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Abstract: Numerous studies in neuroscience have demonstrated links between brain

spectral activity and cognition, sleep, disease diagnosis and treatment outcomes.

In this paper, we study the variation of spectral activity across the brain corti-

cal surface. We rigorously develop the concept of a location-dependent temporal

spectrum for a wide class of spatio-temporal processes. Under the proposed asymp-

totic framework, the location-dependent spectrum can be estimated consistently.

A non-parametric smoothing method is proposed and, under regularity conditions,

is shown to be asymptotically normal and mean-square consistent. The paper con-

cludes with an analysis of an event-related optical signal (EROS)data recorded from

a single subject during a spatial-verbal Stroop task.

Key words and phrases: Event-related optical signal (EROS), kernel-smoothing,
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1. Introduction

Neuroscientists are able to observe different facets of brain activity underly-

ing cognitive function through non-invasive modalities such as electroencephalog-

raphy, magnetoencephalography, functional magnetic resonance imaging and op-

tical imaging. A substantial amount of research has focused on spectral ac-

tivity, such as rhythms observed in the electroencephalogram (EEG). Some of

them have investigated how these oscillatory or spectral phenomena vary over

space (e.g., Gratton, Villa, Fabiani, Colombis, Palin, Bolcioni and Fiori (1992)).

By and large, these studies have treated the time series observed at individual

locations as separate measures, and then either compared the spectral proper-

ties of individual locations (thus generating amplitude or power maps observed

at different locations), or analyzed the coherence between selected pairs of loca-

tions. Here we develop a rigorous statistical framework for the spectral analysis

of data obtained from different locations using the Cramér representation of

spatio-temporal processes.

We further consider an application of this approach to a data set obtained

from optical imaging, which is a new technology that measures changes in the
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light absorption and scattering properties of brain tissue following local event-

related alterations in neuronal activity. As discussed in Cohen (1972), Stepnoski,

Porta, Raccuia-Behling, Blonder, Slusher, and Kleinfeld (1991) and Gratton and

Fabiani (1998), the phenomenon can plausibly be due to movement of ions across

the neuronal membrane and the reorientation of the membrane proteins during

neuronal activity. The event-related optical signal (EROS) possesses both good

temporal and spatial resolution and thus is suited for studying the time course

of activity in localized cortical areas. Gratton, Goodman-Wood and Fabiani

(2001) demonstrated that EROS has good temporal correspondence with event-

related brain potentials (ERPs). Moreover, Gratton, Fabiani, Corballis, Hood,

Goodman-Wood, Hirsh, Kim, Friedman and Gratton (1997) demonstrated that

EROS has good spatial correspondence with fMRI. EROS has been used in sev-

eral neuroscience investigations, including cognitive aging (Fabiani, Low, Wee,

Sable and Gratton (2006)) and active and passive oddball tasks (Low, Leaver,

Kramer, Fabiani and Gratton (2006)). Recently, Rykhlevskaia, Fabiani and Grat-

ton (2006) developed a lagged covariance model that uses EROS to study func-

tional connectivity.

EROS, due to its good spatial (sub-centimeter) and temporal (millisecond

scale) localization properties, may provide ideal data to investigate changes in

the spectral behavior of the signal across extended cortical areas. The stan-

dard approach to quantifying spectral activity is through Fourier analysis (see

Muthuswamy and Thakor (1998) and Dummermuth and Molinari (1987) among

others). Most of these conventional approaches do not consider the spatial vari-

ation of the temporal spectrum. However, methods that incorporate spatial

and topographic information in the spectral analysis of brain signals are be-

ing developed - see, for example, Koenig, Marti-Lopez and Valdes-Sosa (2001)

and Hoogenboom, Schoffelen, Oostenveld, Parkes and Fries (2006). In this pa-

per, our goal is to develop a general representation of spatio-temporal processes.

Using the Cramér representation, we rigorously define the location-dependent

(spatially-varying) temporal spectrum that is the primary quantity of interest.

We develop a nonparametric method for estimating the spatially-varying tempo-

ral spectrum and an asymptotic framework under which we can derive asymptotic

mean-square consistency and normality of the estimator.

The remainder of this paper is organized as follows. In Section 2, we dis-

cuss the Cramér representation of a spatio-temporal process and introduce the

location-dependent temporal spectrum. In Section 3, we present our estimation

procedure and establish the mean-square consistency and asymptotic normality.

