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Abstract: Optimal partitioning of a distribution arises in many contexts, including

quantization in information theory, piecewise constant approximation of a func-

tion, stratified sampling, goodness-of-fit tests, principal points and clustering, and

selective assembly in manufacturing. This article studies the behavior of optimal

partitions, develops conditions under which the optimal partitioning of a distri-

bution is unique, and establishes connections to hazard rate and likelihood ratio

orderings of the distribution. An earlier proof which gives a slightly weaker condi-

tion than the sufficient condition in this article is shown to be incorrect by means

of a counter-example. Optimal partitioning is compared with some heuristic parti-

tioning strategies that are commonly used in applications and is shown to lead to

substantial improvements in efficiency.
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1. Optimal Partitioning

The problem of optimally partitioning a distribution arises in many areas

of application, some of which are described in Sections 2 and 5. The problem

can be mathematically formulated as follows. Let X be a continuous random

variable distributed according to the CDF F . The goal is to find an optimal

partition of the support of F according to some criterion. Specifically let d(X)

be an M -level discretized version of X such that d(X) takes the value dm when

X is in the interval (xm−1, xm]. Further, let L(·) ≥ 0 be a convex loss function

such that L(z) = 0 if and only if z = 0. Consider the expected loss resulting

from approximating X by its discretized version d(X) given by

EL(X − d(X)). (1)

The problem is to find the values x1 < · · · < xM−1 and d1, . . . , dM that minimize

(1) for a given integer M ≥ 2. The values x0 and xM are fixed to be the upper

and lower endpoints of the support of X.
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Let us first characterize the partitions that minimize (1). We assume

throughout that X is a continuous random variable with density f(x) that is

strictly positive on (x0, xM ) and zero elsewhere. For simplicity, we take x0 and

xM to be finite although the case of x0 = −∞ and xM = ∞ can be treated in

exactly the same way. Define pm = F (xm) − F (xm−1) and rewrite (1) as

M
∑

m=1

pmEL(Xm − dm), (2)

where Xm is the random variable X truncated to be in the m−th cell (xm, xm+1].

The following argument gives two sets of equations for the values of (x1, . . . , xM−1)

and (d1, . . . , dM ) that minimize (2).

For a fixed set of partitions x1 < · · · < xM−1, (2) is minimized by taking

dm = Um ≡ arg min
u

EL(Xm − u). (3)

This is uniquely defined since L is convex. For example, for squared loss, Um is

the conditional mean while for absolute error loss, it is the conditional median.

Note that Um is a function of the partitions limits xm−1 and xm as well as the

distribution F . We suppress the dependence on F and denote this function by

u(·, ·), i.e., Um = u(xm−1, xm).

Now for a fixed set of values d1 < · · · < dM , the partitions x1, . . . , xM−1 that

minimize (2) can be obtained as the solutions of

L(xm − dm) = L(xm − dm+1). (4)

For a symmetric L, this is just

xm =
dm + dm+1

2
. (5)

It follows that if x1 < · · · < xM−1 and d1, . . . , dM minimize (2), they must satisfy

(3) and (4) simultaneously.

One way of obtaining the solutions is to use a fixed-point iteration algorithm

which starts with an initial set of values of x1 < · · · < xM−1 and iterates be-

tween (3) and (4) until convergence. Lloyd’s method (Trushkin (1982)) is such a

technique used in the quantization literature.

If the equations (3) and (4) have a unique solution, then the algorithm is

guaranteed to converge to the global minimum. However, this is not true in

general, and it is easy to construct examples with multiple local minima (Tarpey

(1994) and Mease, Nair and Sudjianto (2004)). Furthermore, the global mini-

mum can exhibit unexpected behavior. For instance, the optimum partitions

for symmetric distributions and a symmetric loss function can be asymmetric
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(Tarpey (1994) and Mease, Nair and Sudjianto (2004)). In these cases, there

exist symmetric partitions that also solve equations (3) and (4) but these yield

local minima or maxima.

