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Abstract: We discuss a problem occuring when a new manufacturing process is

investigated. For such applications, it is typical that the relationship among the

input variables and the output variables is unknown. After obtaining information

on this relationship by experiments, the goal is not only to make statistical inference

on this relationship, but to come to a decision for a problem that depends upon

it. In our context, the problem is to first test a certain hypothesis against an

alternative and then to estimate a certain parameter in case the hypothesis is

rejected. The main objective is to develop a solution for the problem as a whole,

i.e., a solution of the joint test and estimation problem. We determine the optimal

minimax procedure in a certain class by numerical integration. Moreover, we show

that the optimal two-stage minimax procedure is better than the optimal one-stage

minimax procedure.
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1. Introduction

In many applications one is interested in the relationship among the input
variables and the output variables of a process. After obtaining information on
this relationship by experiments, the goal is to infer this relationship and to come
to a decision for a problem that depends on it. In our context, we have to come to
a decision for a hybrid problem, namely first to test a certain hypothesis against
an alternative and then to estimate a certain parameter in case the hypothesis
is rejected. To be more concrete, we discuss such a practical problem in the
following technical, engineering context.

Example 1.1. Assume a company is to begin a manufacturing process. Typ-
ically, the production cost of one unit with given input variables (production
conditions) can be calculated. On the other hand, the relationship among input
variables and quality (characteristic features) of the product is not known. The
company has some idea of how selling price depends on different characteristic
features of the product. Hence, if the relationship of the production conditions
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and the characteristic features were known, the company would know how selling
price depends on production conditions. Since this relationship is unknown, it
is typical to obtain information on it through experiments in which production
conditions are systematically varied.

Let T be the set of experimental/special production conditions. We as-
sume the cost function c : T → [0,∞) is known and the selling price function
p : T → [0,∞) is unknown. Thus the selling price p(t) depends on t via the
unknown characteristic features of the product under t. The crucial function
g := p − c, usually unknown since p is. With samples produced under various
conditions, the company wants information on the characteristic features as they
depend on production condition, thus on p and hence on g. Two problems are
of interest.
• Is there a t0 ∈ T such that g(t0) > 0? If not, the company will dispense with
new production. We test H0 : g ≤ 0 against K : g(t0) > 0 for some t0 ∈ T .

• If K holds, where is g maximized? The company is interested in estimating
θ := argmaxt∈T g(t).

We develop a solution for the whole problem, for testing and estimation, by
introducing a natural loss function, see Section 2.1. Then we can show the
intuitive result that a two-stage minimax procedure is superior to a one-stage
minimax procedure (see Section 6). Note that for related problems concerning
clinical trials, certain tests and estimators have been investigated separately, see
for example Siegmund (1993), Coad (1995), Bauer, Bauer, and Budde (1998),
Friede, Miller, Bischoff, and Kieser (2000), but not together. Wetherill and
Glazebrook (1986) present decision theoretic methods for sequential problems,
but they do not focus on the hybrid test and estimation problem considered here.

In Section 2.2, we introduce the experimental model. A one-stage decision
procedure is described in Section 3, and its risk function is derived, and probabil-
ities of wrong decisions are presented. Section 4 deals with a two-stage procedure
for the experiments and its more complicated risk function. Confidence intervals
for the one- and two-stage procedures are developed in Sections 3 and 4, re-
spectively. An example with artificial data illustrates our two-stage design. The
results of Sections 3 and 4 are specialized to the normal distribution in Section
5 and the connection to large sample results is discussed there. In our opinion a
minimax procedure is to be preferred and, in Section 6, we determine the optimal
minimax procedure by numerical integration. If prior information is available, a
Bayes procedure can be numerically developed as well. Moreover, we show that
the two-stage minimax procedure is better than the one-stage minimax proce-
dure. Technical proofs of the assertions of Sections 3 and 4 are postponed to the
Appendix.
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2. The Loss Function and the Model

2.1. The loss function for the problem

Let a = 0 be the decision against production, a = 1 be the decision for
production. If H0 is true and a = 0, there is no loss: L = 0; if a = 1 and the
production condition s is chosen, the loss (per unit) is L = −g(s) ≥ 0. Next
assume that K is true. Then if a = 0 the company makes no profit instead
of the possible profit g(θ) and we take the loss to be L = g(θ); if a = 1 and
the production condition s is chosen, the loss is the difference between g(θ) and
g(s): L = g(θ) − g(s). Putting the four cases together, L(g, (a, s)) = 1{g(θ) >
0} · g(θ)− a · g(s).

