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Supplementary Material

This supplementary material contains all proofs and addi-

tional explanation for the main article. Section S1 introduces

the five conditions in Cheng (2014, p. 233) and their importance.

Section S2 provides some results for the Bayesian prior. Section

S3 contains all lemmas and their proofs. Section S4 presents

the proofs of all theorems. Section S5 discusses an applica-

tion to multi-platform experiments. Section S6 gives the 18-run

mixed-level orthogonal array used in the main article. Section

S7 studies the relationship between W1 and D-efficiency under

block designs.
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S1. Five conditions in Cheng (2014, p. 233)

Before listing the conditions (i), (ii), (iii), (v), (vi) of Definition 12.4 in

Cheng (2014, p. 233), we introduce the notion of supremum and orthogonal.

Given two unit factors F1 and F2, the supremum of F1 and F2, denoted

by F1 ∨ F2, is the unit factor such that (i) F1,F2 � F1 ∨ F2, and (ii)

F1 ∨ F2 � G for all G such that F1,F2 � G. We say that F1 and F2 are

orthogonal if F1 and F2 have proportional frequencies in each (F1 ∨ F2)-

class, i.e., for each (F1 ∨ F2)-class Γ , if both the ith F1-class and the jth

F2-class are contained in Γ , then

nij =
ni+n+j

|Γ |
,

where ni+, n+j, and nij are the numbers of units in, respectively, the ith

F1-class, the jth F2-class, and the intersection of these two classes, and |Γ |

is the number of units in Γ .

Throughout the main article, we consider block structures B that sat-
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isfy the following conditions:

all the factors in B are uniform, (S1.1)

E ∈ B, (S1.2)

U ∈ B, (S1.3)

F ,G ∈ B⇒ F ∨ G ∈ B, (S1.4)

all the factors in B are pairwise orthogonal, (S1.5)

corresponding to the conditions (i), (ii), (iii), (v), (vi) of Definition 12.4 in

Cheng (2014, p. 233). We note that most of the block structures encoun-

tered in practice satisfy (S1.1)-(S1.5).

The conditions (S1.1)-(S1.5) are essential to all theoretical results in

the main article. If a block structure satisfies the five conditions, then, as

mentioned in Section 2.3 of the main article, the covariance matrix of the

responses has a spectral decomposition characterized by the unit factors in

the block structure. An important feature of this spectral decomposition

is that all eigenspaces are irrelevant to unknown parameters in the model.

Therefore, the aberration criterion proposed in Section 3 of the main article

is well defined.



4

S2. Some results on Bayesian prior

Under certain correlation functions of the Gaussian process, βββ has a zero-

mean multivariate normal distribution with

var(βj) = τ 2

 ∏
i:1≤i≤n,δji=1

ri

 , (S2.6)

cov(βj, βj′) = 0 if j 6= j′,

where τ 2 > 0, 0 < r1, ..., rn < 1, and δji = 1 if βj involves the ith treatment

factor and zero otherwise.

It can be seen from (S2.6) that var(βj) ≥ var(βj′) if the treatment

factors involved in βj is a subset of those involved in βj′ ; that is, (S2.6)

satisfies the property in (2.2). Moreover, for a βj involving the ith treatment

factor, var(βj) increases as ri increases. Thus, each ri can be interpreted

as a parameter that controls the importance of the ith treatment factor.

By letting r1 = · · · = rn, we have that var(βj) ≥ var(βj′) if the number of

treatment factors involved in βj is less than or equal to that for βj′ , which

is consistent with the effect hierarchy principle (Wu and Hamada, 2009,

p. 172).



5

S3. Lemmas

Lemma 1. If the full model matrix P is constructed through (2.1), then

for a given S ⊆ {1, ..., n}, tr
[
UT
SUS

]
is a constant for any choice of N-run

designs.

Proof. Let PS be formed by the columns in P associated with an S ⊆

{1, ..., n}. We note that tr
[
UT
SUS

]
= tr

[
USUT

S

]
. Thus, it suffices to

check whether eTi PSPT
Sei is a constant for all i = 1, ...,Ξ, where ei is the

ith column of IΞ. We prove this by mathematical induction on |S|, the

cardinality of S.

It is clearly true when |S| = 0; that is, S = φ. Let |S| = 1. Without

loss of generality, we set S = {1}. By (2.1), the Ξ× p1 matrix
[

1√
Ξ
1Ξ,PS

]
can be constructed by[

1√
Ξ

1Ξ,PS

]
= P1 ⊗

1
√
p2

1p2 ⊗ · · · ⊗
1
√
pn

1pn .

