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Abstract: This article introduces trimmed estimators for the mean and covariance

function of general functional data. The estimators are based on a new measure

of “outlyingness” or data depth that is well defined on any metric space, although

we focus on Euclidean spaces. We compute the breakdown point of the estimators

and show that the optimal breakdown point is attainable for the appropriate choice

of tuning parameters. The small-sample behavior of the estimators is studied by

simulation, and we show that they have better outlier-resistance properties than

alternative estimators. This is confirmed by two data applications that also show

that the outlyingness measure can be used as a graphical outlier-detection tool in

functional spaces where visual screening of the data is difficult.
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1. Introduction

Many statistical applications involve data that does not fit into the classi-

cal univariate or multivariate frameworks, for example, growth curves, spectral

curves, and time-dependent gene expression profiles. These are samples of func-

tions, rather than numbers or vectors. The statistical analysis of function-valued

data has received a lot of attention in recent years (see e.g., Ramsay and Sil-

verman (2002); Serfling (2006), and references therein). However, most of the

work on Functional Data Analysis has focused on univariate curves; in many

applications, the sample functions are not univariate.

Consider, for example, excitation-emission matrices (EEMs), which are com-

mon in Chemometrics. When certain fluorescent substances are exposed to light

of wavelength s, they emit light at wavelength t. The resulting light intensity

X is then a bivariate function. Mortensen and Bro (2006) analyzed a collection

of 338 such surfaces; the logarithms of four of them are shown in Figure 1. A

movie showing the 338 surfaces in quick succession is available on the author’s

website; it is clear in this movie that there are some atypical surfaces in the data

set. For example, Figure 1 shows that even after taking logarithms, the sur-

face on the lower right corner is out of line compared to the other three. These
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Figure 1. Excitation-Emission Matrices. Four samples of log-EEMs.

Figure 2. Handwritten Digits Example. Eight samples of the number “five”.

atypical objects are what we refer to as “outliers” ; that is, objects that depart

from the main modes of variability of the majority of the data. Note that since

each functional object typically consists of many measurements taken at differ-

ent time points (or wavelength points, in this case), a few of those measurements

could be outlying without the whole surface being atypical. That kind of isolated

measurement error is not of interest here; it has been addressed in the robust

smoothing literature (e.g., Shi and Li (1995), Jiang and Mack (2001).)

As a second example, consider a digit recognition problem. Eight handwrit-

ten “fives” , from a total of 1,055 samples, are shown in Figure 2. Ignoring the

distance between the pen tip and the writing pad, the planar trajectory of the

pen tip is a curve over time. In Figure 2 we see that some of the handwritten

digits look more like “sixes” than “fives” . The reason for this is going to be

explained in Section 5, but it is clear at this point that the sample of “fives” is

not homogeneous; it contains either isolated outliers or systematic clusters that

are hard to guess a priori.

These examples show two things that are the main motivation for this paper:

(i) functional data belonging to complicated spaces are encountered in practice,
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and (ii) outliers may be present in a sample but, due to the complexity of the data,

visual screening of the data set may be impractical or impossible. The problem

of robust estimation in functional spaces has been addressed by some authors,

including Locantore et al. (1999), Fraiman and Muniz (2001), Cuevas, Febrero,

and Fraiman (2007), Gervini (2008), and López-Pintado and Romo (2009), but

all of these papers deal with univariate curves. Some of these methods can be

extended to more complex spaces in a more or less straightforward way, but some

of them cannot. For example, the methods of Fraiman and Muniz (2001) and

López-Pintado and Romo (2009) are based on data-depth notions that require

an ordering of the response variables that cannot be extended to vector-valued

functions like the handwritten digits in an obvious way. On the other hand,

the projection-based methods discussed in Cuevas, Febrero, and Fraiman (2007)

and the spatial median and the spherical principal components of Locantore et

al. (1999) and Gervini (2008) can be extended to any Euclidean space, though

Gervini (2008) found that the breakdown point of the spherical principal compo-

nents is very low. A third goal here is to develope principal component estimators

that are more robust than the spherical principal components, but not as compu-

tationally demanding as the projection-based methods of Cuevas, Febrero, and

Fraiman (2007).

The estimators we introduce are based on a measure of “outlyingness” that

can be defined on any metric space, but we restrict ourselves to Euclidean spaces,

where principal components can also be defined. These estimators are easy to

compute and turn out to have very good robustness properties. We prove in

Section 3 that they can attain the optimal 50% breakdown point. In our simula-

tion study (Section 4) they outperform most of the alternative estimators cited

above. The paper also studies other theoretical properties in Section 3, and an-

alyzes in more detail the two applications mentioned above (Section 5). Proofs

of the theoretical results and an additional data application can be found in a

technical supplement available on the author’s webpage.

2. Trimmed Estimators Based on Interdistances

2.1. A measure of “outlyingness”

Let {X1, . . . , Xn} be a sample in a linear space H endowed with an inner

product ⟨·, ·⟩, for instance, L2(R) with its canonical inner product ⟨f, g⟩ =
∫
fg.

The inner product induces the norm ∥f∥ = ⟨f, f⟩1/2 in H, and this norm induces

the distance function d(f, g) = ∥f −g∥, so any Euclidean space is a metric space.