2.2. The model for the experiments, assumptions and notation

For the results of the experiments, we assume

Y (ti) = g(ti) + εi, i = 1, . . . , n,

where n is the total number of experiments, ti, i = 1, . . . , n, are production
conditions and the εi are independent and identically distributed according to
a distribution function F . We first assume that F is an arbitrary, continuous
distribution function which is known. In Section 5, we specialize to independent,
normally distributed random variables with a common known variance and pos-
sibly different mean values. There is asymptotic justification for the assumption
of normality there. Usually, for the practical problem described in this paper, it
can be assumed that the regression function g is bounded.

Let t1, . . . , tk be the distinct experimental conditions among which the n ≥
k experimental conditions can be chosen for the experiments, and let T =
{t1, . . . , tk}. For the sake of simplicity we assume n is a multiple of k.

3. A One-Stage Decision Procedure

If one has no information about g, run m := n/k experiments at every t ∈ T

and let Yt,j, t ∈ T, 1 ≤ j ≤ m, be the result of the j-th experiment with
experimental condition t. In a first step, we estimate g(t) by Ȳt = 1

m

∑m
j=1 Yt,j.

We need a decision (a, s) ∈ {0, 1}×T based on the data Yt,j , t ∈ T, 1 ≤ j ≤ m. For
that consider ξ := maxt∈T g(t) = g(θ), where θ = argmaxt∈T g(t). If we know ξ,
we choose a = 1{ξ > 0}. Since ξ is unknown, we consider ξ̂ = max{Ȳt | t ∈ T}
and choose a = 1{ξ̂ > u}, where u ∈ IR is chosen suitably. The choice of u is
discussed in Section 5. Further, it is natural to choose the experimental condition
which corresponds to the largest value of {Ȳt | t ∈ T} as decision for s ∈ T . We
denote this estimator for θ by θ̂.
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Thus, we obtain a class of decision procedures (a, s) = (1{ξ̂ > u}, θ̂), u ∈
IR. Note that on one hand, the risk function depends on k, n, and u. These
parameters are fixed or can be chosen by the experimenter. On the other hand,
we have the unknown parameters g and F . We suppress the dependence of the
risk function on k and n and take them as fixed in the sequel. Then the risk
function for the above class of decision procedures is given by

RF (g, (1{ξ̂ >u}, θ̂)) = Eg,F (L(g, (1{ξ̂ > u}, θ̂)))
= 1{g(θ) > 0} · g(θ)− Eg,F (1{ξ̂ > u} · g(θ̂))
= 1{g(θ) > 0} · g(θ)−

∑
s∈T

g(s) · P (θ̂ = s, ξ̂ > u).

If there is no risk of confusion, we write P instead of Pg,F . Denote the distribution
of Ȳt = 1

m

∑m
j=1 Yt,j by F

(m)
g(t) .

Theorem 3.1. For the one-stage procedure, the risk function is given by

RF (g, (1{ξ̂ >u}, θ̂))=1{g(θ)>0} · g(θ)−
∑
s∈T

g(s) ·
∫ ∞

u

∏
t∈T\{s}

F
(m)
g(t) (z)F

(m)
g(s) (dz).

The proof is in the Appendix.

In the next theorem, we give a confidence interval for the optimal yield
ξ = g(θ). Of even greater practical appeal is an interval I with

Pg,F (g(θ̂) ∈ I) ≥ 1− α for all g : T →IR. (3.1)

Although the latter is formally not a confidence interval we use this language.
We derive only one-sided confidence intervals [l,∞). Confidence intervals of the
form (−∞, u] or [l, u] can be computed along the same lines.

Theorem 3.2. For the one-stage procedure, a confidence interval for g(θ) and
g(θ̂) of size 1 − α is given by [ξ̂ − d,∞), where d = (F (m)

0 )−1( k
√
1− α). Here,

(F (m)
0 )−1 is the quantile function of the distribution of Ȳt assuming g(t) = 0 for

all t ∈ T .

The theorem can be proved by showing infg∈IRT Pg,F (g(θ) ∈ [ξ̂ − d,∞)) =
P0,F (0 ∈ [ξ̂ − d,∞)) and by showing the same equality when θ is replaced by θ̂.

