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A Technical details in Section 4.2: Derivatives of m; with respect to (5

and Y.

Using equation (119) from [13], we get

ami

o8 =257 1Y, — py — B(X — px))(Xi — px)".

On the other hand, for F'(X) € R™*?P and G(X) € RP*4, (see [6]), we have

ovec(F(X)G(X))
dvecT (X)

ovec(F (X))
OvecT (X)

ovec(G(X))

= (GX)T ® ILy) DvecT (X)

+ (I, @ F(X))

Now take X = 3, F(X) = ¥ and G(X) = 7L, then

Ovec(X) Ovec(X7h)
OvecT (X) dvec ()’

*Liliana Forzani is Professor, Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, CONICET-
UNL, Santa Fe, Argentina. Email: liliana.forzani @ gmail.com.

tZhihua Su is Associate Professor, Department of Statistics, University of Florida, Gainsville, FL. 32611-8545.
E-mail: zhihuasu@stat.ufl.edu.

# Author names are listed alphabetically.

0="'eIr) + (I, ® %)




which yields

dvec(X71) B 1 _1
ovecl () -ETeET.
Therefore
om; ('@ S Yvee((Y; — py — B — ux))(Y; — py — B(X; — pux)T) '
78V6C(2) = i~ MY i T MX i — MY i T MX )

or equivalently

8mi

0x

= —S7Yi - py — B(X; — pux)][Yi — py — BX; — px) "5

B Proof of Proposition 1

We calculate the asymptotic distributions for the MLE estimator of model (1), the reduced-rank regres-

sion estimator, the envelope estimator and the reduced-rank envelope estimator.

The MLE estimator of model (1): avar{./nvec( B\Std)}

From [1], [2], [8], [9], [10], [11], or [15] to compute the asymptotic variance of the estimator we need
to compute the information matrix.
Without loss of generality we assume that uy = 0 and px = 0. The log-likelihood function for the

elliptical linear multivariate regression (1) is given by

L = —5log[s] +logg [(v — 4X)7 27 (v - 5X)] . (1)



20 The Fisher information matrix for (vec” (3), vech? (X)) is given by

Jin Ji2
Jh - 5

Jo1 Ja2

21 with

oL oL
Ju = E <3VGCT(ﬂ) 8vec(/3)> ,

- oL oL o
Jiz = B (8vecT(5) avech(2)> I =
oL oL
Jw = F .
22 <8vechT(E) 3V€Ch(2)>

22 LetU = %~/2(Y — BX). We will prove that

/ T 2
A = E <gg((ng))> UUT|X | = NxI,, )
_ Juro|,\ _
s = (v X) -0 v
i / T 2
C = E gg((ng))> vec(UUTYUT|X | =0, 4)
(W), ] L
D = E T UU )X]_ o1 (5)
_ i QI(UTU) ? T T T T
E = FE <g(UTU)> vec(UU" )vec" (UU)|X | = Mx (1,2 + K;) + Mxvec(I,)vec” (I.Y6)

n

g(UTU)

/ 2
: whereNX:E[(g(UTU)> UTU oL

X] /r.Mx = E {(“UTU)Y UTU)?

X} /(r(r+2)) and K,, €

2« R™*™ denotes a commutation matrix that for an arbitrary matrix A € R™*", vec(AT) = K, vec(A).



25 Using (2)-(6), we have

Jiu = 4(iX®271)7
J12 - 07

1
Joy = 2MEN (S 'Y YE,. + (M — 7 Tyec(X ™ vec (XN E,,

(7

®)

(©))

25 where Sy = E(NxXXT) if X is random and Sx = lim, 0o 2 37 Ny, X; X7 if X is fixed

27 (assuming the limit is finite); M = FE(Mx) if X is random and M = lim,,_o % Yoy My, if X is

28 fixed (assuming the limit is finite).

29 We first prove (7)-(9) given (2)-(6), and then establish (2)-(6).

30 Based on (1), the derivatives of L with respect to 3 and X! are given by
oL 9/(UTU) -1
— = 2 L (xex U
dvecT(j3) g(UTU)( © U,
oL L7 19 (UTU) 1/ 1/2 T
— = -k ecE—FETiE/@E/VchU .
dvech® (£-1) PR ) Q(UTU)( et )
Since
Ovec(X1) 1 1
— = =—(2 by
vecT () ( © )
31 we get
oL _ Jutu) -
—— = —ZEvec(2 ) — EI (22 @ 272 vec(UUT).
dvech! (%) 2 =7 " g(UTD) ( ect :