Let us consider the set of interdistances {d(Xi, Xj)}. An observation Xi can be

seen as an outlier if it’s far from most other observations (not necessarily all of

them, because outliers sometimes form clusters). Given α ∈ [0, 1], we define the

α-radius ri as the distance betweenXi and the ⌈αn⌉-th closest observation, where
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⌈x⌉ denotes the integer closest to x from above. This is the radius of the smallest

ball centered at Xi that covers 100α% of the observations. Intuitively, ri is small

where the data is dense and large where the data is sparse (see Proposition 4 in

Section 3). Therefore, the rank of ri in the set {r1, . . . , rn} is a measure of the

“outlyingness” of Xi: the more isolated Xi is, the larger is ri compared to the

other radii.

In principle the coverage parameter α can be any number between 0 and 1,

but note that if there is a tight cluster of n∗ outliers and ⌈αn⌉ < n∗, then the

radii of the outliers is small, perhaps even smaller than the radii of the “good”

observations, which renders them useless for our purposes. Therefore α must be

large enough that at least one good observation is captured by ri whenever Xi is

an outlier. Since n∗ can be as large as n/2, in general only α ≥ .50 guarantees

this. On the other hand, taking α > .50 may cause the opposite problem: that an

outlying observation is always captured by ri when Xi is not an outlier, making

the radii of the “good” observations too large (the formalization of these heuristics

constitute the proof of Proposition 2 in Section 3). For these reasons we take

α = 0.50 for estimation purposes. However, for outlier-screening purposes it is

instructive to see boxplots and histograms of the radii for values of α less than

.50, outliers tend to emerge clearly and consistently as α increases.

At this point some comments about the actual computation of the interdis-

tances are in order. First, note that all the interdistances can be computed from

the set of inner products {⟨Xi, Xj⟩}, since d2(Xi, Xj) = ⟨Xi, Xi⟩ + ⟨Xj , Xj⟩ −
2⟨Xi, Xj⟩. It is easy to compute the pairwise inner products when the sample

objects have been pre-smoothed, or even if they have not been pre-smoothed

but they were sampled on a regular common grid without much random error.

In that case, a basic numerical integration method such as the trapezoidal rule

gives accurate results (see Gervini (2008, Thm. 1)). If the Xis were sampled on

sparse and irregular grids, perhaps with a different grid for each individual, then

it is not possible to estimate all pairwise inner products and this method cannot

be applied (the other methods mentioned in the introduction cannot be applied

either, since they are based on pre-smoothed data).

2.2. Trimmed estimators

In addition to being useful outlying-screening tools, the radii can be used

to construct robust estimators of the mean, the covariance function, and the

principal components of the process under consideration. For a stochastic process

X in H with E(∥X∥2) < ∞, the mean operator M and the covariance operator C

are defined as M : H → R given by Mf = E(⟨f,X⟩), and C : H×H → R is given

by C(f, g) = cov(⟨f,X⟩, ⟨g,X⟩) (these quantities are well defined because ⟨f,X⟩
and ⟨g,X⟩ are real-valued random variables with finite variances for any f and
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g in H). By the Riesz Representation Theorem there exists a unique µ ∈ H such

that Mf = ⟨f, µ⟩, which we call E(X) (this is one way to define the expectation

of a stochastic process in a Euclidean space.)

In a Euclidean space it is also possible to define principal directions of vari-

ability, or principal components. The first principal component of X is the

ϕ1 ∈ H that maximizes var(⟨f,X⟩) among f ∈ H with ∥f∥ = 1; the second prin-

cipal component is the ϕ2 ∈ H that maximizes var(⟨f,X⟩) among f ∈ H with

∥f∥ = 1 and ⟨f, ϕ1⟩ = 0; and so on. It can be shown (Gohberg, Goldberg, and

Kaashoek (2003, Chap. IV)) that the principal components are eigenfunctions of

the covariance operator and they are countable; that is, C(ϕk, ·) = λk⟨ϕk, ·⟩ with
λk ∈ R and λk ≥ 0.

The classical estimators of these quantities (the sample mean, covariance,

and principal components) are not resistant to outliers. As a more robust alter-

native we propose trimmed estimators based on the radii. Specifically, given a

trimming proportion β ∈ [0, .50] we take w(Xi) = I{ri < r(⌈(1−β)n⌉)} and

µ̂ =
1∑n

i=1w(Xi)

n∑
i=1

w(Xi)Xi, (2.1)

Ĉ(f, g) =
1∑n

i=1w(Xi)

n∑
i=1

w(Xi)⟨Xi − µ̂, f⟩⟨Xi − µ̂, g⟩. (2.2)

These are “hard-trimmed” estimators, where a 0-1 weight function is used. More

generally, we can define weights of the form w(Xi) = g(rank(ri)/n), where g :

[0, 1] → R+ is a bounded, non-negative and non-increasing function such that

g(t) > 0 for t < 1 − β and g(t) = 0 for t ≥ 1 − β. “Soft-trimming” weights are

obtained with a smooth function g such as

g(r) =


1, 0 ≤ r ≤ a,

(r − b)
[

1
(a−b) +

(r−a){2r−(a+b)}
(b−a)3

]
, a ≤ r ≤ b,

0, r ≥ b,

(2.3)

where a = 1 − β1 for some β1 > β, and b = 1 − β. This function downweights

the largest 100β1% radii, and cuts off the largest 100β% radii completely; we can

take, for example, β1 = 0.50 and β = 0.20.

