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Supplementary Material

This supplementary material contains all proofs and addi-
tional explanation for the main article. Section S1 introduces
the five conditions in Cheng (2014} p. 233) and their importance.
Section S2 provides some results for the Bayesian prior. Section
S3 contains all lemmas and their proofs. Section S4 presents
the proofs of all theorems. Section S5 discusses an applica-
tion to multi-platform experiments. Section S6 gives the 18-run
mixed-level orthogonal array used in the main article. Section
S7 studies the relationship between 20, and D-efficiency under

block designs.



S1. Five conditions in |[Cheng (2014, p. 233)

Before listing the conditions (i), (ii), (iii), (v), (vi) of Definition 12.4 in
Cheng| (2014}, p. 233), we introduce the notion of supremum and orthogonal.

Given two unit factors F; and JF», the supremum of F; and F,, denoted
by Fi V Fy, is the unit factor such that (i) Fi,Fy = Fi V Fo, and (ii)
F1V Fy = G for all G such that Fi, Fo < G. We say that F; and F; are
orthogonal if F; and F, have proportional frequencies in each (F; V F3)-
class, i.e., for each (F; V Fy)-class I'; if both the ith Fj-class and the jth

Fo-class are contained in I, then
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where n;4, ny;, and n;; are the numbers of units in, respectively, the ith
JFi-class, the jth Fy-class, and the intersection of these two classes, and |I'|
is the number of units in I

Throughout the main article, we consider block structures *8 that sat-



isfy the following conditions:

all the factors in B are uniform, (S1.1)
£ e’B, (S1.2)
U € B, (S51.3)
F.GgeB=FVGeB, (S1.4)
all the factors in B are pairwise orthogonal, (S1.5)

corresponding to the conditions (i), (ii), (iii), (v), (vi) of Definition 12.4 in
Cheng| (2014, p. 233). We note that most of the block structures encoun-
tered in practice satisfy —.

The conditions — are essential to all theoretical results in
the main article. If a block structure satisfies the five conditions, then, as
mentioned in Section 2.3 of the main article, the covariance matrix of the
responses has a spectral decomposition characterized by the unit factors in
the block structure. An important feature of this spectral decomposition
is that all eigenspaces are irrelevant to unknown parameters in the model.
Therefore, the aberration criterion proposed in Section 3 of the main article

is well defined.



S2. Some results on Bayesian prior

Under certain correlation functions of the Gaussian process, 8 has a zero-
mean multivariate normal distribution with
var(3;) = 7° H Ti g (52.6)
1:1<i<n,6,;,=1

cov(By, By) = 0if j # 7,

where 72 > 0, 0 < ry,...,7, < 1, and d;; = 1 if 3, involves the ith treatment
factor and zero otherwise.

It can be seen from that var(5;) > var(f;) if the treatment
factors involved in (3; is a subset of those involved in (3;; that is,
satisfies the property in (2.2). Moreover, for a ; involving the ith treatment
factor, var(f;) increases as r; increases. Thus, each r; can be interpreted
as a parameter that controls the importance of the ith treatment factor.
By letting r; = - -+ = r,,, we have that var(f;) > var(f;) if the number of
treatment factors involved in (3; is less than or equal to that for 3;, which
is consistent with the effect hierarchy principle (Wu and Hamadal, 2009

p. 172).



S3. Lemmas

Lemma 1. If the full model matriz P is constructed through (2.1), then
for a given S C {1,....,n}, tr [UEUS} s a constant for any choice of N-run

designs.

Proof. Let Pg be formed by the columns in P associated with an S C
{1,...,n}. We note that tr [UUg| = tr [UsU%]. Thus, it suffices to
check whether el PsPLe; is a constant for all i = 1,...,Z, where e; is the
ith column of Iz=. We prove this by mathematical induction on |S|, the
cardinality of S.

