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Abstract: In the Michaelis-Menten model we determine efficient designs by maxi-

mizing a minimum of standardized E-efficiencies. It is shown in many cases that

optimal designs are supported at only two points and that the support points and

corresponding weights can be characterized explicitly. Moreover, a numerical study

indicates that two point designs are usually very efficient, even if they are not

optimal. Some practical recommendations for the design of experiments in the

Michaelis-Menten model are given.
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1. Introduction

The Michaelis-Menten model

E[Y | t] =
at

t+ b
, t ∈ [0, t0], (1.1)

is widely used to describe physical and biological phenomena (see Cressie and
Keightley (1979), Johansen (1984), Beverton and Holt (1957), Cornish-Browden
(1979), Hay, Meznarich, DiGiacomo, Hirst and Zerbe (1988) among many others)
and the problem of designing experiments for this model has found considerable
attention in the literature (see Duggleby (1979), Dunn (1988), Rasch (1990),
Boer, Rasch and Hendrix (2000) or Dette and Wong (1999)). An approximate
design ξ is a probability measure with finite support on the interval [0, t0] (see
Kiefer (1974), Silvey (1980) or Pukelsheim (1993)). Here the support points
t1, . . . , tk represent the locations where observations are taken, and the masses
w1, . . . , wk give the proportion of the total observations to be taken at the par-
ticular points. If n independent observations with constant variance σ2 > 0
have been obtained from the design ξ (possibly with an appropriate rounding of
the quantities nwj , j = 1, . . . , k, see e.g., Pukelsheim and Rieder (1992)), then
under the assumption of normality, the covariance matrix of the maximum like-
lihood estimate of the parameters (a, b)T is approximately equal to the matrix
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σ2n−1M−1(ξ, a, b), where

M(ξ, a, b) =
∫ t0

0

t2

(b+ t)2


 1 − a

b+t

− a
b+t

a2

(b+t)2


 dξ(t) (1.2)

denotes the information matrix of the design ξ. Note that this matrix depends on
the unknown parameters and, following Chernoff (1953), we call a design locally
φ-optimal if it maximizes a concave function of the information matrix (1.2).
Locally D-optimal designs (φ(M) = log |M |, where | · | denotes the determinant)
have been determined by Rasch (1990) and have equal weights at the points
[b/(2b+ 1)]t0 and t0. Locally E-optimal designs (φ(M) = λmin(M), where λmin

denotes the minimal eigenvalue) have been found in Dette and Wong (1999) and
have weights 1 −w and w at the points t0 and (

√
2 − 1)t0b · {(2 −√

2)t0 + b}−1,

respectively, where the weight w is given by

w =
√

2a2/b{b√2 − (4 − 3
√

2)t0}
2(t0 + b)2 + a2/b2{b√2 − (4 − 3

√
2)t0}2

. (1.3)

These designs have been criticized for several reasons. On the one hand the
designs depend sensitively on the unknown parameters and are in this sense
not robust. On the other hand, even if prior knowledge about the parameters
is available, it was pointed out in Dette (1997a,b) that, for specific parameter
constellations, E-optimal designs can perform particularly bad. For example if
a is small compared to b, the weight in (1.3) is close to 0 and consequently the
information matrix of the corresponding design is nearly singular. As a numerical
example consider the situation discussed in Cressie and Keightley (1981) where
t0 = 2000, the parameter estimates are â = 43.95 and b̂ = 236.53, and a locally E-
optimal design for the parameter (a, b) = (44, 237) would take 99.91% at the point
t0. In this case the E-optimal design is inefficient for estimating both parameters
(note that this problem does not appear for the D-optimality criterion).

Some effort has been undertaken to construct robust designs with respect
to the D-criterion (see Song and Wong (1998) or Dette and Biedermann (2002))
but to our knowledge, robust designs based on the E-optimality criterion are not
available in the literature. It is the purpose of the present paper to construct
some. For this, we use a maximin approach introduced by Müller (1995) (see
also Dette (1997a)). A design ξ∗ is called standardized maximin φ-optimal if it
maximizes the function

ψ(ξ) = min
a∈A,b∈B

φ(M(ξ, a, b))
max

η
φ(M(η, a, b))

, (1.4)



STANDARDIZED MAXIMIN E-OPTIMAL DESIGNS 1149

where φ is a concave function and the minimum is taken over certain subsets A
andB of the parameter space specified by the experimenter. In many applications
such a specification is available, see for example Cressie and Keightley (1981,
p.237), where a specific range for the dissociation constant b for the receptor-
estradiol interaction is given. Note that the criterion ψ in (1.4) is a minimum of
φ-efficiencies taken over a certain range of the parameters and is in this sense very
intuitive. We will not use the function φ(M) = λmin(M) corresponding to the E-
optimality criterion directly (because of its deficiencies mentioned in the previous
paragraph), but rather a modified version introduced in Dette (1997b). This uses
a scaling of the elements in the information matrix, similar to the transition from
the covariance to the correlation matrix. The new criterion is carefully defined
in a general context in Section 2, which also gives some preliminary results and
an equivalence theorem for the standardized maximin optimality criterion. In
Section 3 we determine optimal designs for the Michaelis-Menten model and
prove that, for a sufficiently small set B for the parameter b, the standardized
maximin E-optimal design is always supported at two points. To our knowledge
a property of this type has been found in the context of Bayesian or maximin
optimality criteria (see Chaloner and Larntz (1989) or Haines (1995)) but has
never been proved rigorously in a non-trivial situation such as the Michaelis-
Menten model. Numerical results are presented in Section 4, which also gives
some practical recommendations, while Section 5 contains an appendix with a
technical result used for the proofs in Sections 2 and 3.