Trimmed estimators based on various measures of data depth have been

proposed in other contexts, in particular in multivariate analysis (Fraiman and

Meloche (1999), Liu, Parelius, and Singh (1999), Serfling (2006), Zuo and Ser-

fling (2000), Zuo, Cui, and He (2004)). The behavior of these estimators varies

according to the specific data-depth measure that is being used but, as a general

rule, their outlier resistance increases as β increases and their efficiency decreases
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as β increases (see e.g., Stigler (1973); Van der Vaart (1998, Chap. 22); Maronna,

Martin, and Yohai (2006, Chap. 2)). Since there is a trade-off between robustness

and efficiency, we recommend choosing β in a data-driven way: a histogram of the

radii usually gives a good idea of the proportion of outliers in the sample, and this

value could be used as β. A more objective alternative, suggested by a referee,

is to fit a mixture of two Gamma distributions to the sample of radii and take as

β the proportion of observations in the smaller group. If instead of these data-

driven choices of β the user prefers to use a fixed β, our simulations showed that

“soft-trimming” weights like (2.3) are preferrable to “hard-trimming” weights

(see Section 4).

Just as the radii (and therefore the weights w(Xi)) depend on the data only

through the inner products {⟨Xi, Xj⟩}, the principal components of (2.2) can be

computed entirely from the inner products. As in Gervini (2008) and Jolliffe

(2002, Chap. 3.5): if w̃i = w(Xi)/
∑n

i=1w(Xi), then ϕ̂k =
∑n

i=1(cki/l
1/2
k )w̃

1/2
i

(Xi − µ̂) and λ̂k = lk, where ck is the kth unit-norm eigenvector of the matrix

G ∈ Rn×n with elements Gij = ⟨w̃1/2
i (Xi − µ̂), w̃

1/2
j (Xj − µ̂)⟩, and lk is the kth

eigenvalue (the Gijs can be expressed entirely in terms of the ⟨Xi, Xj⟩s and the

w̃is, after some algebra). The applicability of these estimators is then limited only

by the possibility of computing all pairwise inner products. This is generally not

possible if the data objects were sparsely and irregularily sampled, and alternative

estimation methods must be sought. For instance, the reduced-rank t-model

estimators of Gervini (2008), originally developed for sparsely sampled univariate

curves, can be extended to more general functional spaces, but this is clearly

outside the scope of this paper.

3. Properties of the Estimators

3.1. Finite-sample properties

Location and scatter estimators must satisfy certain equivariance properties

to be proper measures of “location” and “scatter” . A location estimator must be

translation equivariant: if µ̂ is the estimator based on the sample {X1, . . . , Xn},
then the estimator based on the sample {X1 + c, . . . ,Xn + c}, with c ∈ H, must

be µ̂ + c. Other desirable properties are scale and rotation equivariance: if µ̂ is

the estimator based on the sample {X1, . . . , Xn}, then the estimator based on

the sample {aUX1, . . . , aUXn}, with U a unitary operator and a ∈ R, must be

aUµ̂ (a unitary operator is U : H → H such that ∥Uf∥ = ∥f∥ for every f ∈ H). A

scatter estimator, on the other hand, must be translation invariant and rotation

and scale equivariant in the following sense: if Ĉ(·, ·) is the covariance estimator

based on the sample {X1, . . . , Xn}, then the covariance estimator based on the

sample {aUX1, . . . , aUXn} must be a2Ĉ(U∗·,U∗·), where U∗ is the adjoint of U.
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The rotation equivariance of Ĉ automatically implies rotation equivariance of the

principal component estimators obtained from Ĉ.

Our trimmed estimators satisfy these properties, as shown in Proposition 1.

This is a consequence of the translation and rotation invariance of the radii, and

therefore of the weights w(Xi) (which, in addition, are scale invariant). Note that

translation, scale and rotation invariance are properties that any “outlyingness”

measure should satisfy: if an observation is considered an outlier for a given

dataset, the same observation should be considered an outlier if the dataset is

simply translated, rotated or re-scaled.

Proposition 1. Let X1, . . . , Xn be a sample in H, a ̸= 0 a scalar, b ∈ H, and

U a unitary operator. Let X̃i = aUXi + b with {d̃ij} and {r̃i} the corresponding

interdistances and radii, ̂̃µ, ̂̃C, {̂̃λk}, and {̂̃ϕk} the corresponding estimators.

1. d̃ij = |a|dij for all i and j, and r̃i = |a| ri for all i, so rank(r̃i) = rank(ri) and

w(X̃i) = w(Xi) for all i.

2. ̂̃µ = aUµ̂+ b.

3. ̂̃C(f, g) = a2Ĉ(U∗f,U∗g) for all f and g, so
̂̃
λk = a2λ̂k and

̂̃
ϕk = Uϕ̂k for all k.