It is clearly true when |S| = 0; that is, S = ¢. Let |S| = 1. Without
loss of generality, we set S = {1}. By (2.1), the = x p; matrix [%15,PS]
can be constructed by
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for any ¢ = 1,..., =, where J,, denotes the m x m matrix of ones. Since

T
[%15, PS] [%15, PS} = 1J=+ PsP} and e 2Jze; = £, it follows that
e/ PsPle;, = pz--14pn — L, which is a constant for all i.

Now suppose it holds for all S with |S| < k, where k > 2. We show

that if |S| = k, then e/ PsPLe; is a constant for all i = 1,...,=. Without

loss of generality, we set S = {1,...,k}. It follows from a similar argument

that the = x (p; - - - px) matrix

1
{—15,P{1}7~-7P{1 ..... k}

V=
can be constructed by
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Since

1
e/ Jze; + Z e/ PsPlLe; | +e PsPlLe;,

S'C{1,....k}:1<|8"|<k—1



it follows that e/ PsPZe; is a constant for all i = 1,...,= by the induction

hypothesis. [

Lemma 2. Given a design and an S C {1,...,n}, tr [UEUS} is a constant

for any choice of orthogonal-column-bases in P.

Proof. Let P and P* be two full model matrices with mutually orthonormal
columns. Let U and U* be the resulting model matrices under the given
design. We denote Pg, P§, Ug, and U the counterparts associated with 5.
Then, there exists an orthogonal matrix H such that Py = PSH, yielding
Us = UiH. It follows that UgUL = (UtH)(UtH)? = UU:, which

proves the result. O

S4. Proofs of all theorems

Theorem 1. The Bayesian (M.S)-optimality involves to first maximize

O (d; €, v) and then minimize ©o(d;€,v) among the designs that mazximize

q)l (d7 67 V) :

Proof. We note that another expression of cov(B|y) is (UTV_lU + 2;1)71.

The Bayesian D-optimality is to maximize

det[M] = det[E;"] det[E,UTV U + Iz,
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Since det [ngl] is a constant irrelevant to designs, based on the (M.S)-
optimality, one needs to maximize tr[¥5UT VU + Iz] and then minimize
tr[(ZsUTV1U +1z)?] among the designs that maximize tr[E,UTV1U +
I=]. Then, the result is proved by the use of a similar derivation as in |(Chang

and Cheng| (2018)). O

Theorem 2. For an S C {1,...,n}, tr [U:‘SUS} is a constant for any choice
of N-run designs as well as for any choice of orthogonal-column-bases in

P.
Proof. This result is proved by Lemmas 1 and 2. O]

Theorem 3. Suppose B is a block structure satisfying conditions -
. Then, a necessary and sufficient condition for a design to minimize

&1 (d; €, v) for all feasible v and & is that it minimizes

> Y r|UkPw, U]

Se6 i Fe®

Se, 8 e2lb-m\ (g}, and S’ Cc S = 5 €6, (S4.7)

FeBF eB and F<F = F €6. (54.8)

Proof. We first prove the necessity part. Suppose a design d minimizes



®1(d; €, v) for all feasible v and £. For any & satisfying (S4.7)), let
vg =vg > 0 for any S, 5" € &, and vgr =0 for all S” ¢ &. (54.9)

Similarly, for any & satisfying , let &7 = &, for any F € &, and
& = &F, for any F ¢ &. The v and £ in this setting are obviously
feasible. Under this setting, minimizing ®7(d; &, v) is reduced to minimizing
> ses Diree T [UEPWﬁ US] . Since d minimizes ®7(d; €, v) for all feasible
v and &, it must minimize Y g D x ce [U?;owi US]

In the remaining part of the proof, we prove the sufficiency part. Let &

be fixed and
m—1 1 1
B b T
o ; (ffm f]'-i) . [USPWE US} ’

S C {1,..,n}. Then, we have ®j(d;§,v) = > scqy nvsCs. We show

.....