In this article, we study the nature of optimal partitions, develop conditions

under which the optimum partitions are unique, and establish connections to

two notions of stochastic ordering of distributions: hazard rate and likelihood

ratio orderings. Specifically, we establish conditions when equations (3) and (4)

have a unique solution and show that this is satisfied by distributions that have

the likelihood ratio ordering property. As shown by Shaked and Shanthikumar

(1994), likelihood ratio ordering is equivalent to the log-concavity of the density,

but the former is precisely the representation needed to establish the uniqueness

result. A practical implication of uniqueness is that any solution of (3) and (4)

determines the global minimum for (1). In particular, optimal partitions of sym-

metric distributions with likelihood ratio ordering (strongly unimodal density)

under symmetric loss can only be symmetric. In Section 6, we compare the ef-

ficiency of optimal paritions to two commonly used heuristic algorithms (equal

widths and equal probabilities) under several loss functions and distributions.

2. Some Applications

The optimal partitioning problem considered here arises in many contexts,

some of which are described below (see also Section 5). Most of the literature,

however, focuses on squared loss.

A. Quantization in information theory

In information theory, the problem of finding d1, . . . , dM and x1, . . . , xM−1

to minimize (1) arises as a problem in (lossy) data compression known as quanti-

zation. Among the earliest examples of this is analog-to-digital (A/D) conversion

(Shannon (1948)). In this case, the random variable X would represent the ana-

log signal requiring an infinite number of bits that is transformed into a digital

signal d(X) which requires a finite number of bits. The function d(·) is referred to

as the quantizer and the loss function L is referred to as the distortion measure.

A number of popular current uses of quantization involve compression of

visual images and other data types for more economical storage in computer

memory and faster transmission over digital communication networks. In these

applications, the input signal itself is often also digital, but with a much finer

resolution than that of the output. An example would be compressing the colors

in an image represented by floating point values in (0, 1) to integers between 0 and

255 inclusive. The colors of the compressed image would require only log2 256 =

8 bits. The popular color image format developed by the Joint Photographic

Experts Group (JPEG) employs quantization.
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In this article we deal with the one-dimensional problem, i.e., the case where

X is a random variable. This is known as scalar quantization in information

theory. When X is instead a random vector, scalar quantization on each of the

components is less efficient than what is known as vector quantization, although

often the former is adequate. There is no known condition to ensure uniqueness

in this multidimensional case analogous to the condition for one dimension that

we present in this article. An extensive review of the literature on quantization

can be found in Gray and Neuhoff (1998).

B. Piecewise constant function approximation

The problem can also be viewed as one of optimal breakpoint selection for

piecewise constant function approximation in L2[0, 1] (Eubank (1988)). Specif-

ically, given a function g on [0, 1], the goal is to find constants c1, . . . , cM and

breakpoints 0 = g0 < · · · < gM = 1 to minimize

M
∑

m=1

∫ gi

gi−1

(g(u) − ci)
2du. (6)

If the function g(u) is strictly increasing, we can see that this is the same problem

by letting g = F−1 and minimizing (1) with squared loss (i.e. L(z) = z2). Under

squared loss, each Um is equal to the conditional mean of X conditioned on the

interval (xm−1, xm] so that we can write (4) as

xm =
E(Xm) + E (Xm+1)

2
. (7)

Eubank (1988) provides an excellent review of a number of statistical prob-

lems that are equivalent to finding the optimal piecewise constant approximation

to g defined by minimizing (6). By taking g to be the inverse of a cumulative

distribution function, the problem becomes equivalent to optimal selection of

strata in stratified sampling under proportional allocation. The solution to this

problem was first derived in Dalenius (1950), although the uniqueness issue was

not discussed. Eubank (1988) also reviews problems of minimizing loss of infor-

mation (Cox (1957)), discriminating between two p-variate normal distributions

using qualitative variables (Cochran and Hopkins (1961)), determining optimal

grouping for chi-squared tests, and identifying groupings for bivariate distribu-

tions.

