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WITH A CONSISTENT ESTIMATE OF THE MODE
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Abstract: The traditional maximum likelihood unimodal density estimator (Grenan-

der (1956)) pieces together two isotonic density estimators at a known mode. It

is discontinuous at the mode, and does not directly adapt to the case of unknown

mode. This paper presents an alternative unimodal density estimator in the form of

a generalized isotonic regression on a partial order which is continuous at the mode,

and moves easily to the case of unknown mode. A penalized version is introduced

to control the spiking at the mode, and is proved to be consistent everywhere. It

is shown that the penalized estimator also provides a consistent estimate of the

mode. Simulation results compare the penalized estimator to other nonparametric

estimators in the literature in terms of Hellinger distance, the squared error loss of

the estimate of the mode, and the height at the mode. Two important advantages of

the new estimator are that it provides the density estimate and the mode estimate

simultaneously, and that it is “fully automatic,” that is, no pre-grouping or bounds

on density height are necessary to prevent spiking.

Key words and phrases: Maximum likelihood, maximum penalized likelihood, non-

parametric density estimation, unimodal density estimation.

1. Introduction

Let x1 < x2 < · · · < xn be an ordered random sample from an unknown
unimodal density f with cumulative distribution function F and known mode
µ ∈ (xm−1, xm]. The nonparametric maximum likelihood estimator (NMLE)
maximizes the product

∏
f(xi) restricted to the class of unimodal densities.

Grenander (1956) showed that the NMLE f̄ is a step function with constant
values on the intervals [x1, x2), [x2, x3), . . . , [xm−1, µ), (µ, xm], (xm, xm+1], . . .,
(xn−1, xn], and zero otherwise. The value at µ can be taken to be the average
of f̄(µ−) and f̄(µ+). Prakasa Rao (1969) showed that the NMLE is consistent
for x �= µ and derived its asymptotic distribution. Woodroofe and Sun (1993)
showed that the estimate at the mode is inconsistent and presented a penalized
MLE (the PMLE) which is consistent everywhere.

It is difficult to use this estimator (penalized or unpenalized) in the case
of an unknown mode, because the likelihood is unbounded if µ is allowed to
vary. Several ways to overcome this problem have been suggested. The modified
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likelihood approach puts the mode at an observation xm and ignores the value
of the estimate at the mode, so that the expression to maximize is

∏
i�=m g(xi),

the modified likelihood. This also gives an estimate of the mode, as we can
loop though the data to find m to give the largest modified likelihood. The
“plug-in” approach is to estimate the mode first, to get Mn say, and to plug this
value in for µ in the known mode solution. Wegman (1970) showed that if Mn

is consistent, then f̄n,µ and f̄n,Mn have the same limit distribution at x �= µ.
Wegman (1970) also suggested using a modal interval of fixed length ε. This
eliminates the spiking problem since the density can not be larger than 1/ε, but
it is not consistent unless the underlying f also has a modal interval of length at
least ε.

Bickel and Fan (1996) propose a linear spline MLE with pregrouping to
control spiking. The pregrouping technique imposes a grid on the real line: the
“modified empirical distribution function” has jumps only at the partition points,
with jump heights corresponding to the numbers of observations falling into the
partition interval. If the lengths of the partition intervals are o(n−1/2), then the
pregrouping MLE performs similarly to the plug-in MLE.

In the next section we show that an alternative partial ordering forces the
step function to have constant value on (xm−1, xm], which solves the problem of
unknown mode and provides for an estimate of the mode. A term is added to the
likelihood to penalize spiking, producing the penalized alternative unimodal den-
sity estimator. Local and global consistency results are provided. The estimator
of the mode is shown to be consistent in Section 3. In Section 4, the density and
mode estimators are compared to existing estimators through simulations. The
proofs of theorems and propositions that are longer than a few lines are relegated
to Section 5.

2. Alternative Penalized Estimator

The NMLE of Grenander is a step function, with jumps at the data and at
the known mode µ. It is the result of separate monotone regressions on (−∞, µ)
and (µ,∞) and thus is not continuous at µ, nor does the method move easily to
the case where µ is unknown. The alternative nonparametric MLE (ANMLE)
proposed here is also a step function, but with steps only at the data, not at the
mode. It is the result of a single isotonic regression on a partial order, and moves
easily to the case where µ is unknown.

