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Abstract: The combination generator, first proposed by Wichmann and Hill (1982),
is constructed by taking the fractional part of the sum of several random number
generators. It is probably one of the most popular random number generators
used. Its empirical performance is superior to the classical Lehmer congruential
generator. However, its theoretical justification is somewhat primitive. In this
paper, we give some theoretical support for such an important generator, from a
statistical theory viewpoint. Specifically, we prove that the combination generator
method is superior to each component random number generator method, in terms
of (1) uniformity and (2) independence.
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1. Introduction

Consider the following n multiplicative linear congruential generators (ML-
CGs), proposed by Lehmer (1951):

Xj,i+1 = BjXj,i mod mj, i ≥ 0, j = 1, . . . , n,

where Xj,0(initial seed), Bj(multiplier) are positive integers and mj(modulus)
are different prime numbers.

Wichmann and Hill (1982) suggested to add three MLCGs and take the
fractional part:

UW,i =
3∑

j=1

Xj,i

mj
mod 1.

Through a simple example, they claimed that this procedure “ironed out” the
imperfections in the component variates. Zeisel (1986) observed that a linear
combination of several MLCGs with different modulus is equivalent to another
MLCG with a large multiplier and a large modulus.

L’Ecuyer (1988) considered a variation of the Wichmann and Hill (1982)
method:

UL,i =
n∑

j=1

δjXj,i

m1
mod 1,
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where δj = (−1)j−1. He proved that if generators are independent of each other
and if one of the generators is uniformly distributed, then the combined genera-
tor will also be uniformly distributed. L’Ecuyer and Tezuka (1991) studied the
structural properties of these two classes of combined random number generators
(RNGs) and they extended the observation by Zeisel (1986).

Several authors have performed empirical studies of the combination gen-
erator. Marsaglia (1985) empirically compared several popular generators and
concluded that the combination generator is superior to others. Collings (1987),
L’Ecuyer (1988) and Anderson (1990) also found good empirical performance of
the combination generators.

Some theoretical justifications were given in Horton (1948), Horton and
Smith (1949), Brown and Solomon (1979), Marsaglia (1985) and L’Ecuyer (1988).
For additional justification of the combined generators, see Deng and George
(1990), Deng, George and Chu (1991) and Deng and Chu (1991). Formal defi-
nition of the combination generator method and some of its properties are given
in Section 2. The main results which include all theoretical results mentioned
above as special cases are presented in Section 3. Specifically, we show that the
combination generator method is superior to individual generators in terms of
uniformity and independence.

2. Combination Generators

Suppose that {(Uj0, Uj1, Uj2, . . .), j = 1, . . . , n} are n sequences of random
variates generated by any RNG. No assumption is necessary regarding how each
RNG is generated. Our goal is to study, from a statistical viewpoint, the property
of the combined sequence {Y1, Y2, . . .} where Yi = U1i +U2i + · · ·+Uni mod1. In
particular, for any positive integer k, we investigate the joint probability distri-
bution of the k-dimensional random vector Y = X1 +X2 + · · ·+Xn mod1, where
Xj = (Uji1, . . . , Ujik)′ with i1 < i2 < · · · < ik. For a vector x = (x1, . . . , xk)′, let
xmod 1 = (x1 mod 1, x2 mod 1, . . . , xk mod1)′.

Throughout this paper, we use a k-dimensional random vector X to represent
a specific k components realization of a RNG. Furthermore, for simplicity, we
assume the existence of the p.d.f. fX(x) for X. Although this assumption may
not be realistic since any RNG can only generate finitely many points in [0, 1],
and any theory based on the assumption of the existence of an RNG with a
p.d.f. is only an approximation, nevertheless this greatly reduces the need for
exact computations with discrete values.

Let δj be the k-vector vertex in [0, 1]k corresponding to the binary repre-
sentation of j for j = 0, 1, 2, . . . , 2k − 1. For example, for k = 2, δ0 = (0, 0)′,
δ1 = (0, 1)′, δ2 = (1, 0)′ and δ3 = (1, 1)′. For each y ∈ (0, 1)k, there are exactly
2k partitions of [0, 1]k, {Aj,y, j = 0, 1, 2, . . . , 2k − 1}, where Aj,y corresponds to
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the sub-cube of the partition containing the jth vertex δj. For example, if k = 2,
y = (y1, y2)′, A0,y = [0, y1] × [0, y2], A1,y = [0, y1]× [y2, 1], A2,y = [y1, 1] × [0, y2],
A3,y = [y1, 1] × [y2, 1].