C. Principal points and clustering

Tarpey and Flury (1996) consider the problem of minimizing (1) under squared

loss when X is a p-dimensional random vector. Specifically, the problem is to



UNIQUE OPTIMAL PARTITIONS OF DISTRIBUTIONS AND CONNECTIONS 1303

find M p-dimensional vectors d1, . . . ,dM to minimize

E‖X − d(X)‖2, (8)

where X is a random vector and the vector-valued function d(x) is defined by

d(x) ≡ arg min
di

‖x − di‖
2. (9)

Vectors d1, . . . ,dM that minimize (8) are referred to as principal points. Ap-

plications that involve minimizing (8) include optimal stratification, selection

of shapes for masks to fit human faces, standardizing clothing, and k−means

clustering. The minimizer of (8) also corresponds to finding the optimal vector

quantizer for the random vector X in the information theory problem described

earlier.

If we define the sets Si = {x : d(x) = di}, i = 1, . . . ,M , then to minimize

(8), we can restrict the vectors di to be

di = E [X|X ∈ Si]. (10)

This is analogous to the means conditioned on the intervals in the one-dimensional

case. Tarpey and Flury (1996) refer to a set of vectors d1, . . . ,dM for which both

(9) and (10) hold as self-consistent points. While log-concavity is sufficient in the

one dimensional case, for p > 1 there is no known condition to ensure that there

is only one set of self-consistent points. (A unique set of self-consistent points

must be the principal points.) Patterns of self-consistent points for symmetric

multivariate distributions are discussed in Tarpey and Flury (1996).

3. Hazard Rate and Increasing Likelihood Ratio Orderings

We now review some concepts from reliability theory which will be helpful

for proving the uniqueness result for the optimal partitioning. A proof of the

uniqueness result will be given in the following section.

Given the random variable of interest X with CDF F and any constant A,

define the truncated random variable XA ≡ [X − A|X ≥ A]. Suppose X (or

equivalently F ) satisfies the condition that XA is stochastically larger than XB

(denoted as XA � XB) for any A < B. Then X (or F ) is said to have hazard rate

ordering. This is a type of “stochastic dominance to the left” of the distribution

F . It is known that F has hazard rate ordering if and only if F has an increasing

(more specifically nondecreasing) hazard rate (IHR) (Shaked and Shantikumar

(1994, Chap. 1)). Recall that the hazard rate for F with density f is given by

λ(x) = f(x)/[1−F (x)]. While hazard rates are usually discussed for non-negative

random variables only, we do not make that restriction here.
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Consider now the doubly or interval-truncated random variable XA(h) ≡

[X−A|A < X ≤ A+h] for given constants A and h > 0. Suppose XA(h) � XB(h)

whenever A < B for every h > 0. Then, X (or F ) is said to have the increasing

likelihood ratio (ILR) property (Shaked and Shantikumar (1994, Chap. 1)). This

is clearly a stronger condition than hazard rate ordering which corresponds to the

special case of h = ∞. The ILR property can be viewed as a notion of uniform

stochastic dominance. It is known that a distribution has the ILR property if

and only if its density is log-concave (Shaked and Shanthikumar (1994)).

Next consider the (doubly) conditional hazard rate of F given by

λb(x) = lim
4x↓0

P(X ∈ (x, x + 4x] |x < X ≤ x + b)

4x
=

f(x)

F (x + b) − F (x)
.

It can be shown that F satisfies the ILR property if and only if the conditional

hazard rate is increasing (nondecreasing) in x for every b > 0. This conditional

hazard rate characterizes the propensity for instantaneous failure given that the

unit has survived until x and will fail in the interval (x, x + b].

In reliability and survival analysis, the random variable [X − x|X > x]

corresponds to residual life given that the unit has survived up to time x. It is

well known that the mean of the residual life, i.e., E [X −x|X > x], is decreasing

under the IHR condition. This property also holds for the median and other

quantiles under IHR or, equivalently, the hazard rate ordering property. (Recall

that the hazard rate ordering is defined as the stochastic ordering XA � XB for

all A < B). The following proposition and the hazard rate ordering property

show that an analogous result holds more generally for any convex loss function.