Assuming the (known) mode µ is in (xm−1, xm], the alternative partial order-
ing has “upper sets” U = {u1, . . . ,m, . . . u2} and “lower sets” L = {2, . . . , l1} ∪
{l2, . . . , n} where l1 < m and l2 > m; or l1 = l2 = m. The solution provided by
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generalized isotonic regression is f̃(x) = θ̃j, for x ∈ (xj−1, xj ]. The values of the
estimate are

θ̃j = max
U :j∈U

min
L:j∈L

(l1 − u1 + 1)+/n + (u2 − l2 + 1)+/n

(xl1 − xu1−1)+ + (xu2 − xl2−1)+
, (1)

where (x)+ = max(0, x). Here u1, u2, l1, and l2 are understood to define upper
and lower sets. For a treatment of generalized isotonic regression, see Robertson,
Wright, and Dykstra (1988) (henceforth called RWD), Section 1.5. Note that
both the numerator and denominator are always greater than 0, since both L
and U must contain j. At the modal interval, we have

θ̃m = max
u1≤m≤u2

(u2 − u1 + 1)/n
xu2 − xu1−1

. (2)

Woodroofe and Sun (1993) showed that the traditional NMLE for a nonin-
creasing density on (µ,∞) is inconsistent at the mode and proposed a penalized
estimator which they showed to be consistent everywhere. The ANMLE is also
inconsistent at µ. The result is similar to that of Woodroofe and Sun; the proof
is more complicated by the fact that m is a random variable (see Section 5).

Theorem 1. θ̃m
f(µ) ⇒ ∆, as n→ ∞ where ∆ = sup

k>0,j<0,k>j

k−j
Yj+1+···+Yk

, and

. . . , Y−1, Y0, Y1, . . . are i.i.d. standard exponential random variables.

Note that P (∆ > 1) = 1 by the Strong Law of Large Numbers. To get
the penalized alternative estimator (APMLE), we include a penalty term in the
likelihood function to reduce the estimate at the mode, and introduce a Lagrange
multiplier γ to constrain the area to be unity. For penalty parameter α > 0, we
want to maximize:

n∑
i=2

log θi − nαθm − nγ
n∑

i=2

(xi − xi−1)θi =
n∑

i=2

[log θi − nwiθi] (3)

where wi = γ(xi − xi−1) for i �= m and wm = α + γ(xm − xm−1).

The APMLE (denoted f̂(x) = θ̂j for x ∈ Ij) is equivalent to the unpenalized
estimator of a sample with the data moved slightly: if each xi is multiplied by
γ, and the value α is added to the new xm, the resulting unpenalized estimator
is identical to the penalized estimator for the original data. At the mode, this is

θ̂m(γ) = max
u1≤m≤u2

(u2 − u1 + 1)/n
α + γ(xu2 − xu1−1)

, (4)

which is decreasing and convex in γ.
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From Theorem 1.3.6 of RWD, we have
∑n

i=2 θ̂iwi = 1 or

αθ̂m(γ) + γ
n∑

i=2

(xi − xi−1)θ̂i(γ) = 1.

The area constraint is
∑n

i=2(xi − xi−1)θ̂i(γ) = 1, so that we must solve the
equation αθ̂m(γ) + γ = 1. Define φu1,u2(γ) = 1 − α(u2−u1+1)/n

α+γ(xu2−xu1−1) . Then we must
solve the following for γ: γ = min

u1≤m≤u2

φu1,u2(γ).

Each φu1,u2 is increasing and concave, with φu1,u2(1) < 1 and φu1,u2(0) > 0
for u2 − u1 + 1 < n, so each equation γ = φu1,u2(γ) has a unique solution.
Therefore,

γ̂ = min
u1≤m≤u2

{1
2
(1 − α

xu2 − xu1−1
) +

[
(

α

2(xu2 − xu1−1)
)2 +

α

2(xu2 − xu1−1)

(1 − 2(u2 − u1 + 1)
n

) +
1
4
]1/2

}

For convenience of notation, θ̂ without an argument is meant to be θ̂(γ̂). For
the following proof of consistency, we write θ̂m,n for the above θ̂m to emphasize
the dependence on n. We require

0 < f(µ) < ∞, 0 < α = αn ↘ 0, and nα ↗ ∞, (5)

and that f be continuous at the mode. Note that the index m of the modal
interval depends on n and the data. We ought to write m(n) or mn but that
would make the notation too cumbersome. Under (5), we get consistency at the
mode. The proof of the following is in Section 5.