that a design that minimizes ) ¢ g Cy for all nonempty subsets & of

..... ny UsCs for all feasible v.
Similar to the proof of Theorem 5.1 in |(Chang and Cheng| (2018]), we

apply mathematical induction on the number of elements in 2U'. It is clearly

true when 2 consists of one element. Now suppose that it holds for all

that if || = s and a design d* minimizes ) ¢ g Cg for all subsets &
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n} vsCy for all feasible v. Under the given assumption, by taking
S = ', we have that

d* minimizes Z Cs. (54.10)
Se’

If all the vg’s for which S € 2 are equal, say they are all equal to v,
then, by (S4.10), d* minimizes v ) ¢ o0 Cs = > geq VsCs. On the other
hand, suppose not all the vg’s for which S € A are equal. Let v be the
smallest value of such vg’s and let 2A* = {S € A" : vg > v}. Then, A* is
nonempty and |2*| < s. For each S € 2*, we have vg — v > 0. Moreover,
vg —v >vg —ovif S C S and S,S" € A*. Furthermore,

ZUSCS: Z (US_U)CS"FUZCS'

Sel Seu* Se

By ([S4.10), it suffices to show that d* minimizes )¢ y. (vg — v) Cs. Since
20| < s, by the induction hypothesis, it remains to show that d* mini-
mizes ) . Cs for all nonempty subsets & of 2* satisfying the following

condition:
Seg,SeA and S CS=5€6. (S4.11)

Suppose a subset & of A* satisfies (S4.11)). By the assumption on 2,
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replaced with 1'. That is, given S € &, S’ € 2/, and S’ C S, we want
to show S’ € &. Because S € & C *, by the definition of *, we have
vg > v. Moreover, vy > vg since S’ C S. Thus we have vy > vg > v,
which leads to S’ € A*. Then by (S4.11)), S’ € &. Therefore, given &,
we have proved that a design that minimizes ) ¢ s Cs for all nonempty
for all feasible v.

We now let v be fixed and

Bz’ = Z Ugtl" [ngwfz US] s
SC{l,...,n}
i=0,...,m — 1. Then, we have ®i(d;€,v) = Zm_l < L i) B;. Based

=0 \&rn &R
on a similar argument, we can show that a design that minimizes ), Feo Bi
for all nonempty subsets & of ' C B satisfying also minimizes
St (i — é) B; for all feasible €.
It turns out that if a design has minimized ®3(d; €, v) for all feasible &
with v satisfying under each & that satisfies , then for each
feasible €, this design minimizes ®3(d;&,v) for all feasible v; that is, it

simultaneously minimizes ®3(d; €, v) for all feasible v and €. Thus, to prove

the sufficiency part, it suffices to check if a design minimizes

>3 u|UkPy,, U

Se6 i Fe6
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for all nonempty subsets & satisfying ([S4.7) and & satisfying (54.8]).

]

Theorem 4. Suppose B is a block structure satisfying conditions -
. Then, under (3.10), a necessary and sufficient condition for a de-
sign to minimize ®5(d;€,v) for all v that satisfy (3.10) and feasible § is

that it minimizes

> Y w|UkPy, U

SeG i Fe®

Se, s 2l (o}, and vy >vg = 5 € 6. (S4.12)

Proof. The proof is done by replacing “S’ C S” with vgs > vg in the proof

of Theorem 3. O

Theorem 5. If an N-run design consists of m replicates, then

> ) (1RUs)(ARUs)" = N +2m.
k=0 S:|S|=k
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Proof. We have

Z Z (13Us)(13Us)" = Z (13Us) (13 Us)"

k=0 S:|S|=k SC{1,..,n}

where ulT is the Ith row of U. Since the full model matrix P satisfies
PP” = Iz, we have u/u; = 1 if i = j and zero otherwise. It follows that

> i<ijen W u; = N 4 2m for an N-run design with m replicates. O

S5. Application to multi-platfrom experiments

Sadeghi, Qian, and Aroral (2016) and [Sadeghi, Qian, and Arora| (2017)
discussed design selection for multi-platform experiments with unstructured
units, in which the sliced factor was deemed much more important than the
other treatment factors. They defined a sliced effect hierarchy principle;
based on which a sliced aberration criterion was proposed.