In this proposition Y and Z have the roles of XA and XB respectively.

Proposition 1. Given two random variables Y and Z, let cY =arg minc E [L(Y −

c)] and cZ = arg minc E [L(Z − c)]. If Y � Z, then cY ≥ cZ .

Proof. Let F−1
Y and F−1

Z denote the inverse CDF’s of Y and Z respectively. Note

that cY and cZ are unique since the functions RY (c) = E[L(Y − c)] and RZ(c) =

E[L(Z − c)] are strictly convex on (F−1
Y (0), F−1

Y (1)) and (F−1
Z (0), F−1

Z (1)) re-

spectively, as a result of the assumptions (Trushkin (1982)). Fix ε > 0. We

have

0 < RY (cY + ε) − RY (cY ) = E [L(Y − cY − ε) − L(Y − cY )]

=

∫ 1

0
[L(F−1

Y (u) − cY − ε) − L(F−1
Y (u) − cY )]du

≤

∫ 1

0
[L(F−1

Z (u) − cY − ε) − L(F−1
Z (u) − cY )]du

= E[L(Z − cY − ε) − L(Z − cY )] = RZ(cY + ε) − RZ(cY ).
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The second inequality follows from the fact that L is convex and that F −1
Y (u) ≥

F−1
Z (u) for all u ∈ [0, 1]. Thus, cZ ≤ cY + ε for any ε > 0, and hence Proposition

1 holds.

4. Uniqueness of Optimal Partitions

We are now ready to prove the uniqueness result using the concepts developed

in the previous section. First we need the following lemma. Recall the definition

of u(x, y) following (3).

Lemma 1.

(I) u(t, t + x) is increasing in x for all t.

(II) u(t − x, t) is decreasing in x for all t.

(III) u(t, t + h) − t is non-increasing in t for all 0 < h ≤ ∞ provided f is log-

concave.

Proof. Results (I) and (II) follow from the fact that the density f is strictly

positive and that the function L(·) is convex with L(z) = 0 if and only if z = 0.

To show (III) define XA(h) = [X −A|A < X ≤ A+h] and XB(h) = [X −B|B <

X ≤ B + h]. Recall that log-concavity of f is equivalent to the ILR property

which implies that XA(h) � XB(h) if A < B. Now (III) follows by applying

Proposition 1 to XA(h) and XB(h).

We are now ready to establish the uniqueness result. Let F be the distribu-

tion of X with support (x0, xM ), and f denote the density.

Figure 1. An Illustration for the Proof of Proposition 2 with k = M − 1.
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Proposition 2. If F has the ILR property (i.e., f is log-concave), then there is

at most one solution to equations (3) and (4).

Proof. Suppose there exist two solutions to (3) and (4) given by (xP
1 , . . . , xP

M−1)

and (xQ
1 , . . . , xQ

M−1). Let the values of the Um’s corresponding to these two sets

of partitions be denoted by UP
1 , . . . , UP

M and UQ
1 , . . . , UQ

M , respectively. Now let k

be the largest i such that xP
i 6= xQ

i . Without loss of generality we take xP
k < xQ

k .

(It is useful to refer to Figure 1 for notation and the relative orderings of the

various quantities discussed below). Then we have U Q
k+1 − xQ

k < UP
k+1 − xP

k as

a consequence of (III) and (I) of Lemma 1. From (4) we have L(xQ
k − UQ

k+1) =

L(xQ
k −UQ

k ) and L(xP
k −UP

k+1) = L(xP
k −UP

k ), so that xQ
k −UQ

k < xP
k −UP

k . From

this we can infer xP
k−1 < xQ

k−1 since (III) and (II) of Lemma 1 give xP
k − xP

k−1 >

xQ
k − xQ

k−1. From this last inequality, we also have U Q
k − xQ

k−1 < UP
k − xP

k−1

using (III) and (I). Now we can repeat the entire argument with k replaced by

k − 1 to obtain xP
k−2 < xQ

k−2 and UQ
k−1 − xQ

k−2 < UP
k−1 − xP

k−2. Continuing

inductively, we eventually have xP
1 < xQ

1 and UQ
2 − xQ

1 < UP
2 − xP

1 . Finally,

(4) implies L(xQ
1 − UQ

2 ) = L(xQ
1 − UQ

1 ) and L(xP
1 − UP

2 ) = L(xP
1 − UP

1 ) so that

xQ
1 − UQ

1 < xP
1 − UP

1 which, along with xP
1 < xQ

1 , is a contradiction of (II) and

(III).