Proposition 1. For any 0 < γ0 < 1, p − lim
n→∞ sup

γ0≤γ≤1
|γθ̂m,n(γ) − f(µ)| = 0.

Corollary 1. p − lim
n→∞

1−γ̂n

α = f(µ).

Proof. To apply the proposition, we need to show that there is a γ0 > 0 such that
with probability approaching 1, γ̂n > γ0. If αθ̂m,n(1/2) < 1/2, then γ̂n > 1/2.
Since P{αθ̂m,n(1/2) ≥ 1/2} → 0 as n → ∞, 1−γ̂n = αθ̂m,n(γ̂n) ≤ αθ̂m,n(1/2) →p

0 and therefore(1 − γ̂n)/α →p f(µ).

Corollary 2. p−limn→∞ θ̂m,n(γ̂n)/f(µ) = 1.

Proof. We have θ̂m,n(γ̂n) = (1 − γ̂n)/α.

To show consistency for x �= µ, we first prove that the unpenalized estimator
is consistent away from the mode, then that the penalized estimator is not very
different from the unpenalized estimator for x �= µ. In the following, we write
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u1(n) and u2(n) for the previous u1 and u2, to emphasize dependence on n. The
first step is to prove that the length of the modal interval for the unpenalized
estimator goes to zero (see Section 5 for proof).

Proposition 2. Let f be strictly unimodal with mode µ, and let θ̃ be defined
as in (1). Let xu1(n)−1 and xu2(n) define the modal interval as in (2). Then
xu2(n) →p µ and xu1(n)−1 →p µ.

Let F̃n be the distribution function for the unpenalized alternative unimodal
estimator, and let f̃n(x) = θ̃k,n for x ∈ (xk−1, xk]. It is easy to see that F̃n is the
least concave majorant of Fn for x ≥ xu2(n) and the greatest convex minorant
of Fn for x ≤ xu1(n). The following lemma is analogous to “Marshall’s Lemma”
associated with the traditional estimator.

Lemma 1. supx≥xu2(n)
| F̃n(x) − F (x) | ≤ supx≥xu2(n)

| Fn(x) − F (x) |,
supx≤xu1(n)−1

| F̃n(x) − F (x) | ≤ supx≤xu1(n)−1
| Fn(x) − F (x) |.

Proof. For the first statement, let εn = supx≥xu2(n)
| Fn(x) − F (x) |. Since

F (x) + εn is concave and majorizes Fn(x) for x ≥ xu2(n), we have F (x) − εn ≤
Fn(x) ≤ F̃n(x) ≤ F (x) + εn. The proof for the second statement is similar, so
that the unpenalized distribution function is consistent for x on either side of
the modal interval. Next, we show that the unpenalized density estimator is
consistent for x �= µ.

Proposition 3. Let f be strictly unimodal with mode µ, and let θ̃ be defined
as in (1). For every x �= µ, f̃n(x) → f(x), in probability as n → ∞. Further,
| f̃n(x) − f(x) |= Op(n−1/4).

We obtain the global consistency of f̂n by showing that f̂n and f̃n do not
differ substantially away from the mode. Let h(f, g) be the Hellinger distance
between the densities f and g, that is,

h2(f, g) =
∫ (√

f −√
g
)2

dx = 2 − 2
∫ √

fgdx. (6)

Theorem 2. h2(f̃n, f̂n) ≤ α[f̃n(µ) − f̂n(µ)]

The corollary follows by noting that f̂n(µ) − f̃n(µ) is stochastically bounded.

Corollary 3. If α = αn → 0 as n → ∞, then h2(f̃n, f̂n) → 0 in probability.