We have

eTi

[
1√
Ξ

1Ξ,PS

] [
1√
Ξ

1Ξ,PS

]T
ei = eTi

(
P1 ⊗

{
⊗nj=2

1
√
pj

1pj

})(
P1 ⊗

{
⊗nj=2

1
√
pj

1pj

})T
ei

= eTi
(
P1P

T
1

)
⊗
(

1

p2

1p21
T
p2

)
⊗ · · · ⊗

(
1

pn
1pn1Tpn

)
ei

=
1

p2 · · · pn
eTi {Ip1 ⊗ Jp2···pn} ei

=
1

p2 · · · pn
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for any i = 1, ...,Ξ, where Jm denotes the m × m matrix of ones. Since[
1√
Ξ
1Ξ,PS

] [
1√
Ξ
1Ξ,PS

]T
= 1

Ξ
JΞ + PSPT

S and eTi
1
Ξ
JΞei = 1

Ξ
, it follows that

eTi PSPT
Sei = 1

p2···pn −
1
Ξ

, which is a constant for all i.

Now suppose it holds for all S with |S| < k, where k ≥ 2. We show

that if |S| = k, then eTi PSPT
Sei is a constant for all i = 1, ...,Ξ. Without

loss of generality, we set S = {1, ..., k}. It follows from a similar argument

that the Ξ× (p1 · · · pk) matrix[
1√
Ξ

1Ξ,P{1}, ...,P{1,...,k}

]
can be constructed by[

1√
Ξ

1Ξ,P{1}, ...,P{1,...,k}

]
= P1 ⊗ · · · ⊗Pk ⊗

1
√
pk+1

1pk+1
⊗ · · · ⊗ 1

√
pn

1pn .

Therefore, we have

eTi

[
1√
Ξ

1Ξ,P{1}, ...,P{1,...,k}

] [
1√
Ξ

1Ξ,P{1}, ...,P{1,...,k}

]T
ei

=
1

pk+1 · · · pn
eTi
{
Ip1···pk ⊗ Jpk+1···pn

}
ei

=
1

pk+1 · · · pn
.

Since

eTi

[
1√
Ξ

1Ξ,P{1}, ...,P{1,...,k}

] [
1√
Ξ

1Ξ,P{1}, ...,P{1,...,k}

]T
ei

=
1

Ξ
eTi JΞei +

 ∑
S′⊆{1,...,k}:1≤|S′|≤k−1

eTi PS′P
T
S′ei

+ eTi PSPT
Sei,
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it follows that eTi PSPT
Sei is a constant for all i = 1, ...,Ξ by the induction

hypothesis.

Lemma 2. Given a design and an S ⊆ {1, ..., n}, tr
[
UT
SUS

]
is a constant

for any choice of orthogonal-column-bases in P.

Proof. Let P and P∗ be two full model matrices with mutually orthonormal

columns. Let U and U∗ be the resulting model matrices under the given

design. We denote PS, P∗S, US, and U∗S the counterparts associated with S.

Then, there exists an orthogonal matrix H such that PS = P∗SH, yielding

US = U∗SH. It follows that USUT
S = (U∗SH)(U∗SH)T = U∗SU∗TS , which

proves the result.

S4. Proofs of all theorems

Theorem 1. The Bayesian (M.S)-optimality involves to first maximize

Φ1(d;ξξξ,v) and then minimize Φ2(d;ξξξ,v) among the designs that maximize

Φ1(d;ξξξ,v).

Proof. We note that another expression of cov(βββ|y) is
(
UTV−1U + ΣΣΣ−1

β

)−1
.

The Bayesian D-optimality is to maximize

det[M] = det[ΣΣΣ−1
β ] det[ΣΣΣβU

TV−1U + IΞ].



8

Since det[ΣΣΣ−1
β ] is a constant irrelevant to designs, based on the (M.S)-

optimality, one needs to maximize tr[ΣΣΣβU
TV−1U + IΞ] and then minimize

tr[(ΣΣΣβU
TV−1U + IΞ)2] among the designs that maximize tr[ΣΣΣβU

TV−1U +

IΞ]. Then, the result is proved by the use of a similar derivation as in Chang

and Cheng (2018).

Theorem 2. For an S ⊆ {1, ..., n}, tr
[
UT
SUS

]
is a constant for any choice

of N-run designs as well as for any choice of orthogonal-column-bases in

P.