32 Then

, 2

&

Ju = 4

= 4B (X o n AT @ n )
= 4E(Nx(XXT@x™) =4Ex 057,

/ T
Jo = 2B ——(Xeou VHU [vecT(UUT)(El/2®Zl/2)g v U)Er—i-lvecT(El)Er])

g(UTU) 2
(X ® E—l/Q)CT(E—l/Q ® 2_1/2)E7‘ + (X ® 2—1/2)B;V6CT(Z—1)ET>

33

1 / T
Jyy = FE ([2E,Tvec(2_1) + ETTg (U"U)

ST = 2_1/2)vec(UUT)]

[VecT(UUT)(El/2 ® El/Q)WET + ;VecT(El)ET]>

1 1
= B vee(s vec (27, + Bl vee(s vee! (D)2 08712 B,

+%E;f(2_1/2 @ X7Y2)vec(D)vec' (R HVE, + EF (272 o 2 VY EEV2 9 2V E,

1
= —ZETTveC(Zfl)vecT(Zfl)Er
+EN (272 09V E [Mx (12 + Kuyp) + Mxvec(I)vec! (I,)] (572 @ 7V2)E,

1
= 2ME' (S '@ X HE, + (M — Z)EZ’vec(z—l)vecT(z—l)ET,

s« from which we establish (7) - (9). Now we prove (2)-(6).

ss  Proof of (2): Since the distribution of U given X is symmetric, for any orthogonal matrix V', U and
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VU should have the same distribution. As a consequence,

2
ACKY) T
A = FE uvt|X
(g(UTU)
2
gurvivuy) Ty, T
= FE (g(UTVTVU) VU v X
Hrrr 2
= VE (gg((ng))> VGC(U)VGCT(U)‘X vT
= vAv?
Using Proposition 2.14 of [7], we have
A= NxlI,.
To find Nx, notice that tr(A) = rNx. So we have
2
JUTUN or
Ny = ~tw(A)=-E|(L= 2/ x| .
x = puld=g <g<UTU> vy

Proof of (3): We prove (3) using the same technique as that in the proof of (2). For any r x r orthogonal
matrix V,

B=VE <UZI(([UJ§UU))‘X> =VB.

Let e; denote the vector of all zeros except that its ¢ element is one. Take V' to be the permutation matrix
such that Ve; = e;, Ve; = e;and Ve, = e fork = 1,...,k # 4, 5. Then B must be proportional to
a vector of 1’s. In other words, B = cl, , where 1, is the vector of r one’s. Then for any orthogonal
matrix V', we have ¢ = CZ§:1 v;j fori =1, ..., r. Therefore ¢ = 0 and (3) follows.

Proof of (4): Using the same reasoning, for any orthogonal matrix V,

C = (Vev)cve, (10)
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We first take V' to have the following form

where V_; is any (r — 1) x (r — 1) orthogonal matrix. Then we have Ve; = e;. Let ¢; denote the first

column of C. Then we have

aq = (VaV)a.

Let M; be an r x r matrix such that vec(M;) = ¢;. Then we have

vec(M;) = (V @ V)vec(My) = vec(VMVT).

If we partition the matrix A/; the same way as we partition V. Then by Proposition 2.14 of [7], M;
must have the following structure

dy 0
Ml = )

0 filr—
where d; and f; are constants. Similarly, we take V such that V7e; = e;. Then we can construct M;
such that vec(M;) = ¢;, where ¢; is the ith column of C. By the previous discussion M; must be a
diagonal matrix where the ith diagonal element is d; and the rest are f;.

Now we want to prove d; = f; for all ¢. Let V' be a permutation matrix such that for ¢ # j,
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V0e, = €}, VTej =¢; and Ve = ¢, for k # i, j. Then we have

¢ = VeV, vec(M;) = vec(VM;VT).

So M; = VMjVT. Because of the structure of V, we then have d; = d; = f; = f; = c for all
1 < 4,5 < r, where c is a constant. Therefore M; = cI, for all ¢+ = 1,...,r. This implies that

C = cvec(I,)17. Using (10), we have

evec(I)1E = (V@ V) (vec(I,)11) VT = cvec(VV ) 1IIVT = evec(I,)11 VT

Pre-multiplying both sides by vec’ (I,.) we get

T _ ., 4TyT
crl, =crl, V

for any V orthogonal. This implies ¢ = 0 and therefore C' = 0.

Proof of (5): Again for any orthogonal matrix V', we have D = V. DV By Proposition 2.14 of [7]

D = Hxl,

with Hy = B |20 0T U)‘X} /r. Using equation (2.12) of [12], we get Hy = —1/2.