3. Estimation of the Mode

If the mode is unknown, estimates f̂(i) of the density can be obtained by
assuming that the mode is in the interval (xi−1, xi], for i = 2, . . . , n, and the
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estimate chosen which maximizes the likelihood. This gives an estimate of the
mode. If m̂ maximizes f̂(i) over i, we can estimate the mode to be the midpoint of
the unimodal interval, or µ̂n = (xû1(n)−1 + xû2(n))/2. We show this is consistent
and, in Section 4, we compare it to the other mode estimators.

Suppose x1, . . . , xn is a sorted random sample from f , and Fn is the empirical
distribution function. Let h(f, g) be the Hellinger distance between the densities
f and g, as in (6).

Theorem 3. Let f be continuous and strictly unimodal with mode µ, and∫ √
fdx < ∞. Let θ̂ be the penalized alternative density estimator, with αn is as

in (5). Then
h2(f, f̂n) → 0. (7)

This theorem and Lemma 3 of Section 5 give the following.

Corollary 4. µ̂n →p µ.

4. Simulations

We compare both the density estimator and the mode estimator to other
nonparametric estimators through simulations, with data simulated from four
densities.
1. the standard gaussian density,
2. the standard exponential density,
3. an asymmmetric density (f(x)=2[exp(−x)I{x>0}+exp(2x)I{x<0}]/3),
4. the gamma density with shape parameter 2, shifted so the mode is at the

origin.
For the choice of the penalty parameter α, we refer to the results of Woodroofe

and Sun (1993). For the derivation of the asymptotic distribution of the value
of the PMLE at the mode, they require certain choices of α that depend on
the derviatives of the underlying density at the mode. This suggests the use of
α = n−3/5 for densities 1 and 4, and α = n−2/3 for 2 and 3. We calculate the
APMLE for both choices. The Fortran 90 code for the APMLE can be found at
www.stat.uga.edu/∼mmeyer/abs10.html.

One thousand samples from each of the densities were generated, for each of
three sample sizes: n=40, 100, and 200. For each of these 12,000 samples, four
estimates of the density were calculated, using the APMLE with both choices
of α, the kernel estimator, and the modified likelihood method. For the kernel
estimates, we use

f̂K(x) =
1

nh

n∑
i=1

K

(
Xi − x

h

)
,
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where K(·) is the standard normal density, h = 1.06sn−1/5, and s is the sample
standard deviation. See Figure 1 for each estimation method. The true density
is shown as a dashed line in each plot.
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Figure 1. Typical Density Estimators shown with True Density.

The first table contains the average h2(g, f) for estimates g and underlying
densities f . We see that for the Gaussian density, the kernel estimator performs
well, but has trouble with peaks or finite support. This can also be seen in the
figure. The Hellinger distance for the APMLE is not much affected by the choice
of α.
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Table 1

Hellinger Distance Results (mean, SD)

Density n APMLE, α=n−3/5 APMLE, α=n−2/3 Kernel Modified

1 40 0.078 (1.1e-3) 0.078 (1.0e-3) 0.022 (4.3e-4) 0.12 (2.0e-3)

100 0.039 (4.3e-4) 0.039 (4.3e-4) 0.012 (2.3e-4) 0.056 (8.5e-4)

200 0.023 (2.2e-4) 0.024 (2.3e-4) 0.0074 (1.3e-4) 0.040 (4.6e-4)

2 40 0.078 (9.4e-4) 0.077 (9.4e-4) 0.19 (1.2e-3) 0.10 (1.7e-3)

100 0.038 (4.3e-4) 0.037 (4.2e-4) 0.17 (7.0e-4) 0.054 (3.2e-3)

200 0.023 (2.4e-4) 0.022 (2.6e-4) 0.15 (4.6e-4) 0.031 (1.1e-3)

3 40 0.085 (8.9e-4) 0.083 (8.9e-4) 0.046 (7.0e-4) 0.11 (2.3e-3)

100 0.043 (4.0e-4) 0.042 (3.8e-4) 0.029 (3.7e-4) 0.060 (1.9e-3)

200 0.026 (2.1e-4) 0.025 (2.1e-4) 0.020 (2.2e-4) 0.035 (1.2e-3)

4 40 0.073 (9.2e-4) 0.073 (9.4e-4) 0.089 (8.6e-4) 0.011 (1.7e-3)