The following lemma establishes some properties of Aj,y.

Lemma 2.1. Let Aj,y, j = 0, 1, 2, . . . , 2k − 1 be defined as above and y ∈ (0, 1)k.
Let IAj,y(x) be the indicator function for Aj,y.

(1) For any integrable function g(x) defined over Aj,y,∫
x∈Aj,y

g(δj + y − x)dx =
∫

x∈Aj,y

g(x)dx.

(2) For any function h(x) defined over [0, 1]k and any number r,

∣∣∣
2k−1∑
j=0

IAj,y(x)h(x)|r =
2k−1∑
j=0

IAj,y(x)|h(x)
∣∣∣r.

Proof. Note that Aj,y is symmetric around (δj + y)/2 which is the center of the
subcube Aj,y. Therefore, x ∈ Aj,y if and only if δj + y−x ∈ Aj,y. To prove Part
(1), we use this fact and make a change of variable u = δj +y−x. Part (2) follows
from the fact that the indicator functions IAj,y(x)’s are mutually exclusive: for
each x ∈ [0, 1]k, exactly one term in the summation has value with IAj,y(x) = 1
while all the remaining terms are zero.

We first find the p.d.f. of the fractional part of the sum of two indepen-
dent random vectors. The following Lemma from Deng and Chu (1991) can be
considered as a k-dimensional extension of Deng and George (1990).

Lemma 2.2. (Deng and Chu (1991), Theorem 1) Let X1, X2 be any two in-
dependent random vectors over [0, 1]k, with the p.d.f.’s fX1(x) and fX2(x). Let
Y = X1 + X2 mod 1, and fY (y) be the p.d.f. of Y. In addition,

fXi(x) = 1 + gXi(x), for i = 1, 2, (2.1)

where gXi(x) is the “deviation” of the p.d.f. of Xi from the uniform p.d.f. Then

fY (y) = 1 +
2k−1∑
j=0

∫
x∈Aj,y

gX2(δj + y − x) · gX1(x)dx. (2.2)

3. Main Results

For 0 < ε < 1, let Lr(ε) be the class of p.d.f. fX(x) over [0, 1]k which is in
the neighborhood of the uniform p.d.f. such that

||fX(x) − 1||r =
( ∫

[0,1]k
|fX(x) − 1|rdx

)1/r ≤ ε.
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The value of 1 is so special here because it is the p.d.f. of U [0, 1]k. Furthermore,
we set 0 < ε < 1 , because it is desirable for a vector RNG to generate a
distribution that is close to U [0, 1]k.

The following theorem provides a theoretical justification of the goodness of
the combination generators. Specifically, the theorem shows that the fractional
part of the sum of two independent (nearly) uniform random vectors will produce
a distribution whose p.d.f. is closer to a uniform distribution.

Theorem 3.1. Let X1, X2 be any two independent random vectors over [0, 1]k,
with the p.d.f.’s fX1(x) and fX2(x). Let Y = X1 + X2 mod 1, and fY (y) be the
p.d.f. of Y. For any r1, r2 ≥ 1 such that 1

r1
+ 1

r2
= 1, we have

|fY (y) − 1| ≤ ||fX1
(x) − 1||r1 ||fX2

(x) − 1||r2 .

That is, if fX1(x) ∈ Lr1(ε1) and fX2(x) ∈ Lr2(ε2) then fY (y) ∈ L∞(ε1 · ε2).

Proof. Let gXi(x) = fXi(x) − 1 be defined as in (2.1). From Lemma 2.2, we
know that the p.d.f. of Y = X1 + X2 mod1 is

fY (y) = 1 +
2k−1∑
j=0

∫
x∈Aj,y

gX2(δj + y − x) · gX1(x)dx

= 1 +
∫
x∈[0,1]k

( 2k−1∑
j=0

IAj,y(x)gX2(δj + y − x)
)
· gX1(x)dx

= 1 +
∫
x∈[0,1]k

hX2,y(x) · gX1(x)dx, (3.1)

where

hX2,y(x) =
2k−1∑
j=0

IAj,y(x)gX2(δj + y − x),

and IAj,y(x), the indicator function of x for x ∈ Aj,y, is defined in Lemma 2.1.
From Lemma 2.1,

∫
x∈[0,1]k

|hX2,y(x)|r1dx =
∫
x∈[0,1]k

(
|
2k−1∑
j=0

IAj,y(x)gX2(δj + y − x)|
)r1

dx

=
2k−1∑
j=0

∫
x∈[0,1]k

IAj,y(x)|gX2(δj + y − x)|r1dx

=
2k−1∑
j=0

∫
x∈Aj,y

|gX2(δj + y − x)|r1dx (3.2)
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=
2k−1∑
j=0

∫
z∈Aj,y

|gX2(z)|r1dz (3.3)

=
∫
z∈[0,1]k

|gX2(z)|r1dz.