In Section 4, we analyze an EROS data set. We conclude with a discussion of

our contribution, its limitations, and future work.
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2. Spatio-Temporal Process

To study the oscillatory properties of brain signals, we first consider the

Cramér representation of a stationary univariate temporal process X(t)=
∫ π
−πA(λ)

exp(iλt)dZ(λ), where A(λ) is the complex-valued Hermitian transfer function

and Z(λ) is a stochastic process with zero mean uncorrelated increments, that

is, E[dZ(λ)] = 0 and cov[dZ(λ), dZ(ω)] = δ(ω − λ)dλ. Thus, a stationary tem-

poral process may be viewed as a linear combination of infinitely many sinusoids

(the Fourier waveforms exp(iλt)) having random coefficients A(λ)dZ(λ). The

variance of the random coefficient A(λ)dZ(λ) is the spectrum of the process

at frequency λ, f(λ) = E|A(λ)dZ(λ)|2 = |A(λ)|2dλ. The oscillatory content of

signals is characterized by the spectrum which, in fact, is related to the variance

decomposition of X(t). Due to the orthonormality of the increments dZ(λ), the

variance of the stochastic process has the decomposition var[X(t)] =
∫ π
−π f(λ)dλ.

Thus, one may interpret the temporal spectrum at some frequency λ0 to be ap-

proximately the variation in X(t) that is “explained” by the Fourier waveform

exp(iλ0t) that oscillates at frequency λ0.

We extend the Cramér representation to random processes that are observed

across both space and time. In particular, we consider the setting where time

series are observed across several locations in space. Let Xt(s) be the spatio-

temporal process defined on location s = (s1, s2) ∈ R
2 and time point t ∈ Z.

Suppose that the spatio-temporal data at hand are observed at locations s ∈
{1, . . . , n1} × {1, . . . , n2} and time points t ∈ {1, . . . , T}. There are a total of

n = n1n2 locations in space and a total of T time points. For this particular

study, it is assumed that, for each location, the process is stationary over time;

over space, the process need not be stationary.

The Cramér representation of the spatio-temporal process Xt(s) is

Xt(s) =

∫ π

−π
A(us,n, λ) exp(iλt)dZs(λ), (2.1)

where s = (s1, s2) is the spatial index in the observation space and us = us,n =

(s1/n1, s2/n2) is the corresponding location in the re-scaled space. The elements

of the above model are as follows.

1. A(u, λ) is the location-dependent complex-valued transfer function. It is de-

fined on a fixed re-scaled spatial domain u = (u1, u2) ∈ [0, 1]2 and frequency

domain λ ∈ [−π, π]. Moreover, it is Hermitian, that is, A(.;−λ) = A∗(.;λ).

2. Zs(λ) is a complex-valued stochastic process that satisfies

E[dZs(λ)]=0 and cov[dZs(λ), dZs′(λ
′)]=ρ(s, s′) δ(λ−λ′)dλ with ρ(s, s)=1.
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The primary quantity of interest in the above model is the location-dependent

temporal spectrum

f(u, λ) = |A(u, λ)|2 (2.2)

defined for u ∈ [0, 1]2 and λ ∈ [−π, π]. One may interpret f(us, λ) as the variance

of the time series at corresponding location s that is explained by the oscillation

at frequency λ. For a univariate time series, as T grows to infinity, we have more

and more information around the frequency λ, thus a consistent estimator can be

constructed assuming certain smoothness conditions on the spectrum. Under our

framework, as n1 and n2 grow to infinity, more and more data is being observed

around any given location u, so a consistent estimator of f(u, λ) is possible under

smoothness conditions with respect to u. In other words, we require that f(u, λ)

be smooth across both space and frequency. More rigorous conditions are given

in the next section. The adopted asymptotic framework is similar to that used

by Dahlhaus (1997, 2000) for locally stationary temporal processes.

Remark 2.1. The temporal process at location s can be viewed as a linear com-

bination of sinusoids with random coefficients A(us,n, λ)dZs(λ) whose variance

is the location-specific temporal spectrum f(us,n, λ). The univariate temporal

process is a special case of the above model. The classical Cramér spectral repre-

sentation at a particular location s has increments dZs(λ) that are uncorrelated

across frequencies λ.

Remark 2.2. The spatio-temporal covariance between observations Xt(s) and

Xt′(s
′) is

cov[Xt(s),Xt′(s
′)] = ρ(s, s′)

∫ π

−π
A(us, λ)A∗(us′ , λ) exp(iλ(t − t′))dλ.

For a fixed location (i.e., s = s′), the process is stationary over time. Denote

the temporal lag to be h = t − t′. Then the temporal covariance is

cov[Xt(s),Xt′(s)] =

∫ π

−π
f(us, λ) exp(iλh)dλ.