2. The Standardized Maximin E-optimality Criterion

Consider the regression model

E[Y | t] =
k∑

i=1

aiϕ(t, bi); t ∈ I, (2.1)

where ϕ(t, b) is a given function, I is an interval and a = (a1, . . . , ak)T , b =
(b1, . . . , bk)T denote the vectors of the unknown parameters. Note that the
Michaelis-Menten model discussed in the introduction is obtained by the choice
k = 1, I = [0, t0] and ϕ(t, b1) = t/(t+ b1). The Fisher information matrix in the
model (2.1) is given by

M(ξ, a, b) = Da

∫
I
f(t, b)fT (t, b)dξ(t)Da, (2.2)

f(t, b)=(f1(t, b), . . . , f2k(t, b))T=(ϕ(t, b1), ϕ′(t, b1), . . . , ϕ(t, bk), ϕ′(t, bk))T∈ R
2k,

(2.3)
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where f is the vector of regression functions. Derivatives of ϕ are taken with
respect to its second argument, and the matrix Da ∈ R

2k×2k is defined by

Da =




1 0 0 . . . 0 0
0 a 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0
0 0 0 . . . 0 a



. (2.4)

Dette (1997b) points out several drawbacks of designs maximizing λmin(M(ξ, a,
b)). In particular, in many regression models, these designs become inefficient
for estimating the complete vector of parameters, while a standardized version
of the E-optimality criterion avoids these problems. We use this criterion for
the construction of robust designs. To be precise let ej = (0, . . . , 0, 1, 0, . . . , 0)T

denote the jth unit vector and ξ∗j denote the locally ej-optimal design minimizing
the expression eTj M

−(ξ, a, b)ej , j = 1, . . . , 2k, where M− denotes a generalized
inverse of the matrix M. We assume that the jth parameter in (2.1) is estimable
by the design ξ, that is ej ∈ range(M(ξ, a, b)) for all a, b. A standardized E-
optimality criterion is defined as follows (see Dette (1997a,b)). Let

Ka,b = diag
{
(eT1 M

−(ξ∗1 , a, b)e1)
−1/2, . . . , (eT2kM

−(ξ∗2k, a, b)e2k)−1/2
}

(2.5)

denote a diagonal matrix with jth entry proportional to the inverse square root
of the best “variance” obtainable by the choice of an experimental design for
estimating the jth coefficient in (2.1), and define the matrix

C(ξ, b) = (KT
a,bM

−(ξ, a, b)Ka,b)−1. (2.6)

Following Dette (1997a), a design maximizing the function

λmin(C(ξ, b)) = λmin((KT
a,bM

−(ξ, a, b)Ka,b)−1) = λmin((KT
1,bM

−(ξ, 1, b)K1,b)−1)
(2.7)

is termed locally standardized E-optimal (in the last equality we use the notation
1 = (1, . . . , 1)T ∈ R

k). Recalling the definition of the matrices in (2.2), (2.3),
(2.4) and Theorem 3.2 in Dette (1997b), it follows that the matrix in (2.6) does
not depend on the linear parameters a1, . . . , ak of (2.1), which justifies the last
equality and our notation C(ξ, b).

Definition 2.1. A design ξ∗ is called standardized maximin E-optimal if it
maximizes the function

min
b∈B

λmin(C(ξ, b))
max

η
λmin(C(η, b))

, (2.8)
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where the matrix C(ξ, b) is defined in (2.6) and B ⊂ R
k is a given set.

Throughout this paper we assume that the functions f1, . . . , f2k defined in
(2.3) generate a Chebyshev system on the interval I (for any b). A set of functions
f1, . . . , fm : I → R is called a weak Chebyshev system (on the interval I) if there
exists an ε ∈ {−1, 1} such that

ε ·

∣∣∣∣∣∣∣∣
f1(x1) . . . f1(xm)

...
. . .

...
fm(x1) . . . fm(xm)

∣∣∣∣∣∣∣∣
≥ 0 (2.9)

for all x1, . . . , xm ∈ I with x1 < x2 < . . . < xm. If the inequality in (2.9) is
strict, then {f1, . . . , fm} is called Chebyshev system. It is well known (see Karlin
and Studden (1966, Theorem II 10.2) that if {f1, . . . , fm} is a weak Chebyshev
system, then there exists a unique function

m∑
i=1

c∗i fi(t) = c∗T f(t), (2.10)

with the following properties

(i) |c∗T f(t)| ≤ 1 ∀ t ∈ I
(2.11)

(ii) there exist m points s1 < . . . < sm such that c∗T f(si) = (−1)i−1

i = 1, . . . ,m.