Proof of (6): By the definition of E, for any orthogonal matrix V,
E = (VeWV)EWVTeVvT),

Using Proposition 4.1 of [4], we get E = cl,» + aK,, + 2dvec(I,)vec! (I.), where a, c and d are
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constants. Since FE is symmetric,
E = K, E = ¢K,, + al,2 4 2dvec(I,)vec! (I,.).
Therefore ¢(K,, — I,2) = a(K,, — I,2), which implies that a = ¢ and
E = c(I2 + K,,) + 2dvec(I,)vec! (I,.). (11)

Now we compute ¢ and d. Taking trace of (11) on both sides and using the fact that tr(AT B) =

vecT (A)vec(B) for any matrices A € R**® and B € R**?, we have

, 2
E (WTU)> (UTU? X | = cr(r+1)+2dr.

g(UTU)

Now pre-multiply (11) by vec” (I) and post-multiply (11) by vec(I), and take the trace. We have

2
g (Uuru) Trm2 2
B —= U'U)°|X| = 2 2dr=.
(g(UTU) ( ) cr + 2dr
As a consequence, 2d = ¢. Then
QI(UTU) ’ T717\2
r(r+2)c = E ( (0T > (U U)*| X

Let M, denote ¢, and we have (6).
Since the reduced-rank regression, the envelope and the reduced-rank envelope models are over-
parameterized, we will apply Proposition 4.1 from [14] to prove the asymptotic distribution for BRR, ﬁ E

and BRE as in [5] and [6]. To apply Proposition 4.1 of [14], we will check the assumptions first. Along
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91

the discussion, we will match Shapiro’s notations in our context. Let us call F'((Bstq, Xsta), (8, 2)) =
L(Estd, istd) — L(B,%) where L is the likelihood function. Then F satisfies the four conditions for F’
in Section 3 in [14]. The function g defined by Shapiro in (2.1) are the functions g;, g2 and g3 defined
in (12) under our context. Let h = (vec”(B), vech® (X)), ¢ = ((vecT(A),vec!(B), vechT(Z))T,
§ = (vecT(€),vecT (T), vechT (Q), vech ()T and ¢ = (vec” (B), vec! (1), vec” ('), vech® (),

vech” (€))7 denote the parameters in the standard model, the reduced-rank regression, the envelope

model and the reduced-rank envelope model respectively. We have

vec(AB) vec(I¢)
h=g1(y) = ) h = g2(0) = :
vech(X) vech(TQI'T + ToQTY)
vec(I'nB)
h=gs(¢) = . (12)
vech(PQI'T + ToQeTY)

It is obvious that g1, g2 and g3 are all twice continuous differentiable. Therefore all the assumptions of
Shapiro’s Proposition 4.1 are satisfied, and we can get the asymptotic distribution of each of the estima-
tors using Proposition 4.1 from [14]. Furthermore, the asymptotic variance of the estimator of reduced-
rank regression, the envelope model or the reduced-rank envelope model is given by H(H” J, H) HT,
where Jj, is the Fisher information under the standard model, and H is the gradient matrix, which
equals to Oh/0%v, Oh/OT§ and Oh/O  under the reduced-rank regression, the envelope model and
the reduced-rank envelope model respectively.

Next we calculate the asymptotic variance of the reduced-rank regression estimator, the envelope

estimator and the reduced-rank envelope estimator in details as follows.

10



92

93

94

95

96

97

98

99

The reduced-rank regression estimator: avar|y/nvec(Brg )|

To estimate h = (vec” (), vech? (X)), the constituent parameters of the reduced-rank regression are
Y = (vec?' (A), vecT (B), vechT(Z))T. Since 3 = AB, the gradient matrix H = 0h /071 is

BTl I,oA 0 o0
H = = , (13)

0 0 Ly 2 0 Ly

with h; = (BT ® I, I, ® A). Using Proposition 4.1 in [14], avar[\/nh 12 is given by
P g Frop

1 T3 -1 T
7h1[h (EX QX )hl]Thl 0
HHT,HHT = | ,

0 Jot

where T denotes the Moore-Penrose generalized inverse. We can write hy = H Ho, where

N N Ly (BSxBT)"'BSx ® A
H, = < BT ®1I (I—BT(BEXBT)—leX)@gA), Hy =
0 Lo

Since Hy is of full rank, hi[hT (Zx @ -1 |ThT = H [HT (Sx @ S~ H{]THT. Now

N BY BT @ -1 0
H'(Ex @2 YHH, = (14)

0 (EX —ixMBix)(X)ATE_lA
where Mp = BT (B x BT)~1B. Notice that both BEx BT @ £~! and ATS ! A are invertible. Since
MBE)(MB = MB, (iX — ixMBix)T = i;(l — MB. Therefore,

~ t (BixBT)fl ® X 0
[H?(2X®E*1)H1} - NGE)

0 (X% — Mp)® (ATx~14)~!

