We consider a population whose cumulative distribution function and density
function are given by, respectively, F (x; θ) and f(x; θ), where θ = (θ1, . . . , θp)

′

is a vector of unknown parameters. Assume that f(x; θ) satisfies the following
regularity conditions.
(C1) For all x, all the first, second and third partial derivatives of f(x; θ) with

respect to the components of θ exist.
(C2) For each θ0 in the range of θ, there is a neighborhood N(θ0) such that

every first or second partial derivative in (C1) is bounded by an integrable
function and every third derivative is bounded by a function which has finite
expectation when θ ∈ N(θ0).

(C3) For each θ, 0 < E{(∂ log f(X, θ)/∂θi)2} < ∞ for i = 1, . . . , p.
These regularity conditions insure the consistency and asymptotic normality of
the MLE of θ. In addition, we assume that the judgment ranking is perfect. Let
the k quantified variables in the ith cycle be denoted by X(1)i, . . . ,X(k)i. Under
the assumption of perfect judgment ranking, they are indeed order statistics but
independent, differing from the order statistics of an SRS sample. It follows that
X(r)i, i = 1, . . . , n, are independent identically distributed (i.i.d.) with density
function given by

f(r)(x; θ) =
k!

(r − 1)!(k − r)!
F r−1(x; θ)[1 − F (x; θ)]k−rf(x; θ).

Let

l1(θ) =
k∑

r=1

[(r − 1) ln F (X(r); θ) + (k − r) ln(1 − F (X(r); θ))],

l2(θ) =
k∑

r=1

ln f(X(r); θ).
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The log-likelihood function of an RSS sample with n = 1 can then be written as

l(θ) =
k∑

r=1

ln f(r)(X(r); θ) = l1(θ) + l2(θ) + C,

where C is a constant. Under the regularity conditions, the Fisher information
matrix on θ from the sample is given by

I∗k(θ) = −E

[
∂2l(θ)
∂θ∂θT

]
= −E

[
∂2l1(θ)
∂θ∂θT

]
− E

[
∂2l2(θ)
∂θ∂θT

]
.

It is easy to see that −E[∂2l2(θ)/∂θ∂θT ] is the same as the Fisher information
matrix on θ from an SRS sample of size k. Write

F(r) = F (X(r); θ),

F
′
(r)i =

∂F (X(r); θ)
∂θi

,

F
′′
(r)ij =

∂2F (X(r); θ)
∂θi∂θj

.

After some straightforward manipulation, we find the (i, j)th element of ∂2l1(θ)/
∂θ∂θT to be

∂2l1(θ)
∂θi∂θj

=
k∑

r=1

(r − 1)


 F

′′
(r)ij

F(r)(1 − F(r))
+

F
′
(r)iF

′
(r)j

F(r)(1 − F(r))2




−(k − 1)
k∑

r=1


 F

′′
(r)ij

(1 − F(r))
+

F
′
(r)iF

′
(r)j

(1 − F(r))2




−
k∑

r=1

(r − 1)


 F

′
(r)iF

′
(r)j

F 2
(r)(1 − F(r))


 . (1)

Now let us state and prove a lemma.

Lemma 1. Let Yk,r denote the rth order statistic of a random sample of size
k from a distribution with cumulative distribution function F (x). Then for any
function G(·),

E

{
k∑

r=1

(r − 1)
G(Yk,r)
F (Yk,r)

}
= k(k − 1)EG(X),

provided EG(X) exists, where X is a random variable with cumulative distribu-
tion function F (x).
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Proof.

E

{
k∑

r=1

(r − 1)
G(Yk,r)
F (Yk,r)

}

=
k∑

r=1

(r − 1)
∫

k!
(r − 1)!(k − r)!

G(y)
F (y)

F r−1(y)(1 − F (y))k−rdF (y)

= k
k∑

r=2

∫ (k − 1)!
(r − 2)!(k − r)!

G(y)F r−2(y)(1 − F (y))k−rdF (y)

= k
k−1∑
r=1

∫ (k − 1)!
(r − 1)!(k − 1 − r)!

G(y)F r−1(y)(1 − F (y))k−1−rdF (y)

= k
k−1∑
r=1

EG(Yk−1,r)

= k(k − 1)EG(X).