4. A Two-Stage Decision Procedure

A two-stage approach with an adaptive choice of the design for the second
stage seems to be a promising alternative to the one-stage procedure. In the first
stage, experiments are done to get a first impression about g. In a second stage,



MINIMAX TWO-STAGE PROCEDURE FOR COMPARING TREATMENTS 1137

only those input variables are used which have given good results in the first
stage. In Section 6, we show by numerical computations that minimax risk can
be reduced in this way.

Here, let n1 be the number of experiments at the first stage and n2 = n−n1

at the second. We assume m1 := n1/k1 experiments are carried out at each t ∈ T

at the first stage. With the information from the first stage, we select a subset
T2 of T and carry out m2 := n2/k2 experiments at each t ∈ T2.

It is natural to include those design points (input variables) in T2 which
gave the higher outcomes in the first stage. In particular we take those points
into the second stage where the outcome is not less than the maximum outcome
minus δ, say, where δ ≥ 0 is a fixed constant. For other selection rules, the same
methodology is possible with a (perhaps) more complicated analysis.

We modify the notation for the two-stage case. In the first stage, let Y1,t,j,
t ∈ T , 1 ≤ j ≤ m1, be the result of the j-th experiment with experimental
condition t and estimate g(t) by Ȳ1,t := 1

m1

∑m1
j=1 Y1,t,j. Then T2 = {t ∈ T |

Ȳ1,t ≥ maxs∈T {Ȳ1,s}− δ}. In the second stage, the results of our experiments are
Y2,t,j, t∈T2, 1 ≤ j ≤ m2. We define the estimator ξ̂ by ξ̂ = max

{
m1

m1+m2
· Ȳ1,t+

m2
m1+m2

· Ȳ2,t | t ∈ T2

}
. Note that m1

m1+m2
· Ȳ1,t + m2

m1+m2
· Ȳ2,t is equal to the

empirical mean 1
m1+m2

(
∑m1

j=1 Y1,t,j +
∑m2

j=1 Y2,t,j) of all observations at t. We
estimate θ by θ̂,the t ∈ T2 yielding the largest value.

We stress the dependence of the estimators ξ̂ and θ̂ on δ by denoting ξ̂δ :=
ξ̂, θ̂δ := θ̂, and we denote the distribution of Ȳr,t = 1

m

∑m
j=1 Yr,t,j, r = 1, 2, by

F
(m)
g(t) . The proof of the following theorem can be found in the Appendix.

Theorem 4.1. The risk function is RF (g, (1{ξ̂δ > u}, θ̂δ)) = 1{g(θ) > 0}·g(θ)−∑
s∈T g(s) · P (θ̂δ = s, ξ̂δ > u). Let γ1r := m1/(m1 + n2/r), γ2r := (n2/r)/(m1 +

n2/r), r = 1, . . . , k1. Then, for s ∈ T, u ∈IR,

P (θ̂δ = s, ξ̂δ > u)

=
k1∑

r=1

∑
a1∈T

∑
{a2,...,ar}⊆T\{a1}

1{s = aj for some j ∈ {1, . . . , r}}

·
∫ ∞

−∞

∫ z1

z1−δ
· · ·

∫ z1

z1−δ

∫ ∞

(u−γ1rzj)/γ2r

[
r∏

i=1
i�=j

F
(n2/r)
g(ai)

(
z∗+

m1

n2/r
(zj − zi)

)]
F

(n2/r)
g(aj ) (dz

∗)

·
[ ∏

a∈T\{a1,...,ar}
F

(m1)
g(a) (z1 − δ)

]
F

(m1)
g(ar)(dzr) · · ·F

(m1)
g(a2)(dz2) F

(m1)
g(a1)(dz1) (4.1)
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where the product
[

1∏
i=1
i�=1

. . .

]
:=

[ ∏
∅
. . .

]
:= 1.