The robustness of an estimator is usually measured by the breakdown point

(Donoho and Huber (1983)). The finite-sample breakdown point is the largest

proportion of outliers that an estimator can tolerate. Here, given a sample X =

{X1, . . . , Xn}, let X̃k be a contaminated sample obtained from X by changing k

points arbitrarily; then the finite-sample breakdown point of µ̂ is ε∗n(µ̂) := k∗/n,

where k∗ is the smallest k for which there is a sequence of contaminated samples

{X̃ (m)
k }m≥1 such that ∥µ̂(m)∥ −→

m→∞
∞. The finite-sample breakdown point of Ĉ

is defined analogously. The asymptotic breakdown point is the limit of ε∗n(µ̂) as

n goes to infinity, if the limit exists. The highest asymptotic breakdown point

attainable by an equivariant estimator is 0.50 (Lopuhaä and Rousseeuw (1991)).

Proposition 2. Suppose w(Xi) = g(rank(ri)/n), with g satisfying the conditions

given in Section 2. If α ≤ 0.50, ⌈αn⌉ ≥ 3, and β ≤ 0.50, then ε∗n(µ̂) = ε∗n(Ĉ) =

min(⌈αn⌉, ⌊βn⌋+ 2)/n, which tends to min(α, β) when n goes to infinity.

This proposition shows that the asymptotic breakdown point of the trimmed

estimators is min(α, β). Then, if α = 0.50, the breakdown point is just the

trimming proportion β, and the optimal breakdown point can be attained with

β = 0.50. In practice, though, such estimators are very inefficient when the

actual proportion of outliers is much less than 50%, as we show by simulation in

Section 4; a better alternative is to use “soft” trimming, as explained in Section 2.
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3.2. Population versions and properties

The estimators (2.1) and (2.2) can be generalized to any probability measure

P on H, of which (2.1) and (2.2) can be seen as particular cases obtained for

P = Pn, the empirical measure on the sample {X1, . . . , Xn}. One reason this

generalization is useful is that it allows us to study the consistency of the esti-

mators: since Pn → P when the Xis are i.i.d. with distribution P , under certain

conditions (Fernholz (1983); Van der Vaart (1998, Chap. 20)) µ̂ and Ĉ converge

in probability to their respective population versions µP and CP .

The derivation of µP and CP is as follows. Let X be a stochastic process with

distribution P . Define FP (t; v) = P{∥X − v∥ ≤ t} for each v ∈ H. The radius

of the smallest ball centered at v with probability α is rP (v) = F−1
P (α; v), where

F−1
P (α; v) := min{t : FP (t; v) ≥ α} is the usual quantile function. Then rP (X)

is the α-radius around X and, if GP (t) := P{rP (X) ≤ t}, the weight function

wP (v) has the form wP (v) = g[GP {rP (v)}], with g as in Section 2. Then

µP =
EP {wP (X)X}
EP {wP (X)}

,

CP (f, g) =
EP {wP (X)⟨X − µP , f⟩⟨X − µP , g⟩}

EP {wP (X)}
.

The eigenvalues and eigenfunctions of CP are denoted by λk,P and ϕk,P , respec-

tively.

A first result is that µP and CP are well-defined for any probability distri-

bution P on H, even if ∥X∥ does not have finite moments of any order.

Proposition 3. For any α > 0 there is a constant Kα,P ≥ 0 such that ∥v∥ ≤
rP (v) +Kα,P for all v ∈ H. Therefore, if β > 0 then EP {wP (X)∥X∥k} < ∞ for

any k ≥ 0.

The next proposition shows that rP (v) is really a measure of outlyingness,

in the sense that rP (v) is larger in regions of H where P is less concentrated.

Proposition 4. If v and w are two points in H such that P (Bδ(v)) ≥ P (Bδ(w))

for all δ > 0 (where Bδ(v) denotes the ball with center v and radius δ), then

rP (v) ≤ rP (w).

The equivariance of µ̂ and Ĉ carries over to µP and CP (the proof is given in

the technical supplement). A consequence of the translation equivariance of µP

is the following.

Proposition 5. If X−µ0 and µ0−X are identically distributed, then µP = µ0.
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To study the population versions of the trimmed principal components, sup-

pose X admits, with probability 1, the decomposition

X = µ0 +
∑
k∈I

λ
1/2
0k Zkϕ0k, (3.1)

where µ0 ∈ H, the Zks are real random variables, {ϕ0k} ⊂ H is an orthonormal

system, and {λ0k} is a strictly positive non-increasing sequence with
∑

k∈I λ0k <

∞; the set of indices I is countable but may be finite or infinite. This decompo-

sition holds, for instance, if E(∥X∥2) < ∞, and is known as the Karhunen–Loève

decomposition (Ash and Gardner (1975, Chap. 1.4)). In that case E(X) = µ0,

the ϕ0k’s and the λ0k’s are the eigenfunctions and eigenvalues of the covariance

operator, and Zk = ⟨X − µ0, ϕ0k⟩/λ
1/2
0k are uncorrelated with E(Zk) = 0 and

var(Zk) = 1.