The function c∗T f(t) is called a Chebyshev polynomial and gives the best approx-
imation of the function f0(t) ≡ 0 by normalized linear combinations of the system
f1, . . . , fm with respect to the sup-norm. The points s1, . . . , sm are called Cheby-
shev points and need not be unique. They are unique if 1 ∈ span{f1, . . . , fm}
and I is a bounded and closed interval, where in this case s1 = minx∈I x, sm =
maxx∈I x. It is well known (see Studden (1968), Pukelsheim and Studden (1993)
or Imhof and Studden (2001) among others) that in many cases the E- and c-
optimal designs are supported at the Chebyshev points. Our first lemma shows
that this is also the case for the locally ej-optimal designs and the locally stan-
dardized E-optimal design which maximizes the function defined by (2.7).

Lemma 2.2. Assume that (for fixed b) the functions f1(·, b), . . . , f2k(·, b) in
(2.3) generate a Chebyshev system on the interval I with Chebyshev polynomial
fT (t, b)c∗ and Chebyshev points t∗1 < t∗2 < . . . < t∗2k. If any subsystem of 2k − 1
of the functions f1(·, b), . . . , f2k(·, b) is a weak Chebyshev system on the interval
I, then the following assertions are true:
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(a) For every j = 1, . . . , 2k the design ξ∗j =

(
t∗1 . . . t∗2k

w1,j . . . w2k,j

)
is ej-optimal for

the model (2.1), where the weights are defined by wi,j = [(−1)ieTi F
−1ej]

/[
∑2k

�=1(−1)�eT� F
−1ej ], i = 1, . . . , 2k and the matrix F is given by F =

(fi(t∗j , b))2k
i,j=1. Moreover, eTj M

−1(ξ∗j , 1, b)ej = (c∗j )2, where c∗j is the jth coef-
ficient of the Chebyshev polynomial defined by (2.10).

(b) The design ξ∗E = [1/(2k)]
∑2k

�=1 ξ
∗
� is locally standardized E-optimal in the

model (2.1) and λmin(C(ξ∗E, b)) = 1/(2k).

Proof. Note that the optimal designs do not depend on the parameters a1, . . . , ak

and we put aj = 1, j = 1, . . . , k without loss of generality. For a proof of (a),
consider a fixed j ∈ {1, . . . , 2k} and let h−2

j = eTj M
−1(ξ∗j , 1, b)ej = (

∑2k
�=1(−1)�eT�

F−1ej)2. Then it is easy to see that JFwj = hjej , where wj = (w1,j , . . . , w2k,j)T

and the matrix J is defined by J = diag(1, (−1), 1, . . . , (−1)) ∈ R
2k×2k. The

functions f1, . . . , fj−1, fj+1, . . . , f2k (for any j = 1, . . . , 2k) generate a Chebyshev
system on the interval I and consequently the quantities (−1)ieTi F

−1ej have the
same sign, which implies that the weights wi,j are all nonnegative. It now follows
from Elfving’s theorem (see Elfving (1952)) that the design ξ∗j is ej-optimal and,
from the results of Studden (1968), that hj = c∗j . Finally, the statement (b) is a
consequence of recent results of Imhof and Studden (2001) (see their Theorem
2.1(a) and the proof of Theorem 2.1(b)) and its proof is therefore omitted.

Note that Lemma 2.2 yields for all b that maxη λmin(C(η, b))=λmin(C(ξ∗E , b))
= 1/(2k), and the standardized maximin optimality criterion in (2.8) reduces to
the maximization of the function

min
b∈B

λmin(C(ξ, b)). (2.12)

The remaining part of this section is devoted to an equivalence theorem for the
optimality criterion (2.12). To this end let Π denote the set of all probability
measures defined on a σ-field on B, which contains all one-point sets. For a pair
(ξ, π) (where ξ is a design on I and π ∈ Π is a probability measure on B), for
which the minimum eigenvalue of the matrix C(ξ, b) has multiplicity one, we
define the vector pb = pb(ξ) by the relation

pT
b C(ξ, b)pb = λmin(C(ξ, b)) (2.13)

and introduce the function

Ψ(t, π) =
∫

B
|pT

b f(t, b)|2π(db). (2.14)
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Theorem 2.3. Assume that B ⊂ R
k is a compact set and that the assumptions

of Lemma 2.2 are satisfied for all b ∈ B. If for any design ξ with at least 2k
support points and all b ∈ B the minimum eigenvalue of the matrix

C(ξ, b) = K−1
1,bM(ξ, 1, b)K−1

1,b (2.15)

is simple and positive, then a design ξ∗ is standardized maximin E-optimal in
the model (2.1) if and only if there exists a probability measure π∗ ∈ Π such that

max
t∈I

Ψ(t, π∗) = min
b∈B

λmin(C(ξ∗, b)), (2.16)

where the function Ψ is defined by (2.14).
Moreover, if ξ∗ and π∗ satisfy the relation (2.16), then the maximum on the

left hand side is attained for any t ∈ supp(ξ∗) and the minimum on the right
hand side is attained for any b ∈ supp(π∗).