By applying the lemma to the sums in (1), the expectation of the first sum
and the second sum cancel each other, and the expectation of the third sum
becomes −k(k − 1)∆ij(θ) with

∆ij(θ) = E

{
∂F (X; θ)/∂θi ∂F (X; θ)/∂θj

F (X; θ)[1 − F (X; θ)]

}
,

where expectation is taken with respect to X with distribution function F (x; θ).
Let I(θ) denote the Fisher information matrix of a single random observation
from distribution F (x; θ). Let ∆(θ) denote the matrix with (i, j)th element
∆ij(θ). Then we have

Theorem 1. Under regularity conditions (C1)—(C3),

I∗k(θ) = kI(θ) + k(k − 1)∆(θ).

Note that the matrix ∆(θ) can be written as

∆(θ) = E

{
1

F (X; θ)[1 − F (X; θ)]

(
∂F (X; θ)

∂θ

)(
∂F (X; θ)

∂θ

)T
}

.

Hence ∆(θ) is non-negative definite. It will be referred to as the information gain
matrix.

It follows from the i.i.d. structure of the cycles in the RSS scheme that the
Fisher information matrix on θ from an RSS sample with n cycles is given by

I∗nk(θ) = nI∗k(θ).

We consider some special cases.
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(i) Location-scale families. If F (x; θ) = F ((x − µ)/λ), where θ = (µ, λ)T , the
family is called a location-scale family. Then

∂F ((X − µ)/λ)
∂µ

= − 1
λ

f(
X − µ

λ
),

∂F ((X − µ)/λ)
∂λ

= − 1
λ

X − µ

λ
f(

X − µ

λ
).

Hence the information gain matrix is given by

∆11 =
1
λ2

E

{
[f(X)]2

F (X)[1 − F (X)]

}
,

∆22 =
1
λ2

E

{
[Xf(X)]2

F (X)[1 − F (X)]

}
,

∆12 =
1
λ2

E

{
X[f(X)]2

F (X)[1 − F (X)]

}
,

where the expectation is taken with respect to X with distribution function
F (x) and density f(x). If f(x) is symmetric about zero, then ∆12 = 0. The
information gain matrix is independent of the location parameter µ and is
inversely proportional to the square of the scale parameter λ. This is the case
considered by Stokes (1995). The normal and exponential families fall into
this class. We have, for the normal family N(µ, λ2), ∆11 = 0.4805/λ2 ,∆22 =
0.0675/λ2 and ∆12 = 0. For the exponential family E(θ), ∆(θ) = 0.4041/θ2.

(ii) Shape-scale families. By a shape-scale family we refer to a family with
cumulative distribution functions of the form F (x/λ, α), where θ = (λ, α)T ,
λ is called the scale parameter and α the shape parameter. Let Fα(x) denote
the cumulative distribution with λ = 1 and fα(x) the corresponding density
function. The information gain matrix for a shape-scale family is given by(

1 0
0 λ−1

)(
δ11(α) δ12(α)
δ21(α) δ22(α)

)(
1 0
0 λ−1

)

where

δ11(α) = E

{
(∂Fα(X)/∂α)2

Fα(X)[1 − Fα(X)]

}
,

δ12(α) = −E

{
X(∂Fα(X)/∂α)(∂fα(X)/∂α)

Fα(X)[1 − Fα(X)]

}
,

δ22(α) = E

{
(X∂fα(X)/∂α)2

Fα(X)[1 − Fα(X)]

}
,

where the expectation is taken with respect to X ∼ Fα(x).
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We consider two families of this type: the gamma family and the Weibull
family. The gamma family Gamma(α, λ) is a shape-scale family with density
function given by fα(x) = xα−1e−x/Γ(α). The values of δ11(α), δ12(α) and δ22(α)
for α = 1.5(0.5)10 are given in Table 1. The Weibull family Weibull(λ, α) is a
shape-scale family with density function given by fα(x) = αxα−1e−xα

. The values
of δ11(α), δ12(α) and δ22(α) for α = 1.5(0.5)10 are given in Table 2. Tables 1
and 2 are to be used in the computation of the asymptotic relative efficiencies
for estimating mean and variance for the two families in the next section.

Table 1. The information gain matrix for Gamma distributions.