Expansion (3.1) also holds in some situations where E(∥X∥2) = ∞, and

gives a meaningful notion of “heavy-tailed distributions” for functional spaces.

For instance, if the Zk’s in (3.1) are independent, Kolmogorov’s Three Series

Theorem (Gikhman and Skorokhod (2004, p.384)) implies that
∑

k∈I λ
1/2
0k Zkϕ0k

converges almost surely in H if and only if
∑

k∈I P (λ0kZ
2
0k > c) < ∞ for every

c > 0. The latter is satisfied whenever the λ0k’s go to zero fast enough, even if

the Zk’s do not have finite moments of any order. For example, if the Zk’s have

a Cauchy distribution,∑
k∈I

P (λ0kZ
2
k > c) ≤

∑
k∈I

2

π

(
λ0k

c

)1/2

,

and the right-hand side is finite for any c > 0 as long as
∑

k∈I λ
1/2
0k < ∞.

Model (3.1) can be used to characterize the two types of outliers that may

be present in a functional sample. One type is observations that satisfy (3.1)

but with extreme values of the Zk’s; these are called intrinsic outliers since they

belong to the space generated by the ϕ0k’s. Another type that does not follow

(3.1) at all, is an extrinsic outlier that falls outside the subspace of H where the

“good” data lives. To exemplify the difference, suppose that a sample of curves

shows a prominent feature, such as a peak, and the leading principal component

ϕ01 explains variability around this peak (a usual situation). An intrinsic outlier

would be a curve with an unusual peak (either too flat or too sharp compared

to the other curves), whereas an extrinsic outlier would be an observation with

a peak at a location where the rest of the data shows no such feature. Our

estimators can handle both types of outliers, since the interdistances make no

distinction between the two types (although extrinsic outliers are easier to spot).

The outliers considered in the simulations (Section 4) are intrinsic, while those

in the examples (Section 5) are mostly extrinsic.
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Note that under (3.1) the interdistances satisfy d2ij =
∑

k∈I λ0k(Zki −Zkj)
2,

so the distribution of the dijs (and therefore of the radii) depends entirely on the

Zk’s and the λ0k’s, not on µ0 or the ϕ0k’s. This implies the following.

Proposition 6. If (3.1) holds with independent and symmetrically distributed

Zk’s, then

CP (f, g) =
∑
k∈I

λ̃0k⟨ϕ0k, f⟩⟨ϕ0k, g⟩ (3.2)

with

λ̃0k =
EP {wP (X)|⟨X − µ0, ϕ0k⟩|2}

EP {wP (X)}
= λ0k

EP {wP (X)Z2
k}

EP {wP (X)}
. (3.3)

The sequence {λ̃0k} is strictly positive but not necessarily decreasing, and it only

depends on the distribution of {λ1/2
0k Zk}. In addition, if the Zk’s are identically

distributed, then λ0j = λ0k implies λ̃0j = λ̃0k, so that the multiplicity of the

eigenvalues is preserved.

This result implies that the set of principal components of CP , {ϕk,P }, coin-
cides with the set {ϕ0k}, but it cannot be said in general that ϕk,P = ϕ0k for each

k, because the sequence {λ̃0k} is not necessarily decreasing. The reason is that

although λ0kZ
2
k is stochastically greater than λ0jZ

2
j when λ0k > λ0j and the Zks

are identically distributed, this does not imply that wP (X)λ0kZ
2
k is stochastically

greater than wP (X)λ0jZ
2
j in general. However, (3.3) does imply that λ̃0k > 0 if

and only if λ0k > 0, so the dimension of the model is preserved.

4. Simulations

We ran a Monte Carlo study to assess the comparative performance of the

following estimators.

• The sample mean and sample principal components.

• The spatial median and spherical principal components (Locantore et al.

(1999), Gervini (2008)). The spatial median is defined as the µ̂ that mini-

mizes
∑n

i=1 ∥Xi − µ∥, and the spherical principal components are defined as

the principal components of the normalized sample {(Xi − µ̂) / ∥Xi − µ̂∥}, the
eigenfunctions of the covariance operator

Ĉ(f, g) :=
1

n

n∑
i=1

⟨ Xi − µ̂

∥Xi − µ̂∥
, f⟩⟨ Xi − µ̂

∥Xi − µ̂∥
, g⟩.

• Trimmed estimators based on the deviations ∥Xi − µ̂∥, where µ̂ is the spatial

median, with 20% and 50% trimming. The observations with the largest 20%

or 50% deviations were eliminated and the mean and principal components of

the remaining data is computed.
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• Trimmed estimators based on h-depth (Cuevas, Febrero, and Fraiman (2007)),

with 20% and 50% trimming. The h-depth of a datum z is defined as

f̂h(z) =
1

n

n∑
i=1

Kh(∥z −Xi∥),

where Kh(t) = h−1K(t/h) for some kernel function K. Following Cuevas,

Febrero, and Fraiman (2007), we take K as the Gaussian density and h as

the 20th percentile of the set of L2-interdistances (there is no clear rationale

for this choice but we used their tuning parameters in order to make our sim-

ulation results comparable). Note that a small, not a large, value of f̂h(Xi)

indicates that Xi is an outlier, so we trim those observations with small value

of f̂h. In their extensive simulations, these estimators outperformed the esti-

mators of Fraiman and Muniz (2001) and some projection-based estimators,

so we did not include the latter in our simulations.