Proof. The proof is based on certain standard arguments of approximate optimal
design theory and for the sake of brevity we only indicate one direction. Let
ξ∗ denote a standardized maximin E-optimal design and define for α ∈ (0, 1),
ξα = (1 − α)ξ∗ + αξt, where ξt puts all mass at the point t ∈ I. Introducing
φ(ξ, b) = λmin(CK(ξ, b)), we obtain from the optimality of the design ξ∗

min
b∈B

φ(ξα, b) − min
b∈B

φ(ξ∗, b) ≤ 0. (2.17)

Next define
B∗ =

{
b ∈ B

∣∣∣min
β∈B

φ(ξ∗, β) = φ(ξ∗, b)
}

(2.18)

as the set of points where the minimum of the function φ(ξ∗, ·) is attained (note
that B∗ depends on the design ξ∗, which is not reflected by our notation) and
introduce the function Q(α) = minπ∈Π

∫
B φ(ξα, b)π(db) (again the dependence

on π is not reflected by our notation). Defining λ∗ = Q(0) = minb∈B φ(ξ∗, b) we
obtain from (2.17), (1/α){Q(α)−Q(0)} = (1/α){Q(α)−λ∗} ≤ 0, which gives in
the limit

∂

∂α
Q(α)

∣∣∣
α=0+

= min
π∈Π̃

∫
B

∂

∂α
φ(ξα, b)

∣∣∣
α=0+

π(db) ≤ 0. (2.19)

Here Π̃ =
{
π ∈ Π | ∫B φ(ξ∗, b)π(db) = λ∗

}
. Now φ(ξ, b) = pT

b C(ξ, b)pb , where pb

is the eigenvector of the matrix CK(ξ, b) corresponding to the minimum eigen-
value (which has multiplicity 1, by assumption), and therefore we obtain from
(2.19) that

min
π∈Π̃

∫
B

(pT
b f(t, b))2π(db) ≤ λ∗ (2.20)
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for any t. On the other hand we have∫
B

∫
I
(pT

b f(t, b))2ξ∗(dt)π(db) =
∫

B
φ(ξ∗, b)π(db) = λ∗ (2.21)

for any π ∈ Π̃, which implies maxt∈I
∫
B(pT

b f(t, b))2π(db) ≥ λ∗ for any π ∈ Π̃.
Comparing this inequality with (2.20) and observing (2.21) shows the existence
of a probability measure π∗ such that (2.16) holds. The remaining assertions of
the theorem are shown similarly and the proofs are left to the reader.

Remark 2.4. The theory developed so far is applicable for a broad class of
models including the cases, where the function ϕ(t, b) in (2.1) is given by 1/(t+ b),
e−tb, log(t + b). However, for the explicit determination of the standardized
maximin E-optimal designs, several steps have to be performed which differ
for the different models. As a consequence each model has to be investigated
separately. We illustrate this procedure for the Michaelis-Menten model in the
next section.

3. Standardized Maximin E-optimal Designs for the Michaelis-Menten
Model

Note that (1.1) is a special case of (2.1) [k = 1, ϕ(t) = t/(t + b)]. It is easy
to see from (2.9) that the functions

f1(t, b) =
t

t+ b
, f2(t, b) =

−t
(t+ b)2

(3.1)

generate a Chebyshev system on the interval (0, t0] and any single function has
the same property on the interval (0, t0]. Note that the point t = 0 is obviously
not a support of an optimal design for the Michaelis-Menten model (independent
of the optimality criterion). Therefore it is sufficient to consider this model only
on the interval (0, t0] and all assumptions of Lemma 2.2 and Theorem 2.3 are
satisfied. A straightforward calculation shows that the Chebyshev polynomial is
given by

c∗1f1(t, b) + c∗2f2(t, b), (3.2)

where the functions f1 and f2 are defined in (3.1), the coefficients and Chebyshev
points are given by

c∗1 = c∗1(b) =
t∗21 − b2

(t∗1)2
, c∗2 = c∗2(b) = −c

∗
1b(t

∗
1 + b)

t∗1 − b
, (3.3)

t∗1 = t∗1(b) =
√

2t0b
2t0 + 2b+

√
2b

; t∗2 = t0. (3.4)
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Moreover, from the Cauchy-Binet formula we obtain that, for any design ξ with
at least n ≥ 2 support points, the information matrix C(ξ, b) defined in (2.15)
is positive definite. Because it is a 2 × 2 matrix and the element in the position
(1, 2) does not vanish it must have a minimum eigenvalue of multiplicity one.
The following result is now an immediate consequence of Lemma 2.2.