To derive equations (3.2) and (3.3), we have used Lemma 2.1. Applying Hölder’s
inequality (Hardy, Littlewood and Pólya (1952), page 156, Theorem 210) for
(3.1), we have

|fY (y) − 1| ≤
( ∫

x∈[0,1]k
|hX2,y(x)|r1dx

)1/r1
( ∫

x∈[0,1]k
|gX1(x)|r2dx

)1/r2

=
( ∫

z∈[0,1]k
|gX2(z)|r1dz

)1/r1
( ∫

x∈[0,1]k
|gX1(x)|r2dx

)1/r2
.

To see that Theorem 3.1 is a much stronger result than that in Deng and
George (1990) and Deng and Chu (1991), we note that by the Liapounov in-
equality (Hardy, Littlewood and Pólya (1952), page 157, Theorem 211), we have

( ∫
[0,1]k

|fX(x) − 1|rdx
)1/r ≤

( ∫
[0,1]k

|fX(x) − 1|sdx
)1/s

for r < s < ∞. Therefore, Ls(ε) ⊂ Lr(ε), r < s < ∞. Using the fact fXi(x) ∈
L∞(εi) ⊂ L2(εi), and Theorem 3.1 with r1 = r2 = 2, we have fY (y) ∈ L∞(ε1 ·ε2).
That is, if |fXi

(x) − 1| ≤ εi, for i = 1, 2, then |fY (y) − 1| ≤ ε1 · ε2. Essentially,
we have proved here that the combination generator will not only improve the
“uniformity” of the generator but also its “independence” when considering the
joint distribution of any k-dimensional random vectors.

According to Theorem 3.1, one can produce a random vector whose distri-
bution is closer to U [0, 1]k by taking the fractional part of the sum of several
random vectors: Let X1, . . . , Xn be n independent random vectors over [0, 1]k,
with the p.d.f. fXi(x), for i = 1, . . . , n. Let Y =

∑n
i=1 Xi mod1, and fY (y) be

the p.d.f. of Y.
(1) If |fXi(x) − 1| ≤ εi, for i = 1, . . . , n, then |fY (y) − 1| ≤ ∏n

i=1 εi.

(2) If
∏n

i=1 εi −→ 0, then Y converges in distribution to U [0, 1]k.
(3) In particular, if one of the Xi is uniformly distributed over [0, 1]k , then Y is

uniformly distributed over [0, 1]k.
The major weakness of the above results is that we have assumed the Xi’s are

independent of each other. In practice, since a sequence generated by any RNG
is deterministic, this independence assumption seems to be unrealistic. To show
that the combination generator is indeed superior even when Xi’s are dependent,
we next consider the extreme case that all Xi are equal to X. In this case, we
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will show that the distribution of Y = nXmod 1 will be closer to the uniform
distribution than that of each X. In fact, this statement holds for a more general
case

Y = DX mod1, D = diag(n1, . . . , nk), (3.4)

where nj’s are positive integers. Furthermore, we show that for large nj’s, the
distribution of Y is nearly distributed as U [0, 1]k .

Lemma 3.1. Let D be defined as in (3.4) and SD = {i = (i1, . . . , ik)|0 ≤ ij ≤
nj − 1}.

(1) Let X be any random vector over [0, 1]k, with the p.d.f fX(x). Then the
p.d.f. of Y = DXmod 1 is

fY (y) =
1∏k

j=1 nj

∑
i∈SD

fX(D−1(y + i)).

(2) For any integrable function e(x) defined over [0, 1]k, we have
∫
x∈[0,1]k

e(x)dx =
1∏k

j=1 nj

∑
i∈SD

∫
y∈[0,1]k

e(D−1(y + i))dy.