11



100 Let My = A(ATS 1 A)~1 AT Since avar[y/nvec(Brg )] correspond to the upper left block of Hy [HT (¥ x®

o1 X7V Hy|'HT, we have

-~ 1 1 ~ o~ ~
avar[y/nvec(frr)] = MpaX+ Z(Ip — MpYx) (St — Mp)(I, — MpXx) ® My

1 1~

= ZMB®E+Z(EX — Mp)® My
1 -1 -1 1 -1

= Z[EX - (Zy _MB)]®E+Z(2X — Mp)® Ma
1""_1 ]. ""_1

= > ®E_Z<2X — Mp)® (X — My). (16)

w2 The envelope estimator: avar|,/nvec(Bg)]

10s  Under the envelope model, the constituent parameters are § = (vec” (¢), vecT (T), vech® (Q2), vech® (29))7.

10¢ Since B =T¢, % =TQIT + ToQeI'Y, the gradient matrix H = 0h /076 is

I,®T T @ I, 0 0

0 202 -Te[QIT) C(TeD)E, C.(To®Ty)E—,

10s By Proposition 4.1 in [14], avar[\/ﬁh(g)] = H(H"J,H)'HT. Again we write H = H{ H,, where

I,®T T eI 0 0
le )

0 QCT(FQ RIT-T'® Foﬂo) Cr(F &® F)Eu OT(FQ ® FO)Erfu

106 and
Iy @It 0 0
0 L,oTE 0 0
Hy =
0 QCU(Q & FT) I(u(u+1)/2 0
0 0 0 Iy (r—ut1))2

12



107 Since Hs is full rank, then the asymptotic variance is avar[\/ﬁh(g)] = Hy(H{ JyH,) H . Now

4(Ex @ QT 0
A(ESx @ Qp'TT) oMTT @ Q'TY - 'rT @ ) E,
HI g, =
0 2MEL(QTT @ Q7 ITTE, + (M — 3)El'vec(Q~)vec (S E,
0 2MEL (Qy' T @ Qg 'THE, + (M — H)EL_ vec(Qy H)vec! (S E,
108 and
42xe0H) 0 0 0
0 Sey 0 0
H{ JpHy = :
0 0 S3z Su
0 0 Siz Su
100 where

Soy = 4(ESxeT @) +aMTT @ Q5T — QT T @ T E,CL (I @ Tp — T @ Tofd)

= 4eSxT @O +4M Q@ 2+ Q7 @ 0y — 21, @ I _).

110 The asymptotic variance of B  does not depend on Ss3, S34, S43 and Sy, since it is equal to the upper

111 left block of Hy(H{ J,Hy)TH{:

avar[y/nvec(Bg)] = i(fp T)(Sx @ (L, ®T7) + (£7 @T9) S5 (@ TF)
= i(i;} orar?)

1 ~
+1(E ®TlEExe @0 + M(Qe Q' + Q7 @ Q =20, @ I,-)] (@ Ty).

13




1z The reduced-rank envelope estimator: avar|y/nvec(Brg)]

113 The constituent parameters of the reduced-rank envelope model are ¢ = (vec” (B), vecT (1), vecT ('), vech® (Q),

11a vech? (Q))T. Since 8 = TnB, ¥ = QT + I'yQoI'Y, the gradient matrix H = dh/d7¢ is

BTnT I, BTl I,oTn 0 0

20, (TQ® I, — T ®@TeQlY) 0 0 Cr(T®DT)E, C.(To®T0)Er_,
a7

115 Again by Proposition 4.1 of [14], avar[\/ﬁvec(BRE)] = H(HTJ,H)THT. We write H = HyH,,

116 where
" BT™ypT @1 BT'®T (I,— MpXx)®TIn 0 0
| =
2C, (I @ Ty —T' @ o) 0 0 C,T®D)E, C.To®T)E,_,
(18)
117 and
I, ®TF 0 0 0 0
n"oIT I,y (BLxBT)"'BYx®n 0 0
Hy = 0 0 Lo 0 0 . (19
20,(QaTT) 0 0 L1y 0
0 0 0 0 Lir—u)(r—ut1)/2

1

s Since H; is of full rank, avar[\/ﬁvec(gRE)] = Hl(HlTJhHl)THlT. First we calculate HthHl. We