By setting the temporal lag h = 0, we obtain the location-specific variance decom-

position var[Xt(s)] =
∫ π
−π f(us, λ)dλ. For a fixed time t, the spatial covariance

is

cov[Xt(s),Xt(s
′)] = ρ(s, s′)

∫ π

−π
A(us, λ)A∗(us′ , λ)dλ.

Thus, non-stationarity in space is allowed even if ρ(s, s′) depends only on the

difference s − s′.
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Remark 2.3. An example of the above process is the first order temporal

auto-regressive (AR(1)) process with location-dependent coefficient: Xt(s) =

φ(us)Xt−1(s) + εt(s) where φ(u) is the AR(1) coefficient at location u, {εt(s)} is

a spatial process that is independent over time with Eεt(s) = 0 and var(εt(s)) =

1. The location-dependent transfer function is A(u, λ) = (
√

2π)−1
∑∞

j=0[φ(u)

exp(−iλ)]j that gives rise to the equivalent Cramér representation Xt(s) =∫ π
−π(

√
2π)−1[1 − φ(us)e

−iλ]−1 exp(iλt)dZs(λ). The corresponding location-de-

pendent temporal spectrum is f(u, λ) = |1 − φ(u) exp(−iλ)|−2/(2π).

Remark 2.4. The spatio-temporal model and estimation method that we de-

velop in this paper differs from that by Fuentes (2002). This work is aimed at

modelling the spatial variation of the temporal spectrum, while Fuentes (2002)

deals with the modelling and estimation of the spatial spectrum.

Remark 2.5. The primary contribution of the paper is the generalization of

spatio-temporal processes to the situation where the temporal spectrum is al-

lowed to vary across space according to some smoothness conditions. Our frame-

work has the transfer function A(·, ·) defined on a domain where space is rescaled

to a unit square (or cube) and it allows for a consistent spectral estimator at

any location in the fixed spatial domain. This framework also suggests a natural

estimator whose asymptotic properties are developed in the next section.

3. Estimation Theory

For univariate temporal stationary processes, the spectrum can be consis-

tently estimated by noting its relationship with the auto-covariance. Let Xt be a

zero mean stationary process with an auto-covariance sequence γ(k) = E[Xt+kXt]

that satisfies
∑

k |γ(k)| < ∞. The spectrum of Xt is

f(λ) =
1

2π

∑

k

γ(k) exp(−iλk).

Write the sample auto-covariance as γ̂(k) = T−1
∑T−|k|

t=1 XtXt+|k|. The lag win-

dow estimator (Brockwell and Davis (1991)) for f(λ) is defined to be f̂(λ) =

(2π)−1
∑BT

k=−BT
a(kbT )γ̂(k) exp(−iλk), where a(·) is a window function, BT =

b−1
T is the bandwidth, BT → ∞, and BT = o(T ) as T → ∞.

For a fixed spatial location u and frequency λ, the location-dependent tem-

poral spectrum f(u, λ) can be estimated as follows. We first compute the lag

window estimator at each location sj, j = 1, . . . , n = n1n2, denoted by

f̂(usj
, λ) =

1

2π

BT∑

k=−BT

γ̂(sj; k)a(kbT )e−ikλ,
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where γ̂(sj; k) = T−1
∑T−|k|

t=1 Xt(sj)Xt+|k|(sj). We then form an estimator of

f(u, λ) by smoothing the lag window estimates within a spatial neighborhood of

u, that is,

f̃(u, λ) =

n∑

j=1

wjn(u)f̂(usj
, λ),

where the weights wjn(u) are nonnegative, and
∑n

j=1 wjn(u) = 1.

To facilitate the investigation of asymptotic distributional properties of f̃(u,

λ), we consider a smoothly spatially-varying temporal linear process as a special

case of the spatio-temporal model in (2.1). Let

Xt(s) =

∞∑

j=0

bj(us,n)εt−j(s), (3.1)

where bj(·), j = 0, 1, · · · are all smooth functions of u ∈ [0, 1]2. We assume the

innovation processes {εt(s)} are spatially stationary processes that are indepen-

dent over time with Eεt(s) = 0 and var(εt(s)) = 1. Under (3.1), the location

dependent temporal spectrum is

f(u, λ) = |A(u, λ)|2, where A(u, λ) =
1√
2π

∞∑

j=0

bj(u)e−ijλ.

The theoretical argument is an extension of Anderson (1971) from the esti-

mation of the spectrum for linear processes to the estimation of spatially-varying

temporal spectrum. The spatially-smoothed temporal spectrum is a natural esti-

mator, although, as we demonstrate, the derivation of its asymptotic properties

is not trivial.