Proof. Note that Y = DX mod1 is not a one-to-one transformation of X. To
prove Part (1), we partition [0, 1]k into

∏k
j=1 nj subcubes, Bi, i ∈ SD, where Bi is

a shift of the subcube B = [0, 1/n1]× [0, 1/n2]×· · ·× [0, 1/nk]: Bi = B+D−1i.
The transformation Y = DX mod1 is now one to one over x ∈ Bi,

Y = y if and only if X = D−1(y + i) ∈ Bi, i ∈ SD.

Then the p.d.f. of Y = DX mod1 is

fY (y) =
∑

i∈SD

fX(D−1(y + i))Ji =
1∏k

j=1 nj

∑
i∈SD

fX(D−1(y + i)),

where Ji= |∂x
∂y |= 1∏k

j=1
nj

is the Jacobian for the subcube Bi. This provesPart (1).

To prove Part (2), we again use the same partition of [0, 1]k , {Bi, i ∈ SD}.
∫
x∈[0,1]k

e(x)dx =
∑

i∈SD

∫
x∈Bi

e(x)dx =
∑

i∈SD

∫
x∈B

e(x + D−1i)dx.

Letting x = D−1y in the above integrals with the Jacobian 1∏k

j=1
nj

, we have

∫
x∈[0,1]k

e(x)dx =
1∏k

j=1 nj

∑
i∈SD

∫
y∈[0,1]k

e(D−1(y + i))dy.
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Theorem 3.2. Let X be any random vector over [0, 1]k, with the p.d.f. fX(x).
Let Y=DX mod 1, where D is defined as in (3.4), and fY (y) is the p.d.f. of Y.
(1) For any r ≥ 1 , we have ||fY (y)−1||r ≤ ||fX (x)−1||r. Therefore, if fX(x) ∈

Lr(ε) then fY (y) ∈ Lr(ε).
(2) |fY (y)−1| → 0, as min(n1, . . . , nk) → ∞. That is, the components of Y will

not only be “more uniform” but also “more independent” of each other.
(3) Moreover, Y and X will be asymptotically independent of each other.

Proof. From Part (1) of Lemma 3.1, it is easy to see that

fY (y) − 1 =
1∏k

j=1 nj

∑
i∈SD

(
fX(D−1(y + i)) − 1

)

and

|fY (y) − 1|r ≤
[ 1∏k

j=1 nj

∑
i∈SD

|fX(D−1(y + i)) − 1|
]r

≤ 1∏k
j=1 nj

∑
i∈SD

|fX(D−1(y + i)) − 1|r.

Here we used the following inequality, with φ(x) = xr, r ≥ 1 and m =
∏k

j=1 nj

(see Hardy, Littlewood and Pólya (1952), page 72, (3.6.1))

φ(
1
m

m∑
i=1

xi) ≤ 1
m

m∑
i=1

φ(xi),

for any convex function φ(x).
Integrating y over [0, 1]k, we get
∫
y∈[0,1]k

|fY (y) − 1|rdy ≤ 1∏k
j=1 nj

∑
i∈SD

∫
y∈[0,1]k

|fX(D−1(y + i)) − 1|rdy

=
∫
x∈[0,1]k

|fX(x) − 1|rdx.

In the last equality, we have used Part (2) of Lemma 3.1. This proves Part (1).
Part (2) follows easily from Part (1) of Lemma 3.1, because

fY (y) =
1∏k

j=1 nj

∑
i∈SD

fX(D−1(y + i))

is a Riemann sum of the k-fold integral of the p.d.f. fX(x)
∫
x∈[0,1]k

fX(x)dx = 1
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and nj is the number of partitions in each coordinate.
To prove Part (3), it is sufficient to show that the jth component of Y, say Y ,

is asymptotically independent of the jth component of X, say X. For simplicity,
we let n = nj. For 0 < x, y < 1, the joint c.d.f. of (X,Y ) is

FX,Y (x, y) =
n−1∑
r=0

Pr(X ≤ x, r < nX ≤ r + y)

=
n−1∑
r=0

Pr(X ≤ x,
r

n
< X ≤ r + y

n
)

=
∑

r≤xn

Pr(X ≤ x,
r

n
< X ≤ r + y

n
) (3.5)

=
∑

r≤xn

Pr(
r

n
< X ≤ r + y

n
) + o(1) (3.6)

=
∑

r≤xn

[
FX

(r + y

n

)
− FX

( r

n

)]
+ o(1),

where FX(·) is the c.d.f. of X and o(1) is a small order term converging to zero
as n → ∞. Note that (3.5) and (3.6) hold because

{X ≤ x} ∩ { r

n
< X ≤ r + y

n
} =



∅, if x < r/n,

{ r
n < X ≤ x}, if r/n ≤ x < (r + y)/n,

{ r
n < X ≤ r+y

n }, if x ≥ (r + y)/n.