To clarify the right side of (4.1), note that an arbitrary element a1 of T is
selected in the second of the three sums. Then if r > 1, every subset of T\{a1}
with r − 1 elements is chosen in the third sum. In the special case r = 1, the
set {a2, . . . , ar} is empty, the last sum-sign and the integrals corresponding to
a2, . . . , ar, that is

∫ z1
z1−δ · · ·

∫ z1
z1−δ and F

(m1)
g(ar)(dzr) . . . F

(m1)
g(a2)(dz2), are left out. For

example in the special case k1 = 2 (two design points in the first stage), the
probability P (θ̂δ = s, ξ̂δ > u) of Theorem 4.1 is (with s̄ such that {s, s̄} = T )∫ ∞

−∞

∫ ∞

(u−γ11z1)/γ21

1F (n2/1)
g(s) (dz∗)F (m1)

g(s̄) (z1−δ)F
(m1)
g(s) (dz1)

+
∑

a1∈T

∑
a2∈T\{a1}

1{s = aj for some j ∈ {1, 2}}

·
∫ ∞

−∞

∫ z1

z1−δ

∫ ∞

(u−γ12zj)/γ22

[
2∏

i=1
i�=j

F
(n2/2)
g(ai)

(
z∗+

m1

n2/2
(zj−zi)

)]
F

(n2/2)
g(aj)

(dz∗)F (m1)
g(a2)
(dz2)F

(m1)
g(a1)
(dz1).

Note, that the first summand corresponds to r = 1 and the rest of the expression
to r = 2.

Note further, that the limit of the probability P (θ̂δ = s, ξ̂δ > u) in Theorem
4.1 for δ → ∞ is the probability P (θ̂ = s, ξ̂ > u) of the one-stage case. This can
be seen by expression (A.1) in the proof of Theorem 4.1.

It is worth mentioning that probabilities of wrong decisions (P (θ̂δ �= θ),
P (ξ̂δ > u) if H0 is true and P (ξ̂δ ≤ u) if K is true) can be computed by using
formula (4.1). Theorem 3.2 can be modified for the two-stage case as follows.
The proof is contained in the Appendix.

Theorem 4.2. For the two-stage procedure, a confidence interval for g(θ) and
g(θ̂δ) of size 1 − α is given by [ξ̂δ − d,∞), where d is the solution of P0,F (ξ̂δ ≤
d) = 1− α.

Example 4.3. We illustrate our two-stage procedure with an example. We
assume errors are normally distributed with variance 1, that two different pro-
duction conditions t1, t2 are considered (k1 = 2, T = {t1, t2}) in the first stage.
The total number of observations is n = 40. n1 = n2 = 20 observations are made
in each stage. The parameters of the procedure u and δ are chosen according to
the minimax criterion: u = −0.01, δ = 0.5, see Section 6. For the simulation, we
assume the true values of the model parameters are g(t1) = −0.2, g(t2) = 0.2.
In the first stage, the mean values of our observations were 0.07 and 0.91 for t1
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and t2, respectively. Since the difference between the two mean values was larger
than δ = 0.5, we had to carry out n2 = 20 experiments with production condition
t2 in the second stage. The mean of these twenty observations was 0.29. Thus,
we have θ̂δ = t2, ξ̂δ = 0.50. The procedure rejects the hypothesis and decides
correctly that the production condition t2 is better than t1.

Next, we derive the probabilities of wrong decisions. The estimation error
is given by P (θ̂δ �= θ) = 1 − P (θ̂δ = θ, ξ̂δ > −∞) = 0.106. Generally, the corre-
sponding one-stage procedure has a lower estimation error, since here all observa-
tions are used for estimation. The estimation error of the one-stage procedure is
only slightly better: 0.103. The type II error of not rejecting the hypothesis (while
K is true in this example) is P (ξ̂δ ≤ u) = 1 − ∑

s∈T P (θ̂δ = s, ξ̂δ > u) = 0.142.
For the one-stage minimax procedure (see Section 6), the type II error is 0.163.

The solution d of the equation P0,F (ξ̂δ ≤ d) = 1 − ∑
s∈T P0,F (θ̂ = s, ξ̂δ >

d) = 1 − α is d = 0.40 (with 1 − α = 0.95). Hence, the confidence interval of
Theorem 4.2 for g(θ) and for g(θ̂δ) is [ξ̂δ − d,∞) = [0.10,∞).

5. Normally Distributed Errors and Large Sample Results

We specialize the above considerations and formulas by the following as-
sumptions.

Assumption 5.1. (a) The error distribution is given by theN(0, σ2)-distribution
(σ2 > 0). (b) There are two design points in the first stage.