Proof. This result is proved by Lemmas 1 and 2.

Theorem 3. Suppose B is a block structure satisfying conditions (S1.1)-

(S1.5). Then, a necessary and sufficient condition for a design to minimize

Φ∗1(d;ξξξ,v) for all feasible v and ξξξ is that it minimizes

∑
S∈S

∑
i:Fi∈G

tr
[
UT
SPWFi

US

]
for all nonempty subsets S ⊆ 2{1,...,n} \ {φ} and G ⊆ B \ {Fm} such that

S ∈ S, S ′ ∈ 2{1,...,n} \ {φ}, and S ′ ⊂ S ⇒ S ′ ∈ S, (S4.7)

F ∈ G,F ′ ∈ B, and F ≺ F ′ ⇒ F ′ ∈ G. (S4.8)

Proof. We first prove the necessity part. Suppose a design d minimizes
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Φ∗1(d;ξξξ,v) for all feasible v and ξξξ. For any S satisfying (S4.7), let

vS = vS′ > 0 for any S, S ′ ∈ S, and vS′′ = 0 for all S ′′ /∈ S. (S4.9)

Similarly, for any G satisfying (S4.8), let ξF = ξF0 for any F ∈ G, and

ξF = ξFm for any F /∈ G. The v and ξξξ in this setting are obviously

feasible. Under this setting, minimizing Φ∗1(d;ξξξ,v) is reduced to minimizing∑
S∈S

∑
i:Fi∈G tr

[
UT
SPWFi

US

]
. Since d minimizes Φ∗1(d;ξξξ,v) for all feasible

v and ξξξ, it must minimize
∑

S∈S
∑

i:Fi∈G tr
[
UT
SPWFi

US

]
.

In the remaining part of the proof, we prove the sufficiency part. Let ξξξ

be fixed and

CS =
m−1∑
i=0

(
1

ξFm

− 1

ξFi

)
tr
[
UT
SPWFi

US

]
,

S ⊆ {1, ..., n}. Then, we have Φ∗1(d;ξξξ,v) =
∑

S⊆{1,...,n} vSCS. We show

that a design that minimizes
∑

S∈SCS for all nonempty subsets S of

A′ ⊆ 2{1,...,n} satisfying (S4.7), with 2{1,...,n} replaced with A′, also mini-

mizes
∑

S⊆{1,...,n} vSCS for all feasible v.

Similar to the proof of Theorem 5.1 in Chang and Cheng (2018), we

apply mathematical induction on the number of elements in A′. It is clearly

true when A′ consists of one element. Now suppose that it holds for all

subsets of 2{1,...,n} with fewer than s elements, s ≥ 2; we need to show

that if |A′| = s and a design d∗ minimizes
∑

S∈SCS for all subsets S
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of A′ satisfying (S4.7) with 2{1,...,n} replaced with A′, then d∗ minimizes∑
S⊆{1,...,n} vSCS for all feasible v. Under the given assumption, by taking

S = A′, we have that

d∗ minimizes
∑
S∈B′

CS. (S4.10)

If all the vS’s for which S ∈ A′ are equal, say they are all equal to v,

then, by (S4.10), d∗ minimizes v
∑

S∈A′ CS =
∑

S∈A′ vSCS. On the other

hand, suppose not all the vS’s for which S ∈ A′ are equal. Let v be the

smallest value of such vS’s and let A∗ = {S ∈ A′ : vS > v}. Then, A∗ is

nonempty and |A∗| < s. For each S ∈ A∗, we have vS − v > 0. Moreover,

vS − v ≥ vS′ − v if S ⊂ S ′ and S, S ′ ∈ A∗. Furthermore,

∑
S∈A′

vSCS =
∑
S∈A∗

(vS − v)CS + v
∑
S∈A′

CS.