100 0.037 (4.5e-4) 0.037 (4.2e-4) 0.065 (4.8e-4) 0.055 (1.1e-3)

200 0.022 (2.2e-4) 0.022 (2.3e-4) 0.052 (3.0e-4) 0.0452 (1.2e-3)

Five estimates of the mode are compared, using APMLE with both choices
of α, the kernel estimator, the Robertson-Cryer method, and a “Bayes” estimate.
The Bayes estimate is taken from Bickel and Fan (1996), and is calculated by
weighting the data by the modified likelihood:

m̂B =
∑

i

L(i)∑
j L(j)

xi,

where L(i) is the likelihood of the MLE with the ith datapoint deleted. Robertson
and Cryer (1974) proposed a procedure for estimating the mode which chooses
a sequence of subintervals where the sample points are the most dense. Given a
random sample from an unknown unimodal distribution, integers {ki} and l, the
first step is to find the smallest interval containing k1 observations, say (l1, r1).
Next, find the smallest subinterval of (l1, r1) containing k2 observations, and
continue until the interval has less than l observations. Robertson and Cryer
give conditions on the l and {ki}, depending on the sample size n, that ensure
consistency. For the penalized alternative estimator, if the estimated modal
interval includes either x1 or xn, we take the mode to be that endpoint. The mode
estimate comparisons are summarized in Table 2. Again, the kernel estimator
is best for the Gaussian density, but the AMPLE is a good choice for the other
three densities. Note that for the Gamma density, the kernel has smaller SEL
but greater bias compared to the AMPLE. The APMLE mode estimate seems
not to be sensitive to the choice of α.
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Table 2

Mode Estimation Results (mean, ASEL)

Dens n APMLE, α1 APMLE, α2 Kernel R-C Bayes

1 40 -4.1e-3 (0.18) -8.7e-3 (0.20) -4.2e-3 (0.11) -5.4e-3 (0.18) 0.062 (0.16)

100 0.020 (0.11) -0.014 (0.15) 0.014 (0.068) 0.027 (0.14) 0.025 (0.11)

200 -3.8e-3 (0.084) -0.012 (0.11) -1.3e-3 (0.046) -2.7e-3 (0.098) -5.4e-3 (0.081)

2 40 0.12 (0.051) 0.16 (0.074) 0.52 (0.29) 0.34 (0.16) 0.36 (0.18)

100 0.13 (0.045) 0.14 (0.046) 0.47 (0.23) 0.24 (0.083) 0.27 (0.095)

200 0.11 (0.030) 0.12 (0.031) 0.43 (0.19) 0.19 (0.052) 0.21 (0.058)

3 40 0.21 (0.091) 0.20 (0.084) 0.28 (0.097) 0.21 (0.093) 0.23 (0.11)

100 0.16 (0.043) 0.14 (0.041) 0.24 (0.066) 0.15 (0.53) 0.17 (0.059)

200 0.13 (0.026) 0.12 (0.025) 0.21 (0.049) 0.11 (0.031) 0.13 (0.034)

4 40 0.19 (0.34) 0.23 (0.34) 0.39 (0.24) 0.30 (0.29) 0.35 (0.32)

100 0.17 (0.16) 0.17 (0.20) 0.30 (0.13) 0.19 (0.20) 0.23 (0.17)

200 0.13 (0.12) 0.14 (0.16) 0.24 (0.080) 0.15 (0.15) 0.19 (0.13)

Table 3 contains comparisons of the heights at the mode of the APMLE
estimates with the kernel estimates. Here the choice of α is important. The
smaller value allows more peaking at the mode, which makes it more appropriate
for densities 2 and 3. The kernel estimates are too short for the peaked densities.