α δ11(α) δ22(α) δ12(α) α δ11(α) δ22(α) δ12(α)
1.5 0.4174 0.6403 0.4872 6.5 0.0790 3.0356 0.4845

2 0.2995 0.8785 0.4944 7 0.0730 3.2759 0.4842
2.5 0.2268 1.1175 0.4872 7.5 0.0679 3.5168 0.4840

3 0.1855 1.3570 0.4897 8 0.0634 3.7582 0.4839
3.5 0.1557 1.5967 0.4884 8.5 0.0595 3.9995 0.4839

4 0.1341 1.8366 0.4874 9 0.0560 4.2397 0.4838
4.5 0.1177 2.0765 0.4866 9.5 0.0530 4.4773 0.4835

5 0.1049 2.3163 0.4860 10 0.0502 4.7113 0.4829
5.5 0.0918 2.5560 0.4729

Table 2. The information gain matrix for Weibull distributions.

α δ11(α) δ22(α) δ12(α) α δ11(α) δ22(α) δ12(α)
1.5 0.11195 0.9092 0.02334 6.5 0.00596 17.0738 0.02334

2 0.06297 1.6164 0.02334 7 0.00514 19.8015 0.02334
2.5 0.04030 2.5257 0.02334 7.5 0.00447 22.7314 0.02334

3 0.02798 3.6370 0.02334 8 0.00393 25.8632 0.02334
3.5 0.0205 4.9503 0.02334 8.5 0.00348 29.1972 0.02334

4 0.01574 6.4658 0.02334 9 0.00310 32.7332 0.02334
4.5 0.01243 8.1833 0.02334 9.5 0.00279 36.4712 0.02334

5 0.01007 10.1028 0.02334 10 0.00251 40.4113 0.02334
5.5 0.00832 12.2244 0.02334

3. The Asymptotic Relative Efficiency of the Maximum Likelihood
Estimates

In this section, we deal with the asymptotic relative efficiency of the MLE
from RSS samples with respect to the MLE from SRS samples in the case of
perfect ranking. We also investigate how the asymptotic relative efficiency is
affected by the skewness and kurtosis of the underlying distribution.
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Let θ̂∗nk denote the MLE of θ from an RSS sample with cycle size k and
number of cycles n. First, we have the following

Proposition 1. Under regularity conditions (C1)—(C3),
(i) θ̂∗nk is strongly consistent as n goes to infinity;
(ii) As n goes to infinity, θ̂∗nk converges in distribution to the normal distribution

with mean θ and variance-covariance matrix [kI(θ) + k(k − 1)∆(θ)]−1;
(iii) If φ is a function of θ, the asymptotic efficiency of the MLE φ̂∗ of φ from

RSS samples, relative to its counterpart φ̂ from SRS samples, is given by

ARE(φ̂∗, φ̂) =
(φ

′
(θ))T I−1(θ)φ

′
(θ)

(φ′(θ))T [I(θ) + (k − 1)∆(θ)]−1φ
′(θ)

,

where φ
′
(θ) is the vector of the derivatives of φ with respect to the com-

ponents of θ. In particular, if θ itself is a scalar, the asymptotic relative
efficiency is

ARE(φ̂∗, φ̂) = 1 + (k − 1)
∆(θ)
I(θ)

,

for any differentiable function φ(θ).

Note that since the matrix ∆(θ) is non-negative definite the relative efficiency
ARE(φ̂∗, φ̂) is always greater than or equal to 1.

In what follows, we examine the ARE in estimating the mean and variance
for some particular families. We investigate how the skewness and kurtosis of a
distribution affect the AREs. To this end, we work with the Gamma, Weibull
and non-central t-distribution families.
(a) For the Gamma(α, λ) family, the information matrix about (α, λ) is as fol-

lows: (
[Γ(α)Γ

′′
(α) − [Γ

′
(α)]2][Γ(α)]−2 λ−1

λ−1 αλ−2

)
.

The mean and the variance of the gamma distribution are, respectively, µ =
φ1 = αλ and σ2 = φ2 = αλ2. We have φ

′
1 = (λ, α)T and φ

′
2 = (λ2, 2αλ)T . We

computed the ARE, the skewness and the kurtosis for α = 1.5(0.5)10, λ = 1
and k = 2. The results are given in Table 3.