By (S4.10), it suffices to show that d∗ minimizes
∑

S∈A∗ (vS − v)CS. Since

|A∗| < s, by the induction hypothesis, it remains to show that d∗ mini-

mizes
∑

S∈SCS for all nonempty subsets S of A∗ satisfying the following

condition:

S ∈ S, S ′ ∈ A∗ and S ′ ⊂ S ⇒ S ′ ∈ S. (S4.11)

Suppose a subset S of A∗ satisfies (S4.11). By the assumption on A′,

d∗ minimizes
∑

S∈SCS provided that S also satisfies (S4.7) with 2{1,...,n}
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replaced with A′. That is, given S ∈ S, S ′ ∈ A′, and S ′ ⊂ S, we want

to show S ′ ∈ S. Because S ∈ S ⊆ A∗, by the definition of A∗, we have

vS > v. Moreover, vS′ ≥ vS since S ′ ⊂ S. Thus we have vS′ ≥ vS > v,

which leads to S ′ ∈ A∗. Then by (S4.11), S ′ ∈ S. Therefore, given ξξξ,

we have proved that a design that minimizes
∑

S∈SCS for all nonempty

subsets S of A′ ⊆ 2{1,...,n} satisfying (S4.7) also minimizes
∑

S⊆{1,...,n} vSCS

for all feasible v.

We now let v be fixed and

Bi =
∑

S⊆{1,...,n}

vStr
[
UT
SPWFi

US

]
,

i = 0, ...,m− 1. Then, we have Φ∗1(d;ξξξ,v) =
∑m−1

i=0

(
1

ξFm
− 1

ξFi

)
Bi. Based

on a similar argument, we can show that a design that minimizes
∑

i:Fi∈GBi

for all nonempty subsets G of A′ ⊆ B satisfying (S4.8) also minimizes∑m−1
i=0

(
1

ξFm
− 1

ξFi

)
Bi for all feasible ξξξ.

It turns out that if a design has minimized Φ∗1(d;ξξξ,v) for all feasible ξξξ

with v satisfying (S4.9) under each S that satisfies (S4.7), then for each

feasible ξξξ, this design minimizes Φ∗1(d;ξξξ,v) for all feasible v; that is, it

simultaneously minimizes Φ∗1(d;ξξξ,v) for all feasible v and ξξξ. Thus, to prove

the sufficiency part, it suffices to check if a design minimizes

∑
S∈S

∑
i:Fi∈G

tr
[
UT
SPWFi

US

]
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for all nonempty subsets S satisfying (S4.7) and G satisfying (S4.8).

Theorem 4. Suppose B is a block structure satisfying conditions (S1.1)-

(S1.5). Then, under (3.10), a necessary and sufficient condition for a de-

sign to minimize Φ∗1(d;ξξξ,v) for all v that satisfy (3.10) and feasible ξξξ is

that it minimizes

∑
S∈S

∑
i:Fi∈G

tr
[
UT
SPWFi

US

]
for all nonempty subsets G ⊆ B\{Fm} satisfying (S4.8) and S ⊆ 2{1,...,n} \

{φ} satisfying

S ∈ S, S ′ ∈ 2{1,...,n} \ {φ}, and vS′ ≥ vS ⇒ S ′ ∈ S. (S4.12)

Proof. The proof is done by replacing “S ′ ⊂ S” with vS′ ≥ vS in the proof

of Theorem 3.

Theorem 5. If an N-run design consists of m replicates, then

n∑
k=0

∑
S:|S|=k

(1TNUS)(1TNUS)T = N + 2m.
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Proof. We have

n∑
k=0

∑
S:|S|=k

(1TNUS)(1TNUS)T =
∑

S⊆{1,...,n}

(1TNUS)(1TNUS)T

= tr
[
(1TNU)(1TNU)T

]
= tr

[
(1N1TN)(UUT )

]
=

∑
1≤i,j≤N

uTi uj,

where uTl is the lth row of U. Since the full model matrix P satisfies

PPT = IΞ, we have uTi uj = 1 if i = j and zero otherwise. It follows that∑
1≤i,j≤N uTi uj = N + 2m for an N -run design with m replicates.

S5. Application to multi-platfrom experiments

Sadeghi, Qian, and Arora (2016) and Sadeghi, Qian, and Arora (2017)

discussed design selection for multi-platform experiments with unstructured

units, in which the sliced factor was deemed much more important than the

other treatment factors. They defined a sliced effect hierarchy principle;

based on which a sliced aberration criterion was proposed.

Without loss of generality, suppose the first treatment factor is the sliced

factor. In our approach, we can adopt the prior in (2.3), with r1 > r2 =

r3 = · · · = rn, to fit this scenario. The resulting order of var(βj)’s follows

two rules: (a) var(βj) > var(βj′) if βj involves fewer factors than βj′ , and (b)
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for the βj and βj′ involving the same number of factors, var(βj) > var(βj′)

if βj involves the sliced factor but βj′ does not. This order is consistent

with their sliced effect hierarchy principle. If we require r1 ≈ 1 and r2 =

r3 = · · · = rn ≈ 0, then minimizing Φ∗1(d;ξξξ,v) would be nearly equivalent

to optimizing the sliced aberration criterion.