Theorem 3.1.
(a) For j = 1, 2 the locally ej-optimal design for the Michaelis-Menten model is

given by

ξ∗j =

(
t∗1 t0

w∗
j 1 − w∗

j

)
, j = 1, 2, (3.5)

where the point t∗1 is defined in (3.4) and the weight at this point is ω1 =
[(2

√
2 + 3)b]/[(3

√
2 + 4)b+

√
2t0] or ω2 = 2−1/2.

(b) A standardized locally E-optimal design for the Michaelis-Menten model is
given by

ξ∗E =

(
t∗1 t0
w∗ 1 − w∗

)
, (3.6)

where the point t∗1 is defined in (3.4) and the weight at this point is w∗ =
[2(3 + 2

√
2)b+ t0]/[2

√
2((3 + 2

√
2)b+ t0)]. Moreover, λmin(C(M(ξ∗E , b)) =

1/2.

We now concentrate on the standardized maximin E-optimality criterion,
where the parameter space B is a “small” interval. In this case it can be proved
that the standardized maximin E-optimal design ξ∗ is always supported at two
points. Note that this fact is intuitively clear because in this case the standardized
maximin E-optimal design ξ∗ should be close to a locally standardized E-optimal
design. We mention that this fact has also been observed numerically for Bayesian
D-optimal designs (see Chaloner and Larntz (1989) or Haines (1995)), but to our
knowledge a rigorous proof of this property in a non-trivial context is not known.

Lemma 3.2. Consider the standardized maximin E-optimality criterion defined
by (2.8) with B = [b0 − ∆, b0 + ∆] ⊂ R

+,∆ > 0 in the Michaelis-Menten model
(1.1). If ∆ is sufficiently small,
(a) any standardized maximin E-optimal design for the Michaelis-Menten model

on the interval [0, t0] is supported at two points including the point t0;
(b) any measure π∗ defined by the identity (2.16) satisfies supp(π∗) = ∂B =

{b0 − ∆, b0 + ∆}.
Proof. For a proof of (a) we assume the contrary. This means that there
exists a sequence (∆n)n∈N of positive constants converging to zero such that for,
any n ∈ N, there exists a standardized maximin E-optimal design ξ∗n for the
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Michaelis-Menten model (with Bn = [b0 − ∆n, b0 + ∆n]) which has either at
least three support points or two support points in the interval [0, t0). Because
0 cannot be a support point, ξ∗n has at least two support points, say t∗1,n and
t∗2,n, in the interval (0, t0). Recalling the definition of the function Ψ in (2.14)
and Theorem 2.3, we obtain for each n ∈ N a probability measure π∗n such that
supp(π∗n) ⊂ Bn = [b0 − ∆n, b0 + ∆n],

Ψ(ti,n, π∗n) = λ∗n i = 1, 2, Ψ′(ti,n, π∗n) = 0; i = 1, 2, (3.7)

where the derivative of Ψ(·, π∗n) is taken with respect to the first argument and
λ∗n = minb∈Bn λmin(C(ξ∗n, b)). A standard argument shows that there exists a sub-
sequence (also denoted by ∆n) such that limn→∞ ti,n = t̄i i = 1, 2; limn→∞ λ∗n
= λ̄. From (3.7) and (2.14) we obtain (note that π∗n converges weakly to the Dirac
measure δb0)

Ψ(t̄i, δb0) = ( pT
b0f(t̄i, b0))2 = λ̄; i = 1, 2

(3.8)
Ψ′(t̄i, δb0) =

∂

∂t
(pT

b0f(t, b0))2
∣∣∣
t=t̄i

= 0; i = 1, 2.

Now the identity f(0, b0) = 0 shows that t̄i 	= 0, i = 1, 2. Moreover, if t̄1 =
t̄2, we would obtain the relations Ψ′(t̄1, δb0) = Ψ′′(t̄1, δb0) = 0, Ψ(t̄1, δb0) = λ̄,
Ψ(t, δb0) ≤ λ̄ ∀ t ∈ I. This is impossible because pT

b0
f(t, b0) is the Chebyshev

polynomial. A similar argument shows that t̄2 < t0. Consequently, we obtain
0 < t̄1 < t̄2 < t0 and (3.8) yields a contradiction to the Chebyshev property of
the system {f1(t, b), f2(t, b)} on the interval (0, t0). The conclusion follows.