• Trimmed estimators based on band depth (López-Pintado and Romo (2009)),

with 20% and 50% trimming. The band depth is computed as follows. Given

real-valued functions f1, . . . , fk defined on some interval I ⊆ R, with k ≥ 2,

the k-band spanned by these functions is

B(f1, . . . , fk) := {(t, y) : t ∈ I, y ∈ [ min
1≤i≤k

fi(t), max
1≤i≤k

fi(t)]}.

For a given curve z and a sample X = {X1, . . . , Xn}, let BDk(z;X ) be the

average number of sample k-bands that contain the graph of z:

BDk(z;X ) =

(
n

k

)−1 ∑
1≤i1<···<ik≤n

I{G(z) ⊆ B(Xi1 , . . . , Xik)},

where G(z) := {(t, z(t)) : t ∈ I}. The J-depth of the curve z is DJ(z;X ) =∑J
k=2BDk(z;X ). As recommended by López-Pintado and Romo (2009), we

use J = 3. Once again, outliers are indicated by small values of DJ(z;X ), so

we trim the 100β% observations with smallest values of DJ .

• Our trimmed estimators with hard and soft rejection weights. For hard-

rejection weights, 20% and 50% fixed trimming was considered, as well as

the adaptive β estimated with Gamma mixtures; for the soft-rejection weight

(2.3), the parameters β1 = 0.50 and β = 0.20 were used. In all cases, the radii

were computed with α = 0.50 (simulations with α = 0.20 were also run but

not reported here, because the estimator’s performance was uniformly worse

than that for α = 0.50).

The data were generated following (3.1) with µ0=0 and ϕ0k(t)=
√
2 sin(πkt),

for t ∈ [0, 1]. The Zk’s followed different distributions for each scenario, and
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two sequences of eigenvalues were considered: a slow-decaying sequence λ0k =

1/{k(k + 1)} (Model 1), and a fast-decaying sequence λ0k = 1/2k (Model 2).

Model 2 is practically a finite-dimensional model, since the first five terms account

for 97% of the variability; Model 1, on the other hand, needs 31 terms to account

for the same proportion of the variability. For data generation we truncated

Model 1 at the 1,000th term and Model 2 at the 10th term, to represent 99.9%

of the total variability. The sample size was n = 50 in all cases, and the curves

were discretized at an equally spaced grid of 100 points. Each sampling situation

was replicated 2,000 times. The mean absolute errors, reported in Tables 1 and

2, are accurate to two significant places (we do not report Monte Carlo standard

errors for reasons of space and readability).

The Zk’s were (i) non-contaminated Normal data, (ii) outlier-contaminated

Normal data, and (iii) non-Normal data (specifically, data with heavier tails

than Normal). For case (i) we generated i.i.d. Zk’s as N(0, 1). For case (ii) we

considered two scenarios: to study the robustness of the location estimators, we

generated outliers by adding 3ϕ01(t) to nε sample curves (which creates a bias

in µ̂); to study the robustness of the estimators of ϕ1, we generated outliers by

adding 3ϕ02(t) to nε/2 sample curves and subtracting the same quantity from

other nε/2 sample curves (thus inflating the variability in the direction of ϕ02,

creating a bias in ϕ̂1 without affecting µ̂). Four values of ε were considered: 0.10,

0.20, 0.30, and 0.40. For case (iii) we generated i.i.d. Zk’s with Student’s tν
distribution, with degrees of freedom ν at 1, 2, and 3.

Table 1 reports the mean absolute error E(∥µ̂−µ0∥) for each estimator and

each sampling distribution. Since there are 12 estimators and 8 sampling distri-

butions it is hard to make conclusions at a glance. To facilitate comparisons, we

ranked the estimators in increasing order of error for each sampling distribution,

and computed the average rank for each estimator; this average rank is given in

the last column of Table 1. We see that the comparative performance of the esti-

mators was similar under both models. The soft-trimmed estimators showed the

best overall performance, since they had the smallest average ranks; at the other

extreme, the band-depth 50%-trimmed estimators showed the worst overall per-

formance. Looking in more detail, we see that hard-trimmed estimators with 20%

trimming performed poorly for contaminated Normal distributions with ε > 0.20

and for the Cauchy distribution. Among hard-trimmed estimators with 50%

trimming, our estimator and the h-depth-based estimator were comparable, the

former being better for contaminated Normals with ε ≥ 0.20 (and significantly

better for ε = 0.40) and the latter being slightly better in the other situations.

The soft-trimmed estimator showed an intermediate behavior between the 20%

and 50% hard-trimmed estimators; even at the most extreme cases of the 40%

contaminated Normal and the Cauchy distribution, its estimation error
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was not much larger than that of the 50% hard-trimmed estimator. The adaptive

estimator also showed an intermediate behavior between the 20% and 50% hard-

trimmed estimators, except for the Cauchy distribution, for which it does not

even seem to be well defined (the same can be said for the estimators based

on band depth); this is not entirely surprising, since the Cauchy distribution

produces a single heavy-tailed distribution of radii rather than a mixture. All

things considered, the soft-trimmed estimator seems to offer the best trade-off

between robustness and efficiency.