In general, if the treatment factors are divided into g groups, where

those in the same group are of equal importance, one can assign

var(βj) = τ 2rt11 · · · rtgg , (S5.13)

where tl is the number of treatment factors in the lth group involved in βj.

When g = 2, t1 ∈ {0, 1}, and t2 ∈ {0, 1, ..., n−1}, (S5.13) corresponds to the

setting in Sadeghi, Qian, and Arora (2016, 2017). Another scenario of multi-

group treatment factors is in Tichon, Li, and Mcleod (2012), in which we

have g = 2, t1 = “the number of whole-plot treatment factors involved in βj”,

and t2 = “the number of subplot treatment factors involved in βj”.

S6. 18-run orthogonal array

The following table is the 18-run mixed-level orthogonal array used in Sec-

tions 4.1 and 4.2. It comes from Table 8C.2 of Wu and Hamada (2009)

except that the 7th column is after the permutation: (0, 1, 2)→ (2, 0, 1).
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18-run orthogonal array

0 0 0 0 0 0 2 0

0 0 1 1 1 1 0 1

0 0 2 2 2 2 1 2

0 1 0 0 1 1 1 2

0 1 1 1 2 2 2 0

0 1 2 2 0 0 0 1

0 2 0 1 0 2 0 2

0 2 1 2 1 0 1 0

0 2 2 0 2 1 2 1

1 0 0 2 2 1 0 0

1 0 1 0 0 2 1 1

1 0 2 1 1 0 2 2

1 1 0 1 2 0 1 1

1 1 1 2 0 1 2 2

1 1 2 0 1 2 0 0

1 2 0 2 1 2 2 1

1 2 1 0 2 0 0 2

1 2 2 1 0 1 1 0
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S7. W1 and D-efficiency under block designs

Suppose B = {F0,F1,F2}, where F1 partitions N experimental units into

blocks. Consider a statistical model similar to that in Section 2.3:

y = Uβββ + XF0γγγ
F0 + XF1γγγ

F1 + XF2γγγ
F2 .

Here we assume σ2
F0

= 0 (i.e., no random intercept) and βββ, γγγF1 are vectors

of unknown constants. Since XF2 = IN , by replacing the notation γγγF2 with

εεε, we have

y = Uβββ + XF1γγγ
F1 + εεε,

where γγγF1 represents fixed block effects and εεε is a vector of uncorrelated

homoskedastic random errors. To estimate factorial effects βββ, we eliminate

block effects by projecting y onto WF2 and obtain

PWF2
y = PWF2

Uβββ + PWF2
εεε

because PWF2
XF1 is a zero matrix. Then, the information matrix of βββ is

given by UTPWF2
U (Dean et al., 2015, p. 80).

Assume that βj’s can be divided into K groups I1, ...,IK such that the

βj’s belonging to Il are more likely to be important than those belonging

to Il′ for l < l′. Let U = [U1, ...,UK ] according to I1, ...,IK . Then, we can
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sequentially maximize the information of the βj’s belonging to Il from l = 1

to l = K through D-efficiencies. This leads to sequentially maximizing

(
det
[
UT

1 PWF2
U1

]
, det

[
UT

2 PWF2
U2

]
, . . . , det

[
UT
KPWF2

UK

])
.

Based on the (M.S)-optimality, a one-step surrogate of which is to sequen-

tially maximize

(
tr
[
UT

1 PWF2
U1

]
, tr
[
UT

2 PWF2
U2

]
, . . . , tr

[
UT
KPWF2

UK

])
.

Since PWF2
= IN − (PWF0

+ PWF1
), it yields sequentially minimizing W1

given the condition that tr
[
UT
l Ul

]
is a constant for all l.

In Section 4.2, let P in (2.1) be constructed through orthogonal polyno-

mial contrasts and Il be the set of the βj’s associated with the orthogonal

polynomial contrasts of degree l. Then U1 consists of four columns, rep-

resenting all four linear main effects; U2 has nine columns, representing

six linear-by-linear interactions and three quadratic main effects. We find

that the 140 candidate blocked mixed-level orthogonal arrays have the same

det
[
UT

1 PWF2
U1

] 1
4 = 0.333, while d∗ has the largest det

[
UT

2 PWF2
U2

] 1
9 =

0.294.
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