Table 3

Mode Height Estimation Results (mean, ASEL)

Density n APMLE, α1 APMLE, α2 Kernel

1 40 0.42 (4.2e-3) 0.44 (6.9e-3) 0.38 (3.3e-3)
ht=0.3989 100 0.41 (2.2e-3) 0.44 (4.4e-3) 0.38 (1.8e-3)

200 0.41 (1.7e-3) 0.44 (3.5e-3) 0.38 (1.2e-3)
2 40 0.65 (0.14) 0.70 (0.11) 0.49 (0.26)

ht=1.0 100 0.69 (0.10) 0.75 (0.073) 0.53 (0.23)
200 0.73 (0.077) 0.78 (0.054) 0.55 (0.20)

3 40 0.54 (0.053) 0.59 (0.036) 0.45 (0.098)
ht = 0.75 100 0.58 (0.036) 0.62 (0.025) 0.47 (0.081)

200 0.59 (0.028) 0.63 (0.018) 0.49 (0.067)
4 40 0.38 (3.9e-3) 0.41 (6.8e-3) 0.30 (6.3e-3)

ht=0.3679 100 0.39 (2.3e-3) 0.41 (4.7e-3) 0.32 (3.3e-3)
200 0.038 (1.5e-3) 0.41 (3.9e-3) 0.33 (2.3e-3)

5. Proofs

Proof of Theorem 1. Since F (x1), F (x2), . . . , F (xn) are equal in distribution
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to the order statistics from a random sample from a uniform density, we have
[F (x1), . . . , F (xn)] =D [Γ1, . . . ,Γn]/Γn+1, where Γi = Y1 + · · · + Yi, Yi ∼i.i.d.

Exp(1). Since m = #{k ≤ n : Xk ≤ µ}, m is a binomial random variable
with parameters F (µ) and n. The conditional joint distribution of the random
variables F (xk)−F (xj), with 1 ≤ j < m ≤ k ≤ n, given m, may be described as
follows. Let

F−(x) =
F (x)
F (µ)

, x ≤ µ and F+(x) =
F (x) − F (µ)

1 − F (µ)
, x ≥ µ,

so that F (xk)−F (xj) = F (µ) [1 − F−(xj)]+ [1−F (µ)] [F+(xk)] for 1 ≤ j < m ≤
k ≤ n. Now the conditional joint distribution of x1, . . . , xm−1, given m, is the
same as the distribution of order statistics of a sample of size m − 1 from F−;
and, similarly, the conditional joint distribution of xm, . . . , xn is the same as the
distribution of order statistics of a sample of size n − m + 1 from F+. So the
conditional joint distribution of F (xk) − F (xj), 1 ≤ j < m ≤ k ≤ n, given m, is
the same as that of

F (µ) × Yj−m + · · · + Y0

Y−m+1 + · · · + Y0
+ [1 − F (µ)] × Y1 + · · · + Yk−m+1

Y1 + · · · + Yn−m+1
,

1 ≤ j < m ≤ k ≤ n, where . . . , Y−1, Y0, Y1, . . . are i.i.d. standard exponential
random variables. Note that

nF (µ)
Y−m+1 + · · · + Y0

→ 1, (8)

n[1 − F (µ)]
Y1 + · · · + Yn−m+1

→ 1 (9)

in (unconditional) probability as n → ∞, since (Y−m+1 + · · · + Y0)/m → 1 and
(Y1 + · · · + Yn−m+1)/(n − m + 1) → 1, and m/n → F (µ). Let

∆d
n = sup

j<m,k≥m,k−j≥d

(k − j)/n
F (xk) − F (xj)

. (10)

Lemma 2. ∆d
n →D ∆d, where

∆d = sup
k≥0,j<0,k−j≥d

k − j

Yj+1 + · · · + Yk
.

Proof. Let Gn(m; y) = P{∆d
n ≤ y | m} and let G denote the distribution of ∆d.

Then it follows directly from (8) and (9) that Gn(m; ·) →D G with probability 1,
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in the Levy metric say. To show that the unconditional distributions converge,
let Hn(y) = P (∆d

n ≤ y) and let h be any a bounded continuous function. Then∫
R

hdHn =
∫ [∫

R

h(y)Gn(m; dy)
]
dP

and the integrand converges boundedly to
∫

R
hdG with probability 1.

Proof of the Theorem. Fix d ≥ 1. For each n, choose l1 and l2 such that
l1 ≤ m ≤ l2 and d = l2 − l1 + 1. Then

min
l1≤u1≤m≤u2≤l2

F (xu2) − F (xu1−1)
xu2 − xu1−1

× max
l1≤u1≤m≤u2≤l2

(u2 − u1 + 1)/n
F (xu2) − F (xu1−1)

≤ θ̃m,n = max
u1≤m≤u2

F (xu2) − F (xu1−1)
xu2 − xu1−1

× (u2 − u1 + 1)/n
F (xu2) − F (xu1−1)

≤ f(µ) max
u1≤m≤u2

(u2 − u1 + 1)/n
F (xu2) − F (xu1−1)

= f(µ)∆1
n.