For a proof of (b) we use Proposition 5.1 in the Appendix. To be pre-
cise, let s = 2, x = (x1, x2)T = (t, w)T , y = b and define for a design ξt,w =(

t t0
w 1−w

)
, the function G(t, w, b) = λmin(C(ξ, b)). Then it is easy to see

that G is twice continuously differentiable and assumption (a) of Proposition 5.1
is obviously satisfied. For a proof of assumption (b) we note that

G(t, w, b) = λmin(C(ξt,w, b)) = λmin(K−1
b M(ξt,w, 1, b)K−1

b )

= w(p̄bf1(t, b))2 + (1 − w)( p̄bf2(t0, b))2,

where p̄b =K−1
b pb, pb is an eigenvector of the matrix C(ξt,w, b)=K−1

b M(ξt,w, 1, b)
K−1

b corresponding to its minimum eigenvalue, the matrix M(ξt,w, 1, b) is defined
in (2.2), and the matrix Kb = K1,b is given by

K−1
b =

(
c∗1(b) 0

0 c∗2(b)

)
=

(
c∗1 0
0 c∗2

)
(3.9)
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with c∗1 = c∗1(b) and c∗2 = c∗2(b) defined by (3.3) (see Lemma 2.2a). Now the
equations

∂

∂t
G(t, w, b) =

∂

∂w
G(t, w, b) = 0 (3.10)

yield the system

w(( p̄T
b f(t, b))2)′ = 0

(3.11)
( p̄T

b f(t, b))2 = ( p̄T
b f(t0, b))2.

But this means that p̄bf(t, b) must be equal (up to a sign) to the Chebyshev
polynomial c∗T f(t, b) = c∗1f1(t, b)+c∗2f2(t, b) defined by (3.3). Therefore we obtain
p̄b = c∗ and the solution of the first equation in (3.10) with respect to t is uniquely
determined by the interior Chebyshev point t = t∗1 defined in (3.4). On the other
hand, we have K−1

b M(ξt,w, 1, b)p̄b = λmin(C(ξt,w, b))Kbp̄b and, inserting p̄b = c∗,
this also determines the weight w uniquely. This proves (b) in Proposition 5.1. In
fact it follows by these arguments that the unique solution t∗= t∗(b), w∗=w∗(b)
of the system (3.10) is precisely the interior support point and its corresponding
weight of the locally standardized E-optimal design given in part (b) of Theorem
3.1.

Finally, for a proof of (c), at Proposition 5.1, introduce x∗(b)=(t∗(b), w∗(b))T

and calculate in a straightforward manner

V = (x∗
′
(b))TJ(b)x∗(b)

= 2w∗(b)
( ∂
∂b
t∗(b)

)2[
p̄T

b f(t, b)
∂2

∂2t
p̄T

b f(t, b)
]∣∣∣

t=t∗(b)
.

Observing the Chebyshev property of the functions f1, f2, and that the Cheby-
shev polynomial p̄T

b f(t, b) = c∗T f(t, b) is maximal at t = t∗(b), we obtain V < 0,
and the third assumption of Proposition 5.1. Now this proposition shows that
for sufficiently small ∆ and any two point design ξt,w the function

Q(ξt,w, b) =
λmin(C(ξt,w, b))

max
η
λmin(C(η, b))

= 2λmin(C(ξt,w, b))

is concave as a function of b ∈ Bn = [b0−∆, b0+∆] (here the last identity follows
from Lemma 2.2). Consequently, observing part (a) we obtain for sufficiently
small ∆ > 0 that supp(π∗) = {b0 − ∆, b0 + ∆}, which proves the second part of
the assertion.

We conclude this section with a more explicit characterization of the stan-
dardized maximin E-optimal designs for the Michaelis-Menten model in the sit-
uation of the previous lemma.

Theorem 3.3. Consider the Michaelis-Menten model (1.1) and the standardized
maximin E-optimality criterion (2.8) with B = [b1, b2] where 0 < b1 < b2.
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(a) For sufficiently small b2 − b1 a standardized maximin E-optimal design is of

the form ξ∗ =
( t1 t0
w̄ 1−w̄

)
and the corresponding probability measure π∗ in

Theorem 2.3 is of the form π∗ =
( b1 b2
ᾱ 1−ᾱ

)
. Here (t1, ᾱ, w̄) is a solution

of the optimization problem maxt∈T maxt,∈[0,1] minα∈[0,1] g(t, w, α), where the
function g is defined by

g(t, w, α) = α
(
ub1 −

√
u2

b1
− vb1

)
+ (1 − α)

(
ub2 −

√
u2

b2
− vb2

)
,

with ub = (1/2) tr (K−1
b M(ξt,w, 1, b)K−1

b ) and vb = (detKb)−2|M(ξt,w, 1, b)|,
and the matrices K−1

b and M(ξ, 1, b) are defined in (3.9) and (1.2), respec-
tively.

(b) The design ξ∗ defined in part (a) is standardized maximin E-optimal if and
only if

max
t∈[0,t0]

ᾱ( pT
b1f(t, b1))2 + (1 − ᾱ)( pT

b2f(t, b2))2 = min
b∈[b1,b2]

(ub −
√
u2

b − vb).

Proof. Observing the notation C(ξ∗, bi) = K−1
bi
M(ξ∗, bi)K−1

bi
(i = 1, 2) it is easy

to see that λmin(C(ξ∗, bi)) = ubi
−
√
u2

bi
− vbi

. The proof now follows by a direct
application of Lemma 3.2 and Theorem 2.3.