For the principal component estimators, the mean absolute errors E(∥ϕ̂1 −
ϕ01∥) are reported in Table 2. Breakdown of ϕ̂1 occurs when ϕ̂1 is orthogonal to

ϕ01, in which case ∥ϕ̂1−ϕ01∥ =
√
2, so the errors are always bounded. The best-

ranked estimators were now the spherical principal components, which was rather

unexpected; looking in more detail, we see that this was mostly because of their

low errors for t distributions. Their performance for contaminated Normal distri-

butions was not good, showing very large errors for contamination proportions as

small as 20%. Our hard-trimmed estimators and the h-depth-based estimators

showed comparable performances, although once again the soft-trimmed esti-

mator offered a better trade-off between robustness and efficiency: although it

breaks down for the 40%-contaminated Normal, it had much lower estimation er-

rors than the 50%-hard-trimmed estimators for lower levels of contamination and

for t distributions (even for the Cauchy). The adaptive estimator did not break

down for the 40%-contaminated Normal, but it did for the Cauchy distribution.

The similar behavior of the estimators based on the radii and those based on

the h-depth is not accidental, because both are based on metric notions of data

depth. The α-radii do have certain advantages over the h-depth: the parameter

α that defines the radii is an interpretable quantity, while the parameter h that

defines the h-depth is an arbitrary bandwidth with an unknown effect on the

estimator’s properties. Also, the breakdown point of the estimators based on

α-radii is known, while the breakdown point of the estimators based on h-depth

is unknown.

In contrast with these metric notions of data depth, the band depth of López-

Pintado and Romo (2009) is not based on distances but on the number of “bands”

that cover each sample function. Therefore the trimmed estimators based on

band depth behave very differently (in fact, much worse) than those based on α-

radii or h-depth. Two additional disadvantages of band-depth trimming are that

the determination of all the “bands” that cover a given curve is a combinatorial

problem, unfeasible for large sample sizes, and that generalizing the concept of

“band” to Euclidean spaces beyond univariate curves is not obvious.
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5. Examples

5.1. Excitation–emission matrices

As explained in Mortensen and Bro (2006), enzyme cultivation processes

often require quick on-line adjustments that demand fast and reliable quality

control tools. Samples of the cultivation broth are typically taken at regular

time intervals, and enzyme activity is measured. The traditional off-line chemi-

cal analyses determine enzyme activity directly and accurately, but it may take

hours or days to get the results back from the laboratory. An alternative is to

employ multi-channel fluorescence sensors that produce immediate results in the

form of excitation-emission matrices (EEMs), although enzyme activity can be

determined only indirectly from the EEMs (via principal component regression

or partial least squares).

Mortensen and Bro (2006) analyzed a dataset of 338 EEMs, available at

http://www.models.life.ku.dk/research/data/. A movie showing these 338

EEMs in quick succession is available on the author’s website. A few atypical

EEMs can be spotted at the end of the movie. Taking logarithms of the EEMs

ameliorates the effect of the outliers to some extent, but not completely, as Figure

1 shows (a movie showing the log-EEMs is also available on the author’s website).

In principle, an EEM is a two-dimensional array consisting of light intensity

measured at certain excitation and emission wavelengths. Mortensen and Bro

(2006) used 15 excitation filters ranging from 270 to 550 nm, and 15 emission

filters ranging from 310 to 590 nm; all filters had a maximum half-width of 20

nm. Since emission wavelength must be longer than excitation wavelength, the

EEMs are actually triangular arrays: of the 15× 15 possible excitation/emission

combinations, only 120 yield actual measurements. This problem can be ap-

proached as a classical multivariate problem of dimension p = 120 and sample

size n = 338, and some of the robust methods reviewed by Filzmoser et al. (2009)

for the “large p, small n” problem could be applied. However, since light intensity

is a continuous function of the excitation and emission wavelengths, it is more

appropriate and statistically efficient to approach this problem as a functional-

data problem; the 120 measurements are just an arbitrary discretization of the

continuous surfaces X(s, t) that live in L2(R2). This is a Euclidean space with

inner product ⟨f, g⟩ =
∫∫

f(s, t)g(s, t) ds dt, the mean of X is the bivariate func-

tion µ(s, t) = E{X(s, t)} and the covariance operator of X can be represented

as

C(f, g) =

∫ ∫ ∫ ∫
ρ(s1, t1, s2, t2) f(s1, t1) g(s2, t2) ds1 dt1 ds2 dt2,

where ρ(s1, t1, s2, t2) = cov{X(s1, t1), X(s2, t2)}.
We carried out a principal component analysis on the log-EEMs. A his-

togram of the radii (Figure 3) shows that 15 observations are clear outliers,

http://www.models.life.ku.dk/research/data/
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Figure 3. Excitation-Emission Matrices. Histogram of the radii with α =
0.50.