As noted earlier, the uniqueness issue has been discussed previously in the

literature. Tarpey (1994) established optimality results for the very specialized

case of symmetric distributions with two partitions. Eubank (1988) argued that

log-concavity of f(F−1(u)) is a sufficient condition for uniqueness in the con-

text of function approximation with piecewise constants. While this condition

is weaker than log-concavity of f(x), we construct a counter-example below to

show that it is not sufficient. These authors considered only squared-error loss

functions. Much earlier than these papers, Trushkin (1982, 1984) had studied

uniqueness for symmetric convex loss functions. This work does not seem to

be known in the statistical literature. Trushkin’s proof, however, is much more

involved than the one here, and it does not make the interesting connections

to the stochastic ordering properties of the distribution. Our result also covers

asymmetric loss functions. For instance, loss functions that yield quantiles as the

minimizers are asymmetric (except for the median). Asymmetric loss functions

arise naturally in some applications, such as selective assembly which will be

discussed in Section 5.

Returning to the log-concavity condition for f(F −1(u)) in Eubank (1988),
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consider the density f(x) proportional to the function

g(x) =



























0, x < −10,

e
x−0.5

2.06 , −10 ≤ x < 0.5,

w(x)
w(0.5) , 0.5 ≤ x ≤ 10,

0, x > 10.

Here w(x) is the Weibull density function with a scale parameter of 1 and a

shape parameter of 1/2. While f(F−1(·)) is in fact log-concave, the solution is

not unique. The expected squared loss for M = 2 is plotted in Figure 2 as a

function of x1. In this figure it can be seen that there is one local minimum

and one local maximum of (1) in addition to the one global minimum. It can be

verified that all of these correspond to solutions to (3) and (4), giving a total of

three solutions and thus a counter-example for uniqueness.

Figure 2. Expected Squared Loss as a Function of x1.

5. Application to Selective Assembly In Manufacturing

Our interest in this problem was motivated by an application to selective as-

sembly in manufacturing. This is a cost-effective approach that is commonly used

to reduce variation (Mease, Nair and Sudjianto (2004), Kwon, Kim and Chandra

(1999) and Pugh (1986)). The basic idea behind selective assembly is as follows.

Let X and Y be the (random) dimensions of two mating components. For ex-

ample, in a piston and cylinder assembly X could be the inside radius of the

cylinder and Y could be the radius of the piston which fits inside the cylinder.
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The clearance between the inside wall of the cylinder and outer surface of the

piston is critical. Too large of a clearance leads to excessive vibration while too

small of a clearance can cause excessive friction. If the quality loss is taken to

be proportional to a loss function L(·) evaluated at the difference between the

true clearance and a target clearance τ , then with random (i.e., non-selective)

assembly the expected loss is EL(X − Y − τ). Selective assembly reduces this

expected loss by measuring and grouping one or both of the individual compo-

nents (X and Y ) prior to assembly. The final product is assembled by matching

the two components from appropriate groups to minimize loss. In other words,

small cylinders are matched with small pistons, and large cylinders are matched

with large pistons.

In “one-sided” selective assembly, one of the components, say Y , is capable

of being produced with negligible variation relative to the X component. Then,

the procedure partitions the X distribution into M parts while the Y component

is manufactured at (or close to) M corresponding nominal values. The problem

then reduces to finding the optimal M nominal values d1, . . . , dM for Y (or more

correctly for Y +τ) and cut points x1 < · · · < xM−1 that determine the partitions

for X. Thus, this selective assembly problem is equivalent to the problem we are

considering in minimizing (1).