3.1. Assumptions

Assumption 3.1. Eε4
0(s) < ∞,

Ω := sup
u∈[0,1]2

∞∑

j=0

|bj(u)| < ∞, and lim
m→∞

sup
u∈[0,1]2

∞∑

k=m+1

|bk(u)| = 0.

Assumption 3.2. There exists a constant C and a positive integer m0 such that

sup
u∈[0,1]2

∣∣∣
m∑

j=0

∂bj(u)

∂u
eijλ

∣∣∣ ≤ C for m ≥ m0.
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The assumptions impose smoothness conditions on f(u, λ) in space and fre-

quency. The first of them implies that for each location s, Xt(s) is a short

memory time series, while the second is slightly stronger than the condition

supu∈[0,1]2 |∂A(u, λ)/∂u| ≤ C, which implies the continuous differentibility of

A(u, λ) with respect to u. We note that the temporal auto-regressive process

with location-dependent coefficients satisfies the assumptions.

Assumption 3.3. The window function a(·) is an even, Lipschitz continuous

function with support on [−1, 1], and a(0) = 1.

Most commonly-used window functions satisfy Assumption 3.3; see Priestley

(1981). Write C(j1, j2, . . . , jk) = cum(ε0(sj1), ε0(sj2), . . . , ε0(sjk
)) for k = 3, 4

and ρ(sj1 − sj2) = cov(ε0(sj1), ε0(sj2)). Hereafter we shall use n → ∞ to mean

min(n1, n2) → ∞, for convenience.

Assumption 3.4. There exists a sequence Hn(u) → ∞ as n → ∞, such that

lim
n→∞

Hn(u)
n∑

j,j′=1

wjn(u)wj′n(u)ρ2(sj − sj′) = 1 and (3.2)

lim sup
n→∞

Hn(u)

n∑

j,j′=1

wjn(u)wj′n(u)|C(j, j, j′ , j′)| < ∞. (3.3)

Further wjn(u) = 0 if |uj − u| > Gn, where Gn → 0 when n → ∞.

Remark 3.1. The weights wjn(u) take the form wjn(u) = Kn(s − sj), where

s = (⌊u1n1⌋, ⌊u2n2⌋). Here ⌊a⌋ is the integer part of a. In our application, we take

the kernel function Kn to be the tensor product of two one-dimensional kernels:

Kn(s) = K
(1)
H1n

(s1)K
(2)
H2n

(s2), where H1n and H2n are two positive integers that

satisfy Hjn = o(nj), j = 1, 2, as n → ∞. For example,

K
(j)
Hjn

(sj) =

{
1

Hjn
−⌊ (Hjn−1)

2 ⌋ ≤ sj ≤ ⌊Hjn

2 ⌋
0 otherwise

j = 1, 2. (3.4)

Assumption 3.5. For any three permutations of (1, 2, 3, 4), (i1, i2, i3, i4), (k1, k2,

k3, k4) and (g1, g2, g3, g4), we have

n∑

j1,j2,j3,j4=1

wj1n(u)wj2n(u)wj3n(u)wj4n(u){|C(ji1 , ji2 , ji3)||C(jk1
, jk2

, jk3
)||ρ(sjg1

−sjg2
)|

+|C(j1, j2, j3, j4)|2 + |C(j1, j2, j3, j4)||ρ(sjg1
− sjg2

)ρ(sjg3
− sjg4

)|
+|ρ(sjg1

− sjg2
)ρ(sjg3

− sjg4
)ρ(sjk1

− sjk2
)ρ(sjk3

− sjk4
)|} = O(Hn(u)−2). (3.5)
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Remark 3.2. Note that if the process {ε0(s), s ∈ Z
2} is Gaussian, then (3.3)

holds trivially, and the first three terms in the curly bracket of (3.5) vanish.

Let Π2 = [−π, π]2. Define g(λ) = (2π)−2
∑

h∈Z2 ρ2(h)eih′λ. Under (3.4), if

g(0) ∈ (0,∞), then

n∑

j,j′=1

wjn(u)wj′n(u)ρ2(sj − sj′)

=

∫

Π2

∣∣∣
n∑

j=1

wjn(u)ei(sj−u)′λ
∣∣∣
2
g(λ)dλ ∼ [H1nH2n]−1g(0).

Here an ∼ bn means limn→∞ an/bn = 1. So we can take Hn(u) = H1nH2ng(0)−1.