(b) For the Weibull(λ, α) family, the information matrix about (α, λ) is as fol-
lows: (

α−2 + τ2 λ−1(1 − ατ1 − τ0)
λ−1(1 − ατ1 − τ0) αλ−2[(α + 1)τ0 − 1]

)
,

where τi = E[Xα(lnX)i], i = 0, 1, 2, with X ∼ Weibull(α, 1). The mean
and the variance of the Weibull distribution are, respectively, µ = φ1 =
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λΓ(1 + 1/α) and σ2 = φ2 = λ2[Γ(1 + 2/α) − Γ2(1 + 1/α)]. We have

φ
′
1=[− λ

α2
Γ

′
(1 +

1
α

),Γ(1 +
1
α

)]T ,

φ
′
2=[−2λ2

α2
[Γ

′
(1 +

2
α

) − Γ(1 +
1
α

)Γ
′
(1 +

1
α

)], 2λ[Γ(1 +
2
α

) − Γ2(1 +
1
α

)]]T .

The ARE, the skewness and the kurtosis for α = 1.5(0.5)10, λ = 1 and k = 2
are given in Table 4.

(c) The relative efficiency in estimating the mean, and the kurtosis of the non-
central tn-distribution for k = 2 and n = 7(1)10(5)30, 40, 50, 75, 100, 150, 200
are given in Table 5. The non-central t-distributions are artificial but they
provide us with an example for examining how the kurtosis alone will affect
the ARE in estimating the mean.

Table 3. The relative efficiency of the RSS under Gamma distributions.

α ARE(µ) ARE(σ2) Skewness Kurtosis
1.5 1.4192 1.2321 1.633 7

2 1.4302 1.1979 1.4142 6
2.5 1.4409 1.2072 1.2649 5.4

3 1.4458 1.1854 1.1547 5
3.5 1.4504 1.1807 1.069 4.7143

4 1.4540 1.1767 1 4.5
4.5 1.4568 1.1733 0.9428 4.3333

5 1.4590 1.1702 0.8944 4.2
5.5 1.4641 1.1700 0.8528 4.0909

6 1.4623 1.1659 0.8165 4
6.5 1.4637 1.1641 0.7845 3.9231

7 1.4649 1.1624 0.7559 3.8571
7.5 1.4660 1.1613 0.7303 3.8

8 1.4670 1.1595 0.7071 3.75
8.5 1.4679 1.1584 0.686 3.7059

9 1.4686 1.1556 0.6667 3.6667
9.5 1.4688 1.1545 0.6489 3.6316
10 1.4687 1.1528 0.6325 3.6

The AREs of the MLEs of the means of the Gamma and Weibull distributions
given in Tables 3 and 4 can be compared with Table 1 of Dell and Clutter (1972).
The ARE of the MLE is always larger than the ARE of the sample mean for
these two families. This is also true for normal and exponential distributions.
We guess that this is a general phenomenon for all distributions, and hence we
might conclude that, in general, more gain can be obtained in parametric RSS
than in nonparametric RSS.



RELATIVE EFFICIENCY OF RANKED-SET SAMPLING 257

Table 4. The relative efficiency of the RSS under Weibull distributions.

α ARE(µ) ARE(σ2) Skewness Kurtosis
1.5 1.44281 1.15844 1.072 4.3904

2 1.46693 1.14179 0.6311 3.2451
2.5 1.47771 1.13122 0.3586 2.8568

3 1.48277 1.12695 0.1681 2.7295
3.5 1.48517 1.12676 0.0251 2.7127

4 1.48626 1.12876 -0.0872 2.7478
4.5 1.48667 1.13175 -0.1784 2.8081

5 1.4867 1.13509 -0.2541 2.8803
5.5 1.48651 1.13845 -0.3182 2.9574

6 1.48619 1.14166 -0.3733 3.0355
6.5 1.48581 1.14465 -0.4211 3.1125

7 1.48539 1.14739 -0.4632 3.1872
7.5 1.48498 1.14991 -0.5005 3.259

8 1.48458 1.15222 -0.5337 3.3277
8.5 1.48417 1.15432 -0.5636 3.3931

9 1.48375 1.15623 -0.5907 3.4552
9.5 1.48343 1.15809 -0.6152 3.5142
10 1.48316 1.15978 -0.6376 3.5702

Table 5. The relative efficiency of the RSS under t-distributions.

n δ(µ) I(µ) ARE Kurtosis
7 0.3996 0.8 1.4995 9.8
8 0.4086 0.81818 1.4994 8
9 0.4158 0.83333 1.49897 6.94286