9 write Hy as H| = (Hll,ng,ng,H14,H15). Since

1

4% x BTnT @ TpQy!
JnH11 = , (20)

AMEN(T @ ToQy! —TQ ' @ Ty)

14
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123

124

125

we have Hf;JhHH =0fori=2,3,4,5. Because

ixBT®FQ71 (iX —ixMBix)(X)FQ*l?]
Jn(Hig, Hi3) = 4 ; (21)
0 0

then Hf;JhHu = 0for¢ = 3,4,5, and H%;Jh_ng = 0 for ¢ = 4, 5. Therefore

HL g HY 0 0 0
. 0 HEL I HE 0 0
HTJ,H, = ;
0 0 HLJ,HL 0
0 0 0 (Hia, His)' Jn(HE,, HE)T
and
(HL JpHE) 0 0 0
(HT 7, H))t = " ML) ’ :
0 0 (HL g, HL)T 0
0 0 0 [(Hya, Hs) " Jn(HE,, HE)T]E

Asa consequence,

avar{\/ﬁh(gg)} = Hu(HLJHn) HE + Hio(HE 0, Hiz) HY + Hig(HigJy Hi) His

+(Hya, Hi5)((Hua, His) I (H,, HE))(HY, Hi).

The asymptotic covariance of avar|,/nvec(Brg)] corresponds to the upper left block of avar[y/nh(¢)],

and (Hig, Hs)[(H1a, Hi5) " Jp(HE,, HE)T)T(HY,, Hi;) does not contribute to it. So we only consider

15
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127

128

129

130

131

132

133

134

the upper left block of Y2 Hy;(HLJy, Hy;)T HE. The upper left block of Hyy (HJ, J, Hyy ) HY, is

(B™n" @ To)(H{y JnH11)!(nB @ T{)

1 = . _ _ _
= (BT @To)nBExBn" @ Q5" + M(Q@ 05" — 2Ly + Q7' © )] (0B 9 T).
The upper left block of Hyo( HiyJ, Hi2)THi, is
1 ~ 1
(BT @ T)(HLJ,Hi2)'(B®TT) = Z(BT @D){(BExB) 1o Q}(BeIT) = M ® rort.

And the upper left block of H3(HiyJ, H13)T HE; is

(I, — MpZx) @ Tn)(Sx @ " Q 7 )7 (L, — SxMp) @ n"I7]

NN

(5x' = Mp) @ Tn(n" Q') 19T
Hence avar{+/nvec( ﬁRE)} is given by

1 ~
1(BTnT ®@To)nBExB " @ Qg + M(Q® Q' — 21,0y + Q' © Q)] ' (B @ TY)

1 1~
+ Mp® ror? + Z(E}l — Mp) @ Tn(nQ~1n)~1yTTT. (22)

C Additional simulation results for Section 7.2

We repeated the simulation with the same setting as in Figure 6 of the paper, but the errors were gen-
erated from the multivariate normal distribution N (0, 2X). The comparison of the estimation standard
deviation and MSE are displayed in Figure 1. Under this setting, the basic reduced-rank envelope esti-

mator is the MLE. The reduced-rank envelope estimator with approximate weights has about the same

16
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136
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138

139

140

141

142

143

144

145

146

efficiency as the MLE, since the weights are adaptive to the data. The reduced-rank envelope estimator
with normal mixture weights (computed from two normal distributions N (0, 2X) and N (0,0.1X) with
probability 0.5 and 0.5) loses some efficiency because of the wrong weights. For example, at sample
size 100, the ratios of estimation standard deviations of the reduced-rank envelope estimator with nor-
mal mixture weights versus the basic reduced-rank envelope estimator range from 1.04 to 1.17 with an
average of 1.08. The MSE shows a similar pattern as the estimation standard deviation. The bias of the
three reduced-rank envelope estimators is about the same, while the absolute value of the bias of the
OLS estimator is slightly larger. Since bias is not a major component of the MSE, we did not include it

in Figure 1.

=1
S oo}
[=3
S
o) o
o
d —
§ g g |
T © ® o
> S + kel
s o I
hel ©
s g
o < @D Q
- s °©
S o o
7] s o
S 4
8 s
o
o
Qo | TTTTTTTEEEe——————
S 4
T T T S] T T T
500 1000 1500 500 1000 1500
Sample size Sample size

Figure 1: Estimation standard deviation and MSE for a randomly selected element in 3. Left panel:
Estimation standard deviation versus sample size. Right panel: MSE versus sample size. The line types
are the same as in Figure 6. The horizontal solid line at the bottom of the left panel marks the asymptotic
standard deviation of the basic envelope estimator.
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