If g(0) = ∞, then Hn(u) also depends on the decay rate of g(λ) as λ ↓ 0. In

this case, the process {ε0(s), s ∈ Z
2} possesses long memory. Regarding the last

term in the curly bracket of (3.5), the result follows from the Cauchy-Schwarz

inequality in view of (3.2) and the fact that wjn(u) ∈ [0, 1].

The following assumptions are made to obtain the explicit form of the bias;

see Theorem 3.2.

Assumption 3.6.

sup
u∈[0,1]2

∞∑

j=0

j2|bj(u)| < ∞, and lim
x→0

x−2(1 − a(x)) = c2 ∈ (0,∞). (3.6)

Assumption (3.6) implies that f(u, λ) is twice continuous differentiable with

respect to λ. We write fλλ(u, λ) = ∂2f(u, λ)/∂λ2.

Assumption 3.7. f(u, λ) and fλλ(u, λ) are twice continuously differentiable

with respect to u.

For u=(u1, u2)
′, write fj(u, λ)=∂f(u, λ)/∂uj , fjk(u, λ)=∂2f(u, λ)/∂uj∂uk,

fλλj(u, λ) = ∂fλλ(u, λ)/∂uj , fλλjk(u, λ) = ∂2fλλ(u, λ)/∂uj∂uk, for j, k = 1, 2.

Assumption 3.8. Suppose wjn(u) = 0 if |uj1 − u1| > G1n or |uj2 − u2| > G2n,

where G1n, G2n → 0 as n → ∞. Assume the weight wjn(u) is a tensor product

of of two symmetric one-dimensional kernels (see Remark 3.1) in the sense that

n∑

j=1

wjn(u)(uj − u) = 0,

n∑

j=1

wjn(u)(uj1 − u1)(uj2 − u2) = 0

There exists two sequences {L1n(u)} and {L2n(u)}, such that

lim
n→∞

Lkn(u) = 0, lim
n→∞

L−1
kn (u)

n∑

j=1

wjn(u)(ujk − uk)
2 = 1, k = 1, 2
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3.2. Main results

Theorem 3.1. Under Assumptions 3.1−3.5, we have

√
TbT

√
Hn(u)(f̃(u, λ) − E[f̃(u, λ)]) →D N(0, σ2(u, λ)), (3.7)

where σ2(u, λ) :=
∫ 1
−1 a2(u)duf2(u, λ)(1 + η(λ)), η(λ) = 1 if λ = kπ and 0

otherwise.

Remark 3.3. For univariate spectrum estimation, asymptotic normality has

been established by Brillinger (1969), Anderson (1971), Rosenblatt (1985) and,

more recently, Shao and Wu (2007) in a variety of settings. For fixed uj = usj
,

it is true that (see Anderson (1971))
√

TbT (f̂(uj , λ) −Ef̂(uj , λ)) →D N(0, σ2(uj , λ)).

Due to the smoothing in space, we have a further reduction of variance by a

factor of Hn(u). Note that this comes at the cost of at the cost of a higher bias

or a reduced spatial resolution.

Remark 3.4. There is an interesting interplay between smoothing in frequency

and in space. If there is a higher priority placed on frequency resolution than

spatial resolution, one should construct a lag window a(·) that tapers quickly and

a smoothing window that is broad. If a spatial resolution cannot be compromised,

then one must constrict smoothing in space but allow the time lag window a(·)
to decay slowly.

Remark 3.5. To perform statistical inference (compute confidence intervals or

conduct tests of hypothesis), one would need to estimate the unknown factor in

Hn(u) that characterizes the dependence of the underlying innovation process

{ε0(s), s ∈ Z
2}; see Remark 3.2. A possible solution is to approximate the

sampling distribution of f̃(u, λ) by performing a spatial block bootstrap within a

small neighborhood of u, i.e. {uj : wjn(u) 6= 0}. However, due to a small number

of locations in the EROS dataset, we do not pursue this possibility here.

Next, we consider the joint convergence of {
√

TbT Hn(u(j))(f̃(u(j), λk) −
Ef̃(u(j), λk))}j,k=1,2, where u(1) 6= u(2) and λ1 6= λ2 ∈ [0, π]. We introduce

the following extra assumption.

Assumption 3.9. For u(1) 6= u(2), we have

n∑

j,j′=1

wjn(u(1))wj′n(u(2))[ρ2(sj − sj′) + |C(j, j, j′, j′)|]

= o(Hn(u(1))−
1

2 Hn(u(2))−
1

2 ).
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Remark 3.6. For k = (k1, k2), let κ(k) = sup|h|≥|k| |ρ(h)|. Since wjn(u) = 0 if

|uj − u| > Gn, we have

n∑

j,j′=1

wjn(u(1))wj′n(u(2))ρ2(sj − sj′)

≤ κ
(1

2

√
⌊n1(u

(1)
1 − u

(2)
1 )⌋2 + ⌊n2(u

(1)
2 − u

(2)
2 )⌋2

)
.