Without loss of generality, suppose the first treatment factor is the sliced
factor. In our approach, we can adopt the prior in (2.3), with r; > ry =
ry = --- = ry, to fit this scenario. The resulting order of var(5;)’s follows

two rules: (a) var(f3;) > var(f;) if 8; involves fewer factors than §;/, and (b)
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for the 8; and B involving the same number of factors, var(3;) > var(f5;)
it B; involves the sliced factor but 3;; does not. This order is consistent
with their sliced effect hierarchy principle. If we require vy &~ 1 and r, =
rg = -+ =1, ~ 0, then minimizing ®;(d;&,v) would be nearly equivalent
to optimizing the sliced aberration criterion.

In general, if the treatment factors are divided into g groups, where

those in the same group are of equal importance, one can assign

var(f3;) = iyl (S5.13)

g

where ¢; is the number of treatment factors in the ith group involved in j;.
When g =2, ¢ € {0,1}, and ¢, € {0,1,...,n—1}, corresponds to the
setting in|Sadeghi, Qian, and Aroral (2016} 2017)). Another scenario of multi-
group treatment factors is in [Tichon, Li, and Mcleod| (2012), in which we
have g = 2, t; = “the number of whole-plot treatment factors involved in 3;”,

and to = “the number of subplot treatment factors involved in 3;”.

S6. 18-run orthogonal array

The following table is the 18-run mixed-level orthogonal array used in Sec-
tions 4.1 and 4.2. It comes from Table 8C.2 of Wu and Hamada| (2009)

except that the 7th column is after the permutation: (0, 1,2) — (2,0,1).
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18-run orthogonal array

0/]0(0[01010]2]0

Ojo(1/11]1]0]1
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S7. 20, and D-efficiency under block designs

Suppose B = {Foy, Fi, Fa}, where F; partitions N experimental units into

blocks. Consider a statistical model similar to that in Section 2.3:
y = UB+ X5y + X5y + X572

Here we assume 0%, = 0 (i.e., no random intercept) and f3, 71 are vectors
of unknown constants. Since Xz, = Iy, by replacing the notation 4”2 with

€, we have
y = UIB + Xflfy}—l + 6,

where 471 represents fixed block effects and € is a vector of uncorrelated
homoskedastic random errors. To estimate factorial effects 8, we eliminate

block effects by projecting y onto Wy, and obtain
PW_7:2y = PW]—'2 U,B + PW]__26

because PWF2 X7 is a zero matrix. Then, the information matrix of 8 is
given by U Py, U (Dean et al., 2015, p. 80).

Assume that ;’s can be divided into K groups Jy, ..., Jx such that the
B;’s belonging to J; are more likely to be important than those belonging

to Jp for [ < I'. Let U = [Uy, ..., Ug] according to Jy, ..., J. Then, we can
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sequentially maximize the information of the j3;’s belonging to J; from [ = 1

to | = K through D-efficiencies. This leads to sequentially maximizing
(det [UTPw,, Uy] ,det [Uj Py, Uy ... det [UpPy, Ugk]).

Based on the (M.S)-optimality, a one-step surrogate of which is to sequen-

tially maximize
(tr [UTPw,, Ui]  tr [USPw,, Uy ..., tr [UiPy,, Ukl).

Since Py, = Iy — (Pwy, + Pw;, ), it yields sequentially minimizing 20,
given the condition that tr [U7'U;| is a constant for all I.

In Section 4.2, let P in (2.1) be constructed through orthogonal polyno-
mial contrasts and J; be the set of the 3;’s associated with the orthogonal
polynomial contrasts of degree [. Then U; consists of four columns, rep-
resenting all four linear main effects; Uy has nine columns, representing
six linear-by-linear interactions and three quadratic main effects. We find

that the 140 candidate blocked mixed-level orthogonal arrays have the same

N
Ol

det [UT Py, Uy|* = 0.333, while d* has the largest det [UJ Py, U,]® =

0.294.
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