With selective assembly, asymmetric loss functions are often appropriate. For

instance, in the piston and cylinder example, a clearance below the target value

results in different problems than a clearance which exceeds the target value. An

asymmetric loss function can capture the relative quality loss associated with

these two types of deviations from the target clearance.

While we described selective assembly only for dealing with differences X−Y ,

it can also be applied to fits in which the total of the two dimensions is the relevant

measurement. For instance, if two pieces are stacked on top of one another, the

quality would be related to EL(X + Y − τ) instead of EL(X − Y − τ) where

τ is now the target height. Such problems are handled in our formulation by

replacing Y with −Y .

In this discussion we have focussed our attention on the one-sided selective

assembly problem, in which one of the two components is manufactured with

negligible variation relative to the other. However, a two-sided problem in which

the X and Y components are manufactured with a similar degree of variation

is also quite common (Mease, Nair and Sudjianto (2004)) and Kwon, Kim and

Chandra (1999)). In this problem, both the X and Y distributions are parti-

tioned. While in general this problem is more complex, in the special case of

squared loss there is an equivalence, as discussed in Mease, Nair and Sudjianto

(2004)).
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6. Comparisons of Optimal Partitions to Two Heuristic Partitioning

Strategies

In this section, we compare the efficiency of optimal partitions with two

heuristic partitioning schemes that are commonly used in engineering applica-

tions: equal probability and equal width. The comparisons are done for three

different loss functions and two different distributions. For equal probability par-

titioning, which is also called equal area partitioning in selective assembly, the

partitions are chosen such that all the pi are equal. Equal width partitioning par-

titions the (bounded) support of the X distribution into intervals of equal width

so that xm+1 − xm = (xM − x0)/M for all m. These two heuristic strategies are

commonly used in the selective assembly application (Pugh (1986, 1992)).

Table 1 compares the expected squared loss (L(z) = z2) resulting from the

optimal partitions for the standard normal distribution truncated at x0 = −3

and xM = 3 to the expected squared loss using equal probability and equal

width partitioning. Table 2 gives the same comparison for absolute error loss

(L(z) = |z|). The improvement is quite substantial, especially for squared loss.

For example, using the optimal partitioning for M = 14 or M = 15 results in

an expected squared loss that is less than half of that using equal probability

partitioning.

Table 1. Optimal partitions for standard normal distribution truncated at

−3 and 3 under squared loss.

Expected Percentage Percentage

Optimal Partition Limits Squared Savings Over Savings Over

(Only the nonnegative values are given Difference Equal Probability Equal Width

M since all partitions are symmetric.) from Target Partitioning Partitioning

1 - 0.973 - -

2 0.000 0.347 0% 0%

3 0.604 0.179 7.9% 29.6%

4 0.000 0.964 0.109 15.5% 31.0%

5 0.375 1.215 0.073 22.0% 31.7%

6 0.000 0.643 1.405 0.052 27.4% 31.8%

7 0.273 0.850 1.555 0.039 32.1% 31.7%

8 0.000 0.486 1.017 1.677 0.031 36.0% 31.5%

9 0.215 0.659 1.154 1.779 0.025 39.4% 31.4%

10 0.000 0.391 0.804 1.271 1.866 0.020 42.4% 31.2%

11 0.177 0.539 0.928 1.372 1.940 0.017 45.0% 31.0%

12 0.000 0.327 0.667 1.035 1.460 2.005 0.014 47.3% 30.9%

13 0.151 0.457 0.778 1.130 1.538 2.063 0.012 49.4% 30.8%

14 0.000 0.281 0.570 0.877 1.214 1.607 2.113 0.010 51.2% 30.7%

15 0.131 0.396 0.671 0.965 1.289 1.669 2.159 0.009 52.9% 30.6%
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Table 2. Optimal partitions for standard normal distribution truncated at

-3 and 3 under absolute error loss.