Note that we only need the distribution of the mean of the experiments at
each design point and each stage, thus the assumption of normality is approxi-
matively true if the variance of the error distribution exists and m1 and m2 are
sufficiently large.

The corollary below follows from Theorem 3.1 and Theorem 4.1. The proof
is omitted but is available from the authors. The distribution function and the
density of N(0, 1) are denoted by Φ and φ, respectively.

Corollary 5.2. Suppose Assumption 5.1 holds, T = {s, s̄} and u ∈ IR is arbi-
trary. Then in the one-stage case (n2 = 0, n := n1), the joint distribution of θ̂
and ξ̂ is given by

P (θ̂ = s, ξ̂ > u) =
∫ ∞

u
Φ

(
(z−g(s̄))

√
n/2
σ

)
·φ

(
(z−g(s))

√
n/2
σ

)
·
√
n/2
σ

dz. (5.1)

In the two-stage case, we have

P (θ̂δ = s, ξ̂δ > u)

=
∫ ∞

−∞
Φ

(
−um1 + n2

σ
√
n2

+ z1
m1

σ
√
n2
+ g(s)

√
n2

σ

)
·Φ

(
(z1 − δ − g(s̄))

√
m1

σ

)
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·φ
(
(z1 − g(s))

√
m1

σ

)
·
√
m1

σ
dz1 +

∫ ∞

−∞

∫ δ

−δ

∫ ∞

u
m1+n2/2

n2/2

m1

√
n2/2
σ3

·Φ
(
(z0 − (z1 + z̄)

m1

n2/2
− g(s̄))

√
n2/2
σ

)
·φ

(
(z0 − z1

m1

n2/2
− g(s))

√
n2/2
σ

)

·φ
(
(z̄ + z1 − g(s̄))

√
m1

σ

)
·φ

(
(z1 − g(s))

√
m1

σ

)
dz0 dz̄ dz1. (5.2)

If there is no prior information it seems suitable to choose the minimax crite-
rion. Therefore, we minimize the maximal risk by choosing the parameter δ > 0
and the critical value u such that supg∈J T RF (g, (1{ξ̂δ > u}, θ̂δ)) is minimal,
where J is a set that contains the image of g. For practical reasons, we can
assume that the image of g is a subset of J = [bl, bu] where bl < 0 is the minimal
and bu > 0 is the maximal possible value of g, see Section 2.2. The minimiza-
tion of the maximal risk is done numerically by an appropriate discretization in
Section 6.

6. Computations

For the numerical computations, we have chosen k1 = 2 and F (x) = Φ(x),
see Assumption 5.1 with σ2 = 1. Further, we consider the setting n = 40
in the one-stage case and compare it with the setting n1 = 20, n2 = 20 (20
experiments in each stage) for the two-stage case. Recall that the parameters
c1 := g(s) and c2 := g(t) ({s, t} = T ) are unknown but bounded (see Section
5). We assume c1, c2 ∈ J := [−1, 1]. Here, we denote the risk function by
RF ((c1, c2), (1{ξ̂δ > u}, θ̂δ)) = RF (g, (1{ξ̂δ > u}, θ̂δ)).

For fixed values u ∈ U := {−0.10,−0.09, . . . , 0.10} in the one-stage case and
fixed values u ∈ U , δ ∈ ∆ := {0, 0.1, . . . , 1} in the two-stage case, we compute
the risk RF ((c1, c2), (1{ξ̂ > u}, θ̂)) and RF ((c1, c2), (1{ξ̂δ > u}, θ̂δ)), respectively,
for every c1, c2 ∈ C := {−1,−0.9, . . . , 1} using Theorem 4.1 and Corollary 5.2.
Selected values of the maximal risks maxc1,c2∈C RF ((c1, c2), (1{ξ̂ > u}, θ̂)) and
maxc1,c2∈C RF ((c1, c2), (1{ξ̂δ > u}, θ̂δ)) are reported for δ ∈ ∆ (in the two-stage
case) and u ∈ U in Table 1.

In the one-stage case, the computations yield u = 0.01 as the minimax
choice. In the two-stage case, it turned out that the minimax decision has the
values u = −0.01, δ = 0.5. A contour plot of RF ((c1, c2), (1{ξ̂δ > u}, θ̂δ)) for the
minimax two-stage procedure is shown in Figure 1 as a function of the true mean
values c1 and c2.