Letting first n → ∞ then d → ∞, we have θ̃m,n

f(µ) →D ∆1 = ∆.

Proof of Proposition 1. Choose 0 < γ0 < 1. Since γθ̂m,n(γ) is increasing in
0 < γ ≤ 1, we have

P
{

sup
γ0≤γ≤1

| γθ̂m,n(γ) − f(µ) |≥ ε
}

≤ P{θ̂m,n(1) − f(µ) ≥ ε} + P{γ0θ̂m,n(γ0) − f(µ) < −ε}
for all ε > 0. So it suffices to show

p− lim
n→∞[θ̂m,n(1) − f(µ)]+ = 0 (11)

and
p− lim

n→∞[γθ̂m,n(γ) − f(µ)]− = 0, for all γ0 ≤ γ ≤ 1. (12)

Let k = k(n) be the smallest integer so that k/n ≥ √
α. For each n, choose

indices u1 and u2 such that u1 ≤ m ≤ u2 and u2 − u1 + 1 = k. Conditional on
m, we have (F (xu2) − F (xu1−1))/((u2 − u1 + 1)/n) is equal in distribution to

nF (µ)
Y−m+1+···+Y0

[Yu1−m + · · · + Y0] + n[1−F (µ)]
Y1+···+Yn−m

[Y1 + · · · + Yu2−m+1]

u2 − u1 + 1
,

which converges in probability to 1 as n → ∞ then k → ∞, using (8) and (9).
Since (u2−u1 +1)/n ≤ √

α+1/n → 0, we have (u2−u1 +1)n/[(xu2 −xu1−1)] →p

f(µ) for the specially chosen sequence of u1 and u2. Using again that α = o(k/n),
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p−limn→∞[γ(u2 − u1 + 1)/n]/[α + γ(xu2 − xu1−1)] = f(µ), ∀γ0 ≤ γ ≤ 1, for the
sequence of u1 and u2. Now by (4),

γθ̂m,n(γ) = max
u1≤m≤u2

γ(u2 − u1 + 1)/n
α + γ(xu2 − xu1−1)

≥ γ(u2 − u1 + 1)/n
α + γ(xu2 − xu1−1)

, (13)

for all u1, u2 such that u1 ≤ m ≤ u2, and so p− limn→∞[γθ̂m,n(γ) − f(µ)]− =
0,∀γ0 ≤ γ ≤ 1. To show (11), note that

θ̂m,n(1) = max
u1≤m≤u2

(
(u2 − u1 + 1)/n

F (xu2) − F (xu1−1)
× F (xu2) − F (xu1−1)

α + (xu2 − xu1−1)

)

≤ max
u1≤m≤u2

(
(u2 − u1 + 1)/n

F (xu2) − F (xu1−1)
× f(µ)(xu2 − xu1−1)

α + (xu2 − xu1−1)

)
.

Fix d ≥ 1 and for each n > d, choose l1 and l2 such that l1 ≤ m ≤ l2 and
d = l2 − l1 + 1. Then

max
l1≤u1≤m≤u2≤l2

(
(u2 − u1 + 1)/n

F (xu2) − F (xu1−1)
× f(µ)(xu2 − xu1−1)

α + (xu2 − xu1−1)

)

≤ ∆d
n × max

l1≤u1≤m≤u2≤l2

nf(µ)(xu2 − xu1−1)
nα + n(xu2 − xu1−1)

→p 0,

since nα → ∞, and ∆d
n and maxl1≤u1≤m≤u2≤l2 n(xu2 − xu1−1) are stochastically

bounded in n = d + 1, d + 2, . . .. To see the latter, note that

max
l1≤u1≤m≤u2≤l2

n(xu2 − xu1−1) = n(xl2 − xl1−1)

=
xl2 − xl1−1

F (xl2) − F (xl1−1)
× n[F (xl2) − F (xl1−1)].