10 0.4217 0.84615 1.49837 6.25
15 0.44011 0.88889 1.49513 4.72028
20 0.44975 0.91304 1.49258 4.16667
25 0.45568 0.92857 1.49073 3.88199
30 0.45969 0.93939 1.48935 3.70879
40 0.46478 0.95349 1.48745 3.50877
50 0.46787 0.96226 1.48622 3.39674
75 0.47204 0.97436 1.48446 3.25584

100 0.47415 0.98058 1.48353 3.18878
150 0.47626 0.98693 1.48257 3.12384
200 0.47733 0.99015 1.48208 3.09215

To better understand how the ARE is affected by skewness and kurtosis, the
AREs of the three examples above are depicted in Figures 1, 2 and 3, respectively.
Since skewness and kurtosis are highly correlated in the first two examples (for
Gamma distributions, the correlation is 0.9910, and for Weibull distributions the
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correlation is 0.9637), the AREs are only plotted against skewness. In each of
Figures 1 and 2, Panel (a) depicts the AREs for the MLEs of the means, Panel
(b) depicts the AREs for the MLEs of the variances and Panel (c) depicts the
kurtosis against the skewness. In Figure 3, the ARE of the MLE of the mean is
depicted against the kurtosis. Because of the high correlation between skewness
and kurtosis in the first two examples, their effects on the ARE are aliased and
can not be distinguished. However, in both Figure 1 and Figure 2, there is a
common feature: the ARE of the MLE of the mean decreases as the skewness
(or the kurtosis) increases and the ARE of the MLE of the variance increases
as the skewness (or the kurtosis) increases. However, in the case of non-central
t-distributions, the increment of kurtosis also increases the ARE of the MLE of
the mean, as shown in Figure 3.

We make some general comments to end this section. Although the ARE
is highly affected by skewness and kurtosis, it is not completely determined by
them. Since we have confined ourselves to distributions satisfying the regularity
conditions, whether or not the features of these distributions are shared by others
is still unknown.
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Figure 1. The effects of skewness and kurtosis of Gamma distributions on the ARE.
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Figure 2. The effects of skewness and kurtosis of Weibull distributions on the ARE.
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Figure 3. The effects of kurtosis of non-central t-distributions on the ARE.

4. The Fisher Information Matrix When Ranking Is Imperfect

This section is devoted to the case of imperfect ranking. By imperfect rank-
ing one means that the judgment-ranked order of the items do not match their
true numerical orders. In practice, since the numerical orders of the items are
unknown unless they are all measured, one can never be sure that the judgment
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ranking is perfect. In other words, imperfect ranking is inevitable. When the
ranking is imperfect, does an RSS sample still contain more information than an
SRS sample? We answer this question in this section. We work with a partic-
ular but reasonable model for imperfect ranking considered by Bohn and Wolfe
(1994) and Hettmansperger (1995). Let psr denote the probability that the item
that actually has numerical rank s is judgment-ranked as the rth order statistic.
The model assumes psr = prs. In this section, we derive the Fisher information
matrix of an RSS sample under the above model.

We denote the judgment-ranked rth order statistic by X[r] and let f[r] denote
the density function of X[r]. Then

f[r] =
k∑

s=1

psr
k!

(k − s)!(s − 1)!
F s−1(1 − F )k−sf

= grf,

say. Note that
∑

s psr =
∑

r psr = 1. It follows that

k∑
r=1

f[r] = kf, (2)

k∑
r=1

gr = k. (3)

Let Ĩ∗nk(θ) denote the Fisher information matrix about θ in an RSS sample
with set size k and number of cycles n under the above model for imperfect
ranking. We have the following result.

Theorem 2. Under regularity conditions (C1)—(C3),

Ĩ∗nk(θ) = nkI(θ) + Λ̃(θ),

where Λ̃(θ) is a non-negative definite matrix given by

Λ̃(θ) =
k∑

r=1

E


 ∂gr(X)

∂θ
∂gr(X)

∂θT

gr(X)


 .

Here the expectation is taken with respect to X(∼ F ).