In Figure 2, we compare the risks of the optimal one-stage and the opti-
mal two-stage minimax procedure depending on the true mean values: contour
plot of the risk difference RF ((c1, c2), (1{ξ̂ > 0.01}, θ̂)) − RF ((c1, c2), (1{ξ̂0.5 >
−0.01}, θ̂0.5)) is given. This picture shows that for a large set of true mean values
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c1, c2, the two-stage minimax procedure has a lower risk than the one-stage min-
imax procedure. In some cases, however, the one-stage procedure has a slightly
lower risk (region in the upper right corner and the small region in the center of
the picture).

Table 1. Let F = N(0, 1), k1 = 2, n = 40 and additionally n1 = 20, n2 =
20 in the two-stage case. Then the maximal risk maxc1,c2∈C RF ((c1, c2),
(1{ξ̂δ > u}, θ̂δ)) is shown with respect of the true mean values c1, c2 ∈ C =
{−1,−0.9, . . . , 1} as a function of u and δ.

Two-stage One-stage
u δ = 0.0 δ = 0.2 δ = 0.4 δ = 0.5 δ = 0.6 δ = 0.8 δ = 1 δ =∞

-0.02 0.0803 0.0665 0.0649 0.0676 0.0698 0.0728 0.0744 0.0753
-0.01 0.0810 0.0676 0.0644 0.0639 0.0656 0.0687 0.0703 0.0713
0.00 0.0818 0.0687 0.0656 0.0651 0.0651 0.0651 0.0664 0.0673
0.01 0.0827 0.0700 0.0668 0.0665 0.0664 0.0665 0.0665 0.0664
0.02 0.0837 0.0714 0.0682 0.0679 0.0679 0.0679 0.0679 0.0679
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Figure 1. Contour plot of the risk RF ((c1, c2), (1{ξ̂δ > u}, θ̂δ)) of the mini-
max two-stage procedure (δ = 0.5, u = −0.01) as a function of the true mean
values c1, c2 ∈ [−1, 1]. The contour lines are drawn for 0.01, . . . , 0.06.
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Figure 2. Contour plot of the risk difference RF ((c1, c2), (1{ξ̂ > 0.01}, θ̂))−
RF ((c1, c2), (1{ξ̂0.5 > −0.01}, θ̂0.5)) between the minimax one-stage and the
minimax two-stage procedure as a function of the true mean values c1, c2 ∈
[−1, 1]. The contour lines are drawn for −0.001, 0, 0.001, . . . , 0.013.

In practical problems, the variance σ2 is usually unknown. It is also possible
to apply this minimax approach to unknown σ2 by computing the risks for values
σ2 in a certain set and then choosing the maximal risk. Further, it is also possible
to choose n1 ∈ {k1, . . . , n} for fixed n ∈IN according to the minimax criterion.

The numerical calculation of the risk was done on an IBM RS/6000 SP par-
allel computer with a C program. This C program used an integration routine
of the IMSL library for the multidimensional integration. This integration rou-
tine is based on iterated applications of Gauss’ formulas. The C code for the
computation is available from the authors upon request.

Remark. It is worth mentioning that the minimax procedures do not control the
type I error. Further, the sample size n is not adjusted in order to get required
probabilities of making correct decisions. Such modifications are possible but go
beyond the scope of this paper.
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Appendix

Proof of Theorem 3.1.

P (θ̂ = s, ξ̂ > u) = P (∀t ∈ T\{s} : Ȳs ≥ Ȳt, Ȳs > u)

=
∫ ∞

u
P (∀t ∈ T\{s} : z ≥ Ȳt) F

(m)
g(s)(dz) =

∫ ∞

u

∏
t∈T\{s}

F
(m)
g(t) (z) F

(m)
g(s) (dz).