Thus Assumption 3.9 is satisfied if the right side of the above equation is

o(Hn(u(1))−1/2Hn(u(2))−1/2) and the innovation process {ǫ0(s), s ∈ Z
2} is Gaus-

sian.

Corollary 3.1. Under Assumptions 3.1−3.5 and 3.9, {
√

TbT Hn(u(j))(f̃(u(j), λk)

−Ef̃(u(j), λk))} are jointly asymptotically independent N(0, σ2(u(j), λk)), j, k =

1, 2.

Next we state the explicit form of the mean square error of f̃(u, λ).

Theorem 3.2. Under Assumptions 3.1−3.8 we have

E|f̃(u, λ) − f(u, λ)|2

= σ2(u, λ)(TbT Hn(u))−1 +
1

2
[L1n(u)f11(u, λ) + L2n(u)f22(u, λ)]

+o((TbT Hn(u))−1) + o(b2
T ) + o(L1n(u) + L2n(u)). (3.8)

Proof of Theorem 3.2. In view of Theorem 3.1 and its proof, it suffices to find

the explicit form of the bias of f̃(u, λ). Note that

Ef̃(u, λ) − f(u, λ)

=
n∑

j=1

wjn(u)[Ef̂(uj , λ) − f(u, λ)]

=

n∑

j=1

wjn(u)[Ef̂(uj , λ) − f(uj , λ)] +

n∑

j=1

wjn(u)[f(uj , λ) − f(u, λ)]

= I1 + I2.

By Taylor’s expansion, we get, in view of Assumption 3.8,

I2 =
1

2

n∑

j=1

wjn(u)
{

(uj1 − u1)
2f11(u, λ) + 2(uj1 − u1)(uj2 − u2)f12(u, λ)

+(uj2 − u2)
2f22(u, λ)

}
+ o(L1n(u) + L2n(u))

=
1

2
[L1n(u)f11(u, λ) + L2n(u)f22(u, λ)] + o(L1n(u) + L2n(u)).
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Figure 1. Locations of recording channels on the cortical surface.

By Anderson (1971, Thm 9.4.3) or Priestley (1981, p.459), we have B2
T (Ef̂(uj , λ)

−f(uj, λ)) → c2fλλ(uj , λ). So

I1 = B−2
T

n∑

j=1

wjn(u)c2fλλ(uj, λ) + o(B−2
T )

= c2B
−2
T

1

2
[L1n(u)fλλ11(u, λ) + L2n(u)fλλ22(u, λ)] + o((L1n(u) + L2n(u))b2

T )

+o(b2
T )

= o(b2
T ),

where the last equality follows from Assumption 3.8. Therefore (3.8) follows.

Remark 3.7. In Theorem 3.2, the exact form of the dominant term depends on

the form of the kernel function Kn. If we use the simple kernel (3.4), then it is

σ2(u, λ)(TbT Hn(u))−1 +
H2

1n

24n2
1

f11(u, λ) +
H2

2n

24n2
2

f22(u, λ).

4. Data Analysis

The EROS data set was recorded from a single participant in a spatial-verbal

Stroop task experiment conducted at the Cognitive Neuroimaging Laboratory at

the University of Illinois at Urbana-Champaign. This experiment was designed to

explore brain activity induced by the cognitive effort due to preparatory processes
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Figure 2. Event-related optical signals at different cortical locations. Each

time series has length T = 125. We first computed the average across trials

that were time-locked to the position (P) cue preceded by meaning (M) cue;
we then computed the average across trials that were time locked to the

position (P) cue preceded by the position (P) cue. The plotted time series is

the difference between the switched cue and the no-switch cue at the ampling

rate: one time point per 16 milliseconds. The specific Talairach locations on
the cortex where the time series where extracted were top left: left medio-

frontal gyrus (x = −40 mm, y = 20 mm); top right: right medio-frontal

gyrus (x = 40 y = 20); center: superior-frontal gyruns (x = 0, y = −12);

bottom Left: left posterior-central gyrus (x = −50, y = −28); bottom Right:

right posterior-central gyrus (x = 50, y = −28).

associated with task switching. The task switching in this paradigm is defined

as switching between processing spatial or verbal features of stimuli. Each trial

included the visual presentation of the words “Above” or “Below” that were lo-

cated either above or below a central fixation cross, sometimes, the word “Above”

would actually appear below the cross. The subject was instructed to press one

button for above and another for below. Across the different trials, the subject

was instructed to pay attention to either the word position or the word meaning

(denoted by a “P” or “M” cue presented two seconds prior to the actual stim-

ulus). Therefore, during the two seconds following the cue, the participant had

to prepare to respond to the spatial (position) or verbal (meaning) features of

the stimulus. In the current paper, we consider data obtained during this two

second period.