Figure 4. Excitation–Emission Matrices. (a) Trimmed mean, (b) first
trimmed principal component, (c) second trimmed principal component, (d)
sample mean, (e) first sample principal component, and (f) second sample
principal component. Trimmed estimators were computed with 5% trim-
ming.

so we computed the 5% trimmed mean and principal components (Figure 4).

Among the 20 leading components, the first (Figure 4(b)) accounts for 59% of

the variability, and the second (Figure 4(c)) accounts for 20% of the variability.

We also computed the sample mean and principal components; among the 20

leading components, the first (Figure 4(e))accounts for 88% of the variability,

and the second (Figure 4(f)) for only 5%.
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While the sample mean (Figure 5(d)) is not very different from the trimmed

mean (Figure 5(a)), the first principal component is seriously affected by the

outliers. The first sample principal component only explains how the outliers vary

from the “good” observations; it may be useful for outlier detection, but it’s not

associated with any genuine source of variability. The first trimmed component,

in contrast, is genuinely the main direction of variability of the “clean” data.

The second trimmed component and the second sample principal compo-

nent are very similar, but the latter underestimates the relative importance of

the component, assigning it only 5% of the total variability. This is unfortu-

nate because the second component is the one primarily associated with enzyme

activity. Mortensen and Bro (2006) provided an enzyme activity measure for cali-

bration, and the correlation coefficient (after eliminating the 15 outliers) between

enzyme activity and the second trimmed component was .69. This association

could be overlooked if the user based his analysis on the non-robust sample prin-

cipal components and decided that the second component was negligible.

5.2. Handwritten digits

The planar trajectory of a pen tip is a curve X(t) = (x(t), y(t)) in R2,

where t is time. Then the analysis of handwritten digits can be approached as a

functional data problem in the Euclidean space
(
L2(R)

)2
endowed with the inner

product ⟨f ,g⟩ =
∫
f(t)Tg(t)dt. The mean trajectory is µ(t) = E{X(t)} and the

covariance operator can be represented as

C(f ,g) =

∫ ∫
f(s)TR(s, t)g(t) ds dt,

with R(s, t) = E[{X(s)−µ(s)}{X(t)−µ(t)}T ]. In this section we analyze a set of

1,055 handwritten samples of the digit “five” , available at the Machine Learning

Repository of the University of California at Irvine, http://archive.ics.uci.

edu/ml/. The data was rotated and scaled so that x and y range between 0 and

100, and t between 0 and 1. Eight sample digits are shown in Figure 2.

A plot of the sample mean (Figure 5(a)) does not resemble a “five” or any

other recognizable digit. To understand why this happens, we computed the radii

for different values of α and noticed that their distribution becomes increasingly

bimodal as α increases. The histogram for α = 0.50 is shown in Figure 6. There

are two neatly distinguishable groups: 627 observations with ri < 60, and 428

observations with ri > 60. The large number of observations in the second group

suggests that the sample may be made up of two systematic clusters, rather than

a single homogeneous group and a few isolated outliers.

This is confirmed by a plot of the 41% trimmed mean (Figure 5(b)), together

with the mean of the observations that were cut off (Figure 5(c)). It turns out

http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/
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Figure 5. Handwritten Digits. (a) Sample mean, (b) 41% trimmed mean,
and (c) mean of the trimmed observations.

Figure 6. Handwritten Digits. Histogram of the radii with α = 0.50.

that there are two ways to draw the number “five” . The most common is in two

strokes, beginning at the upper left corner and moving downwards, then raising

the pen to draw the top dash (our planar representation of the trajectory does

not capture this vertical movement explicitly). The other way, less common, is

to draw the number “five” in a single stroke, like the letter “S” . Figure 5(b)

corresponds to the first class and Figure 5(c) corresponds to the second.

As in the EEMs example, the sample principal components do not provide

much useful information except for discrimination. The trimmed principal com-

ponents, on the other hand, do provide useful information about the directions

of variability in the bigger cluster. The easiest way to interpret the principal

components is to plot their effects on the mean (Figure 7). This figure shows the

trimmed mean and the first two trimmed principal components (Figure 7(a,b)),

as well as the mean and the first two principal components of the observations
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Figure 7. Handwritten Digits Example. Effect of the principal components
on the mean (—– is the mean; − − − is the mean plus 5 times the prin-
cipal component; · · · is the mean minus 5 times the principal component).
(a) Trimmed mean and first trimmed component; (b) trimmed mean and
second trimmed component; (c) mean and first component of the trimmed
observations; (d) mean and second component of the trimmed observations.

that were cut off (Figure 7(c,d)). The first trimmed principal component (Fig-
ure 7(a)) explains 56% of the variability and is associated with variation in the
inclination of the “belly” of the digit. The second trimmed principal component
(Figure 7(b)) explains 14% of the variability and is mostly associated with vari-
ation in the inclination of the vertical dash. Regarding the components of the
second type of “fives” , the first principal component (Figure 7(c)) accounts for
44% of the variability and is associated with variation in the “roundness” of the
“five” : negative scores correspond to rounded “S-shaped” digits, while positive
scores correspond to more angular “Z-shaped” digits. The second principal com-
ponent (Figure 7(d)) accounts for 20% of the variability and explains variability
in the width of the digit.
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