4. A Numerical Example

In this section we take [0, t0] = [0, 10] and calculate standardized maximin
E-optimal designs for various sets of the form B = [1, b2]. From Theorem 3.3, the
optimal designs are supported at two points if b2 is close to b1 = 1. We calculated
the optimal two point designs with the aid of the first part of Theorem 3.3 and
checked its optimality in the class of all designs by an application of part (b) of
that theorem. If b2 = 1, 2, 3, . . . , 7 the standardized maximin E-optimal design is
in fact supported at only two points and the corresponding designs are depicted in
Table 4.1. The table also contains the standardized maximin E-optimal designs
in the class of all standardized locally optimal designs, that is,

ξ∗loc = argmax
{
min
b∈B

λmin(C(ξ, b))
maxη λmin(C(η, b))

∣∣∣ξ ∈ Ξ
}
, (4.1)

where Ξ denotes the class of all designs defined in part (b) of Theorem 3.1 by (3.6).
Note that the determination of these designs is substantially simpler compared
to the calculation of the standardized maximin E-optimal design within the class
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of all designs. It is of interest to investigate the corresponding efficiencies of these
designs:

eff(ξ) = min
b∈B

λmin(C(ξ, b))
maxη λmin(C(η, b))

. (4.2)

Table 4.1. The standardized maximin E-optimal designs for the Michaelis-
Menten model on the interval [0, 10] with B = [1, b2]. The table contains the
support points x1, x2 and weights w1, w2 of the design ξ∗ and ξ∗loc defined by
(2.8) and (4.1), while the minimum efficiency is defined by (4.2). In all cases
the standardized maximin E-optimal design is supported at two points.

b2 1 2 3 4 5 6 7

x1 10 10 10 10 10 10 10
ξ∗loc x2 0.6040 0.8134 0.9602 1.0708 1.1579 1.2286 1.2874

w1 0.5163 0.4856 0.4670 0.4543 0.4450 0.4378 0.4321
w2 0.4837 0.5144 0.5330 0.5457 0.5550 0.5622 0.5679

x1 10 10 10 10 10 10 10
ξ∗ x2 0.6040 0.8169 0.9693 1.0847 1.1757 1.2498 1.3111

w1 0.5163 0.4880 0.4727 0.4625 0.4550 0.4494 0.4449
w2 0.4837 0.5120 0.5273 0.5375 0.5450 0.5506 0.5551

ξ∗loc eff 1 0.9544 0.8946 0.8448 0.8050 0.7728 0.7465

ξ∗ eff 1 0.9544 0.8947 0.8451 0.8053 0.7733 0.7471

Obviously this quantity is decreasing with increasing values of b2, but even when
b2 = 7 the standardized maximin E-optimal design has an efficiency of 75 %.
Moreover, the standardized maximin E-optimal design ξ∗ and the design ξ∗loc

obtained by maximizing (2.8) in the subclass Ξ of all designs defined in Theorem
3.1(b) have nearly the same performance from a practical point of view.

If b2 ≥ 8 it follows from Theorem 3.3 that the best two point design is not
optimal within the class of all designs and the standardized maximin E-optimal
design has at least three support points. Some representive results are depicted
in Table 4.2, which also contains the two point designs obtained from the first
part of Theorem 3.3 and the designs ξ∗loc defined by (4.1). Our numerical results
show that for b2 ≥ 8 the standardized maximin E-optimal design is always sup-
ported at three points. We observe that the two point designs are quite efficient
compared to standardized maximin E-optimal designs supported at three points.
For example in the case b2 = 20, the two point designs yield approximately 60%
at (4.2) , while the standardized maximin E-optimal design ξ∗ gives a minimal
efficiency of approximately 67 %. Only for very large values is the difference
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between the two and three point designs notable (see the columns with b2 = 50
and b2 = 100 in Table 4.2).

Table 4.2. The standardized maximin E-optimal designs for the Michaelis-
Menten model on the interval [0, 10] with B = [1, b2]. The table contains
the support points xi and weights wi of the design ξ∗ and ξ∗loc defined by
(2.8) and (4.1) and the best two-point design ξ∗two defined in the first part of
Theorem 3.3, while the minimum efficiency is defined by (4.2). In all cases
the standardized maximin E-optimal design is supported at three points.

z2 8 10 12 14 16 18 20 50 100

x1 10 10 10 10 10 10 10 10 10
ξ∗loc x2 1.3371 1.4166 1.4777 1.5262 1.5657 1.5984 1.6261 1.8030 1.8753

w1 0.4275 0.4203 0.4151 0.4111 0.4079 0.4053 0.4032 0.3902 0.3853
w2 0.5725 0.5797 0.5849 0.5889 0.5921 0.5947 0.5968 0.6098 0.6147

x1 10 10 10 10 10 10 10 10 10
ξ∗two x2 1.3630 1.4464 1.5103 1.5610 1.6023 1.6367 1.6660 1.8508 1.9266

w1 0.4413 0.4358 0.4317 0.4286 0.4262 0.4243 0.4228 0.4130 0.4094
w2 0.5587 0.5642 0.5683 0.5714 0.5738 0.5757 0.5772 0.5870 0.5906

x1 10 10 10 10 10 10 10 10 10
x2 1.0985 0.9278 0.8757 0.8396 0.8105 0.7965 0.7974 0.8647 0.9119