The EROS data, specifically the phase delay data, was recorded with a multi-
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channel frequency-domain optical instrument, with a modulation frequency of

220 Hertz and an effective sampling rate of 16 milliseconds, over 160 source-

detector pairs located on both the left and right frontal cortex. A temporal low

pass filter was applied with a cutoff of 8 Hertz. Separate averages, time-locked

to the cues, were computed for each type of cue (P or M), switch (from P to M

or from M to P) or no-switch trial types and recording channel. Difference time

series between the switch and no-switch trial types were then computed to isolate

brain activity related to task switching. The difference between switch and non-

switch conditions is interpreted as the change in brain activation from control

condition to switching. It is assumed that the non-switch condition provides a

baseline brain activation, whereas the switch condition is the more demanding

activity that causes the brain to engage additional resources and activate addi-

tional areas. Analogous to baseline conditions in fMRI studies, this experiment

used the non-switch condition as that which accounts for brain activity due to

visual stimulation and other processes activated by the experimental situation in

general, but not specific to task switching. Finally, we note that averaging signals

has long been a tradition in ERP studies with the goal of improving the signal

to noise ratio. The EROS analysis software currently available provides only

averages rather than single trial recordings as a data output. In this analysis,

we treat these averaged time series as though they were an ensemble realization

from a spatio-temporal process; this is a limitation of our application.

The source and detector locations were digitized and then mapped onto a

surface image of the brain, thus allowing for surface image reconstructions of

the optical activity for each data point in Talairach space. This yielded a three-

dimensional data matrix (x and y surface locations, and time). Each time series

was associated with a particular location, with 289 locations sampled on a grid

with a 5 millimeter step size. For this particular analysis, we only used 21 × 11

time series located on the (x, y) grid [−50, 50]×[−30, 24] square millimeter surface

that was common to all 32 subjects in the experiment (although data from only

one subject are presented for the current illustration).

Location-dependent normalized temporal spectra were computed using a fre-

quency bandwidth of BT = 5 for the two tasks (position and meaning, each rep-

resenting the activity recorded in the switch condition minus the activity in the

no-switch condition). Moreover, the difference in the relative spectral estimates

between position and meaning features was computed. The results are shown in

Figure 3 (power at 2 Hertz), Figure 4 (power at 4 Hertz) and Figure 5 (power at

6 Hertz).

First, we note that the relative powers at 2 Hertz and 4 Hertz oscillatory

brain activity show similar spatial distribution, although the power at 4 Hertz

is of smaller magnitude. For 2 Hertz, one notes that the power for the meaning
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Figure 3. Spatial distribution of spectral power at 2 Hertz. Smoothing
bandwidth in frequency BT = 5. Top Left: Position Task. Location-

dependent normalized temporal spectral estimate of the difference time series

between switch and no-switch cues. Top Right: Meaning Task. Location-

dependent normalized temporal spectral estimate of the difference time series

between switch and no-switch cues. Bottom Left: Bright spots indicate
power at position (spatial) is greater than at the meaning (verbal) task.

Bottom Right: Bright spots indicate power is greater at the meaning (verbal)

than at the position (spatial) task.
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Figure 4. Spatial distribution of spectral power at 4 Hertz. Smoothing

bandwidth in frequency BT = 5. Top Left: Position Task. Location-

dependent normalized temporal spectral estimate of the difference time series

between switch and no-switch cues. Top Right: Meaning Task. Location-

dependent normalized temporal spectral estimate of the difference time series
between switch and no-switch cues. Bottom Left: Bright spots indicate

power at position (spatial) is greater than at the meaning (verbal) task.