Proof of Theorem 4.1. The first equation is obvious. Next, we compute the
probability P (θ̂δ = s, ξ̂δ > u) under the condition of the results of the first stage.
Let zt ∈ IR, t ∈ T, be fixed. Then define T2 = T2((zt)t∈T ) = {t ∈ T | zt ≥
max{zu | u ∈ T} − δ}, and let r := #T2. Note that θ̂δ ∈ T2 by the definition of
the decision rule. For s ∈ T2, u ∈IR, we have (where γ1r = m1/(m1+n2/r), γ2r =
(n2/r)/(m1 + n2/r))

P (θ̂δ = s, ξ̂δ > u | Ȳ1,t = zt, t ∈ T )
= P (∀t ∈ T2\{s} : γ1rzt + γ2rȲ2,t < γ1rzs + γ2rȲ2,s, γ1rzs + γ2rȲ2,s > u)

=
∫ ∞

(u−γ1rzs)/γ2r

P (∀t ∈ T2\{s} : γ2rȲ2,t < γ2rz
∗ + γ1r(zs − zt)) F

(n2/r)
g(s) (dz∗)

=
∫ ∞

(u−γ1rzs)/γ2r

∏
t∈T2\{s}

F
(n2/r)
g(t)

(
z∗ +

m1

n2/r
(zs − zt)

)
F

(n2/r)
g(s) (dz∗).

In the following, a1 is the index of the largest sample mean from the first stage.
Hence the probability P (θ̂δ = s, ξ̂δ > u) is

k1∑
r=1

∑
a1∈T

∑
{a2,...,ar}⊆T\{a1}

1{s = aj for some j ∈ {1, . . . , r}}

·P (∀b∈{a2, . . . , ar}, a∈T\{a1, . . . , ar} : θ̂δ=s, ξ̂δ>u, Ȳ1,a1>Ȳ1,b≥ Ȳ1,a1−δ>Ȳ1,a)

=
k1∑

r=1

∑
a1∈T

∑
{a2,...,ar}⊆T\{a1}

1{s = aj for some j ∈ {1, . . . , r}}

·
∫ ∞

−∞

∫ z1

z1−δ
· · ·

∫ z1

z1−δ

∫ z1−δ

−∞
· · ·

∫ z1−δ

−∞
P (θ̂δ=s, ξ̂δ > u | Ȳ1,ai=zi, i=1, . . . , k1)

F
(m1)
g(ak1

)(dzk1) . . . F
(m1)
g(ar+1)(dzr+1)F

(m1)
g(ar)(dzr) . . . F

(m1)
g(a2)(dz2)F

(m1)
g(a1)(dz1)

=
k1∑

r=1

∑
a1∈T

∑
{a2,...,ar}⊆T\{a1}

1{s = aj for some j ∈ {1, . . . , r}}

·
∫ ∞

−∞

∫ z1

z1−δ
· · ·

∫ z1

z1−δ

∫ ∞

(u−γ1rzj)/γ2r

[ r∏
i=1
i�=j

F
(n2/r)
g(ai)

(
z∗+

m1

n2/r
(zj − zi)

)]
F

(n2/r)
g(aj ) (dz

∗)
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[ ∏
a∈T\{a1,...,ar}

F
(m1)
g(a) (z1 − δ)

]
F

(m1)
g(ar)(dzr) . . . F

(m1)
g(a2)(dz2)F

(m1)
g(a1)(dz1). (A.1)

Proof of Theorem 4.2. We have to determine d ∈IR with

inf
g∈IRT

Pg,F (g(θ) ∈ [ξ̂δ − d,∞)) = 1− α

(and the same with θ replaced by θ̂δ). We claim that in both cases, the infimum
of the left side is attained for g(s) = 0, s ∈ T . Then the assertion of the theorem
follows immediately. The claim is only proved for g(θ̂δ).

Let ε̄1t = (
∑m1

j=1 ε1tj)/m1 so Ȳ1t = g(t) + ε̄1t, t ∈ T , and let zt, t ∈ T, be
arbitrary real numbers. Then, under the condition ε̄1t = zt, t ∈ T,

Pg,F (g(θ̂δ)∈ [ξ̂δ − d,∞) | ε̄1t = zt, t ∈ T )

= Pg,F (∃s ∈ T2 : ξ̂δ − g(s)≤d, θ̂δ=s | ε̄1t=zt, t ∈ T )
≥ Pg,F (∀s ∈ T2 : (m1 +m2)−1(m1zs +m2(Ȳ2s − g(s))) ≤ d | ε̄1t = zt, t ∈ T )

= P0,F (ξ̂δ ≤ d | ε̄1t = zt, t ∈ T ).

Note that, as in the proof of Theorem 4.1, T2 and k2 are fixed under the condition
ε̄1t = zt, t ∈ T . Since g and the numbers zt were arbitrary, the claim follows.
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