ξ∗ x3 2.3340 2.8343 3.1096 3.3276 3.5114 3.6534 3.7205 4.0054 4.1 907
w1 0.4262 0.4002 0.3835 0.3711 0.3603 0.3520 0.3487 0.3362 0.3320
w2 0.4060 0.3549 0.3456 0.3398 0.3363 0.3350 0.3341 0.3353 0.3377
w3 0.1678 0.2449 0.2709 0.2890 0.3034 0.3130 0.3172 0.3285 0.3303

ξ∗loc eff 0.7246 0.6904 0.6649 0.6452 0.6295 0.6167 0.6060 0.5417 0.5172

ξ∗two eff 0.7253 0.6911 0.6657 0.6461 0.6304 0.6176 0.6070 0.5429 0.5185

ξ∗ eff 0.7270 0.7034 0.6906 0.6829 0.6779 0.6745 0.6720 0.6562 0.6499

From these results (and similar results not given) we draw the following con-
clusions. Only in cases with nearly no prior information about the unknown
parameter can the effort of calculating the standardized maximin E-optimal de-
sign within the class of all designs be justified. In all other cases the two point
designs obtained in Theorem 3.3 and the two point designs defined in (4.1) have
a very similar performance as the standardized maximin E-optimal designs. In
many cases the designs from Theorem 3.3 are already standardized maximin E-
optimal as can be checked by the second part of Theorem 3.3. On the other hand
the designs defined by (4.1) are practically indistinguishable from the designs in
Theorem 3.3, and substantially simpler to calculate. Therefore, if it can be as-
sumed that the parameter b varies in an interval [b1, b2] which is not too large,
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these designs provide a reasonable compromise between efficiently designing an
experiment for the Michaelis-Menten model and dealing with the complexity of
a non-differentiable optimization problem.
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Appendix

Proposition A.1. Let G : Ω×I → R, where Ω ⊂ R
s is a compact set and I ⊂ R

an arbitrary interval. Assume that the following conditions are satisfied.
(a) The function G is positive and twice continuously differentiable.

(b) For any y ∈ I, ∂
∂xG(x, y) =

(
∂

∂x1
G(x, y), . . . , ∂

∂xs
G(x, y)

)T
= 0 has a unique

solution x∗ = x∗(y) in Ω.
(c) For all y ∈ I we have (x∗′(y))TJ(y)x∗′(y) < 0, where for fixed y ∈ I

J(y) = ( ∂2

∂xi∂xj
G(x, y)

∣∣∣
x=x∗(y)

)si,j=1 is the Jacobian of G evaluated at the point

(x∗(y), y).
For any fixed x ∈ Ω the function Q(y) = Q(x, y) = G(x, y)/(maxx̄∈ΩG(x̄, y)) is
twice continuously differentiable with respect to y and, if x is sufficiently close to
x∗(y), we have Q′′(y) < 0.

Proof. A straightforward calculation shows

∂

∂y
G(x∗(y), y) =

∂

∂y
G(x, y)

∣∣∣
x=x∗(y)

+
s∑

i=1

∂

∂xi
G(x, y)

∣∣∣
x=x∗(y)

· ∂
∂y

(x∗i (y)). (A.1)

Observing condition (b) we obtain

∂2

∂2y
G(x∗(y), y) =

∂2

∂2y
G(x, y)

∣∣∣
x=x∗(y)

−
s∑

i,j=1

∂2

∂xi∂xj
G(x, y)

∣∣∣
x=x∗(y)

∂

∂y
x∗i (y)

∂

∂y
x∗j (y). (A.2)

The second derivative of the function Q (with respect to y) is ∂2

∂2yQ(y)= ∂2

∂2yQ(x, y)
= Q1(x, y) +Q2(x, y), where the functions Q1, Q2 are defined by

Q1(x, y) =
∂2

∂2y
G(x, y)H(y) −G(x, y)H ′′(y)

H2(y)
,
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Q2(x, y) = −2H ′(y){ ∂
∂yG(x, y)H(y) −G(x, y)H ′(y)}

H3(y)
,

andH(y) = maxx̄∈ΩG(x̄, y) = G(x∗(y), y). From (A.1) and condition (b) we have
H ′(y) = ∂

∂yG(x, y)
∣∣∣
x=x∗(y)

, which implies Q2(x∗(y), y) = 0. Similary, using (A.2),

it follows thatQ1(x∗(y), y) = [(x∗′(y))TJ(y)x∗′(y)]/H2(y) < 0 by assumption (c).
Consequently for any x ∈ Ω the function Q is twice continuously differentiable
and, if x̄ is sufficiently close to x∗(y), Q′′(y) = Q′′(x̄, y) < 0.
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