We then apply the Mean Value Theorem

FX(b) − FX(a) = (b − a)fX(a + θ(b − a)), 0 ≤ θ ≤ 1,

to each term in the summation. Thus, the joint c.d.f. of (X,Y ) is

FX,Y (x, y) = y
∑

r≤xn

fX (
θry + r

n
)
1
n

+ o(1), 0 ≤ θr ≤ 1 (3.7)

= y

∫ x

0
fX(t)dt + o(1) (3.8)

= yFX(x) + o(1) → yFX(x) as n → ∞. (3.9)

In (3.8), we used the fact that (3.7) is a Riemann sum of its integral.
From (3.9), we can see that X and Y are asymptotically independent of each

other. This completes the proof of Part (3).
Part (1) of Theorem 3.2 shows that “stretching out” any continuous random

vector X will be as good as the X itself. Part (2) shows that by stretching X in
each direction and taking its fractional part we can obtain a distribution closer
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to U(0, 1) while all components will be more independent of each other. Part (3)
gives some justification for a MLCG with a large multiplier. It shows that the
successive variates generated by a MLCG should be asymptotically independently
and uniformly distributed.

4. Concluding Remarks

Some intuitive explanations for the results in Section 3 are possible. If we
stretch out the p.d.f. of a continuous random vector, then it will become “flat”
within each unit subcube. Taking the fractional part of the stretched vector
will move it back to [0, 1]k with its p.d.f. equal to the sum of the p.d.f. over
each subcube. Consequently, we get a random vector that is more uniformly dis-
tributed over [0, 1]k and meanwhile (roughly) independent of the original random
vector(s).

Under the assumption of the existence of the p.d.f. of a random vector, we
can do the stretching by either adding several random vectors (not necessarily
independent of each other) (see Theorem 3.1)

Y = X1 + X2 + · · · + Xn mod1

or simply multiplying each component of X by a large number (see Theorem 3.2)

Y = DX mod1.

Since there are only a finite number of digits representable by a computer, the
above assumption is not realistic for a discrete RNG. However, according to an
extensive empirical study by Deng, George and Chu (1991), both methods can
indeed be used to improve the uniformity of an RNG. Note that adding several
variates together will increase the variability of the combined variate even for a
discrete distribution. Therefore, in practice, the result in Theorem 3.1 should be
more applicable than that in Theorem 3.2.

It follows immediately that the combination generator is a preferred method
of improving one or several RNGs. There are several additional justifications: (1)
multiplying a number in a MLCG will neither change its recurrence relationship
nor will it have any effect on its lattice structure (2) combining several MLCG’s
with different modulus will result in an RNG with much larger period (e.g., see
Wichmann and Hill (1982) and L’Ecuyer (1988)).

As noted in Section 1, L’Ecuyer and Tezuka (1991) showed that a linear
combination of several MLCGs with different modulus is equivalent to another
MLCG with a large multiplier and a large modulus. Their result is also consistent
with Theorem 3.2 in that a large multiplier and large modulus will, in general,
improve the statistical properties. Clearly, Theorem 3.1 also provides additional
justification for the combination generator from a statistical theory viewpoint.
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Our results can also be used to justify the statistical properties of the multiple
recurrence generator (MRG). (For a review of the MRG, combination generator
and other RNGs, see L’Ecuyer (1989, 1990)). The MRG is generated from (e.g.
Knuth (1981), pages 28-29) a degree k primitive polynomial f(x) = xk−α1x

k−1−
· · · − αk with period pk − 1 by

Xm = (α1Xm−1 + · · · + αkXm−k)mod p, m ≥ k

for any initial non-zero vector (X0, . . . ,Xk−1), where p is a large prime number.
L’Ecuyer and Blouin (1988) has implemented Knuth’s algorithm in a computer
program to find some MRGs. Deng, Rousseau and Yuan (1992) gave an efficient
search algorithm for an MRG and discussed its statistical properties. They gave
theoretical justifications of the MRG using the results obtained in Deng and
George (1990), Deng, George and Chu (1991) and Deng and Chu (1991). This
paper is a further extension of the above theoretical results.
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