Proof. It suffices to prove the theorem for n = 1. We have

Ĩ∗nk(θ)=−E

[
∂2∑k

r=1 log f[r](X[r])
∂θ∂θT

]

=−E

[
∂2∑k

r=1 log gr(X[r])
∂θ∂θT

]
−E

[
∂2∑k

r=1 log f(X[r])
∂θ∂θT

]
. (4)
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It follows from (2) that

−E

[
∂2∑k

r=1 log f(X[r])
∂θ∂θT

]
= kI(θ). (5)

Write

−E

[
∂2∑k

r=1 log gr(X[r])
∂θ∂θT

]
=

k∑
r=1

E


 ∂gr(X[r])

∂θ

∂gr(X[r])

∂θT

gr(X[r])2


− k∑

r=1

E


 ∂2gr(X[r])

∂θ∂θT

gr(X[r])


 . (6)

It follows from (3) that

k∑
r=1

E


 ∂2gr(X[r])

∂θ∂θT

gr(X[r])


 =

k∑
r=1

∫
∂2gr(x)
∂θ∂θT

f(x)dx

=
∫ [

∂2∑k
r=1 gr(x)

∂θ∂θT

]
f(x)dx

= 0. (7)

Finally, we have

k∑
r=1

E


 ∂gr(X[r])

∂θ

∂gr(X[r])

∂θT

gr(X[r])2


 =

k∑
r=1

∫
∂gr(x)

∂θ

∂gr(x)
∂θT

f(x)
gr(x)

dx

=
k∑

r=1

E


 ∂gr(X)

∂θ
∂gr(X)

∂θT

gr(X)


 . (8)

The theorem then follows from (4) — (8).
In practice, to carry out the maximum likelihood estimation of θ, one needs to

determine the probabilities psr. One can specify the probabilities by experience
or by a resampling procedure described as follows. Let samples of size k be
resampled from the nk measured items and the re-samples ranked by judgment
ranking. Suppose that the person who ranks the samples is blinded from the
measurements of the items. Then judgment ranks are compared with numerical
ranks. Estimates of the probabilities psr can then be obtained. Of course, there is
inevitable misspecification of these probabilities. How the misspecification affects
the MLE and its relative efficiency needs further investigation.

5. Some Remarks

(i) Confidence intervals. Proposition 1 can be used to construct confidence
intervals for φ when n is large. A 100(1 − α)% confidence interval of φ can
be taken as

φ̂∗ ± zα/2√
nk

ŝe(φ̂∗),
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where zα/2 is the (1 − α/2)th quantile of the standard normal distribution,
and

φ̂∗ = φ(θ̂∗nk),
ŝe(φ̂∗) = [(φ

′
(θ̂∗nk))

T [I(θ̂∗nk) + (k − 1)∆(θ̂∗nk)]
−1φ

′
(θ̂∗nk)]

1/2.

The length of the confidence interval based on the MLE from an RSS sample
is
√

ARE times shorter than its counterpart based on the MLE from an SRS
sample. For example, if the underlying distribution is normal and k is set
to 7, the confidence interval based on the MLE from an RSS sample is only
1/
√

ARE = [1+(7−1)(0.4807)]−1/2 ≈ 1/2 as long as the confidence interval
based on the MLE from an SRS sample.

(ii) Choice of k. The asymptotic relative efficiency increases as k increases but,
in practice, we can not set k too large: as k increases, the difficulty of
judgment ranking increases. However, it is sensible to take k as large as
judgment ranking allows.

(iii) Small sample efficiency. The efficiency achieved by RSS comes not only in
large sample theory but also in small sample situations. We conducted a
simulation study to illustrate this. We generated RSS samples with nk =
24, k = 2, 3, 4, 6, 8, 12, 24 and SRS samples of size 24 from a standard normal
distribution. The MLE of the mean was computed for each of these samples.
This procedure was repeated 500 times. The approximations of the mean
square errors were computed. The simulation results are reported in Table 6.
The first column of the table lists the values of k with k = 1 corresponding to
SRS samples. The second column gives the values of (1/500)

∑500
i=1(θ̂

∗
nk−0)2.

The values in the third column are estimated relative efficiencies (ERE),
ratios of the MSE of the MLE from SRS samples to the MSE of the MLE
from RSS samples. The values in the last column are the asymptotic relative
efficiencies which are given by 1 + 0.4805(k − 1). It can be seen from the
table that the estimated relative efficiencies closely match the theoretical
asymptotic relative efficiencies.

Table 6. Comparison of RSS MLE and SRS MLE of the mean based on
samples of size nk = 24 from a standard normal distribution.

k MSE RE ARE
24 0.00313 12.46 12.04
12 0.00693 5.63 6.28
8 0.00988 3.95 4.36
6 0.01253 3.11 3.40
4 0.01623 2.40 2.44
3 0.02101 1.86 1.96
2 0.02603 1.50 1.48
1 0.03901 1 1
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