Bottom Right: Bright spots indicate power is greater at the meaning (verbal)

than at the position (spatial) task.
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Figure 5. Spatial distribution of spectral power at 6 Hertz. Smoothing

bandwidth in frequency BT = 5. Top Left: Position Task. Location-

dependent normalized temporal spectral estimate of the difference time series
between switch and no-switch cues. Top Right: Meaning Task. Location-

dependent normalized temporal spectral estimate of the difference time series

between switch and no-switch cues. Bottom Left: Bright spots indicate

power at position (spatial) is greater than at the meaning (verbal) task.
Bottom Right: Bright spots indicate power is greater at the meaning (verbal)

than at the position (spatial) task.

task is substantially greater than that for the position task over a wide spa-

tial distribution, although the hottest spots were highly spatially localized to

the superior-frontal gyrus and the left posterior-central gyrus. Interestingly, the

spatial distribution at 6 Hertz showed a reverse picture: areas showing a large

amount of 2 Hertz and 4 Hertz activity showed a particularly low amount of the

6 Hertz activity. Although this phenomenon may be partly related to the fact

that spectra are normalized during the procedure, this fact alone does not ac-

count for the similar distribution of 2 and 4 Hertz activity. We postulate that the

larger activity in the 2-4 Hz bands for verbal, and 6 Hz band for spatial, reflects

the fact that theta activity is more obvious for the verbal condition (which is in

fact the most difficult one). Note that this particular data analysis took advan-

tage of the location-specific distribution of the power estimates. Of course, the

main result shows a dominant lateralization in the left hemisphere, especially

for the meaning task. The results show that slow (theta) activity is localized

to the left hemisphere for the switch-to-meaning condition (when compared to

”switch-to-position” condition). This may reflect the fact that verbal processes

are left-hemisphere dominant. Alternatively, it may reflect the fact the left pre-

frontal cortex may be more involved when switching to a more difficult task (in

this case, the meaning task) is required.
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5. Conclusion

This paper rigorously develops a general Cramér representation for a wide

class of spatio-temporal processes, motivated by the need to investigate the vari-

ation of the oscillatory activity across cortical regions. Previous work in this

area has not taken specific advantage of the spatial nature of brain imaging

data. A non-parametric estimation method is proposed to estimate the location-

dependent temporal spectrum, a quantity that describes the spatial variation of

temporal spectral behavior. For a class of temporal linear processes with spa-

tially varying coefficients, asymptotic normality and mean-square consistency are

established for the proposed estimator. Using the proposed model and procedure,

we estimated the location-dependent temporal spectrum for the EROS data set.

The proposed approach is potentially useful for neuroscience research. It

has been shown that different cognitive processes (or, most likely, their compo-

nents and sub/micro processes) involve brain networks that oscillate at particular

frequencies. However, there have been no approaches that address the issue of

variation in the spectrum of spatially adjacent locations. In part, this happened

because the types of data available in neuroscience did not possess good spatial

resolution to start with (or, if they did, then they did not have sufficient tempo-

ral resolution for power-frequency analysis). The proposed approach responds to

the development of new imaging tools employed by neuroscientists. For instance,

in our example, we were able to take advantage of the combination of good tem-

poral and spatial resolution of EROS. We showed that the two different tasks

induce similar spatial distributions of spectral power at specific frequencies. We

are careful to note the limitations of the applicability of this model to neuro-

science, because (spatial) proximity does not imply the existence of functional

connections.

There are theoretical limitations of our current work. The time series at each

location is constrained to be a linear process and this excludes interesting non-

linear time series models which could be better suited at modelling complex phe-

nomena such as brain processes. However, linear models such as the autoregres-

sive moving average (ARMA) are shown to be useful for modelling the temporal

autocorrelation structure in fMRI and also for feature selection in EEG classifi-

cation studies. Moreover, the spatio-temporal model and asymptotic framework

in this paper serves as a starting point for a number of future research directions.

First, we are developing a data-adaptive spatial bandwidth selection procedure

for estimating the location-dependent temporal spectrum. Next, to enable appli-

cability of the asymptotic distribution of the proposed estimator to tests of differ-

ence between the conditions, we are investigating the use of a spatial bootstrap to

approximate the sampling distribution of our estimator. Moreover, motivated by
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the potential usefulness of higher order spectra (bispectrum, in particular) for dif-

ferent types of neuroscience applications (e.g., studies of functional connectivity,

classifying sleep depth of anesthesized patients, etc.), one may develop a location-

dependent temporal bispectrum under the framework that was developed in this

paper. Finally, we are generalizing the proposed model to the setting where,

at each location, the time series is non-stationary. We may consider some non-

stochastic temporal processes such as the autoregressive moving average mod-

els with time-varying coefficients, temporal processes with stochastic representa-

tions that use localized waveforms (see Nason, von Sachs and Kroisandt (2000)

and Ombao, H., Raz, J. von Sachs, R. and Guo, W. (2002)) and the Dahlhaus

(1997) model of locally stationary processes.
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