Expected Percentage Percentage

Optimal Partition Limits Absolute Savings Over Savings Over

(Only the nonnegative values are given Difference Equal Probability Equal Width

M since all partitions are symmetric.) from Target Partitioning Partitioning

1 - 0.791 - -

2 0.000 0.467 0% 0%

3 0.512 0.335 0.9% 19.8%

4 0.000 0.817 0.261 2.0% 21.6%

5 0.316 1.032 0.214 3.0% 22.7%

6 0.000 0.544 1.196 0.182 4.0% 23.1%

7 0.231 0.720 1.328 0.158 4.9% 23.2%

8 0.000 0.411 0.862 1.437 0.139 5.7% 23.3%

9 0.182 0.558 0.982 1.530 0.125 6.4% 23.2%

10 0.000 0.331 0.682 1.084 1.611 0.113 7.1% 23.1%

11 0.150 0.457 0.789 1.173 1.681 0.103 7.7% 23.0%

12 0.000 0.278 0.566 0.882 1.251 1.744 0.095 8.2% 22.9%

13 0.128 0.388 0.662 0.965 1.321 1.800 0.088 8.7% 22.9%

14 0.000 0.239 0.485 0.747 1.039 1.385 1.851 0.082 9.2% 22.8%

15 0.111 0.337 0.572 0.824 1.105 1.442 1.897 0.077 9.7% 22.7%

For these two examples, the intuition as to why the optimal partitions per-

form better than equal width is as follows. With a uniform distribution, equal

width is equivalent to optimal partitioning. However, for a unimodal distribution

like the normal the optimal partitions give a finer partitioning near the mode and

less fine in the tails where fewer observations will fall. For any fixed number of

partitions, this is a superior strategy. Equal probability partitioning also has

finer partitions near the mode than in the tails, but actually too much so, at

least in the case of the normal distribution.

As mentioned earlier, asymmetric loss functions are often appropriate for

certain applications such as selective assembly. Table 3 gives the optimal parti-

tions for this same truncated normal distribution but now using the asymmetric

loss function

L(z) =

{

−z z < 0

z
4 z ≥ 0.

Note that with this loss function the dm are equal to the conditional 0.2 quantiles.

Finally Table 4 gives the optimal partition limits under squared loss for

the Weibull distribution with a shape parameter of 2 and a scale parameter

of 1 truncated at 6 (and 0). This provides an example of partitioning for an

asymmetric distribution. Here the improvement over the two heuristic strategies

of equal probability and equal width is even more pronounced.
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Table 3. Optimal partitions for standard normal distribution truncated at

−3 and 3 under the asymmetric loss function L(z) = −z for z < 0 and z/4

for z ≥ 0.

Percentage Percentage

Savings Over Savings Over

Expected Equal Probability Equal Width

M Optimal Partition Limits Loss Partitioning Partitioning

1 - 0.346 - -

2 -0.204 0.198 1.4% 1.4%

3 -0.715 0.333 0.139 2.9% 19.7%

4 -1.014 -0.174 0.656 0.108 4.3% 21.6%

5 -1.222 -0.483 0.162 0.883 0.088 5.4% 22.6%

6 -1.379 -0.704 -0.147 0.403 1.056 0.074 6.5% 22.9%

7 -1.504 -0.874 -0.371 0.097 0.589 1.196 0.064 7.4% 23.0%

Table 4. Optimal partitions for a truncated Weibull distribution under

squared loss.

Expected Percentage Percentage

Squared Savings Over Savings Over

Difference Equal Probability Equal Width

M Optimal Partition Limits from Target Partitioning Partitioning

1 - 0.215 - -

2 0.972 0.073 5.9% 65.8%

3 0.716 1.297 0.037 15.5% 79.6%

4 0.581 1.004 1.504 0.022 23.8% 81.2%

5 0.495 0.838 1.199 1.655 0.015 30.5% 81.3%

6 0.434 0.726 1.019 1.346 1.773 0.011 36.1% 81.9%

7 0.389 0.646 0.895 1.159 1.464 1.870 0.008 40.7% 82.6%
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