The first term is close to 1/f(µ) and the second is of order d.

Now, θ̂m,n(1) ≥ γ0θ̂m,n(γ0) ≥ f(µ) + op(1) since γθ̂m,n(γ) is non-decreasing
in γ. We have with probability approaching one,

θ̂m,n(1) ≤ max
u1≤l1≤m≤l2≤u2

f(µ)(xu2 − xu1−1)
α + (xu2 − xu1−1)

× (u2 − u1 + 1)/n
F (xu2) − F (xu1−1)

≤ f(µ)∆d
n →D f(µ)∆d,

by Lemma 2. Let d → ∞ to get p−limn→∞[θ̂m,n(1) − f(µ)]+ = 0.

Proof of Proposition 2. For any δ > 0, define l(n) = min{l : xl ≥ µ + δ}. Let
Ωn = {xu2(n) > δ}, a subset of the underlying probability space. For ω ∈ Ωn, we
have

θ̃m,n = max
u1≤m(n),u2≥l(n)

Fn(xu2) − Fn(xu1−1)
xu2 − xu1−1

.
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Now,

P

{
max

u1≤m(n),u2≥l(n)

Fn(xu2) − Fn(xu1−1)
xu2 − xu1−1

< f(µ)

}
→ 1

by the convergence of the empirical distribution function, so P{[̃θm,n >f(µ)]∩Ωn}
→ 0.

Writing P{θ̃m,n > f(µ)} = P{[θ̃m,n > f(µ)] ∩ Ωn} + P{[θ̃m,n > f(µ)] ∩ ΩC
n }

we have that the left hand side goes to one by Theorem 1, so P{ΩC
n } → 1.

Since this is true for all δ > 0, p− limn→∞ xu2(n) = µ. The proof of the
second statement is similar.

If f is continuously differentiable near x, then max{f(x − δ) − f(x), f(x)−
f(x+δ)} ≤ Cδ for some C. Then, setting δ =

√
Rn in (14) yields | f̃n(x)−f(x) |≤

(C + 2)
√

Rn = Op(n−1/4) as n → ∞.

Proof of Proposition 3. Suppose that x > µ, let 0 < δ < (x − µ)/2, and
let An be the event An = {xu2 ≥ (µ + x)/2}. Then P (An) → 1 as n → ∞ by
Proposition 3, and An implies

f(x + δ) ≤ F (x + δ) − F (x)
δ

≤ F̃n(x + δ) − F̃n(x)
δ

+ 2
Rn

δ
≤ f̃n(x) + 2

Rn

δ

where Rn = supx≥xu2
| F̃n(x)−F (x) |. Similarly, An implies f(x− δ) ≥ f̃n(x)−

2Rn/δ. Thus,

| f̃n(x) − f(x) |≤ max{f(x − δ) − f(x), f(x) − f(x + δ)} + 2
Rn

δ
. (14)

Given ε > 0, let δ be so small that max{f(x− δ)− f(x), f(x)− f(x + δ)} ≤ ε/2.
Then P

{
| f̃n(x) − f(x) |≥ ε

}
≤ P {Rn ≥ εδ/4}+ P (Ac

n), which approaches zero
as n → ∞.

Proof of Theorem 2. Since f̂n maximizes the penalized likelihood,

0 ≤ ln(f̂n) − ln(f̃n)

= n

[∫ ∞

−∞
log f̂ndFn −

∫ ∞

−∞
log f̃ndFn

]
− nα[f̂n(µ) − f̃n(µ)].

From Theorem 1.2.1 of Robertson, et al. (1988), f̃n increases or decreases only
at values xk for which F̃n(xk) = Fn(xk). It follows that

∫∞
−∞ log f̃ndFn =∫∞

−∞ log f̃ndF̃n, and, therefore, that

0 ≤
∫ ∞

−∞
log

f̂n

f̃n

dF̃n +
∫ ∞

−∞
(F̃n − Fn)d log f̂n − α[f̂n(µ) − f̃n(µ)]

≤ −h2(f̃n, f̂n) − α[f̂n(µ) − f̃n(µ)].
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The final inequality follows by noting that F̃n − Fn ≥ 0 where f̂n is decreasing
and F̃n −Fn ≤ 0 where f̂n is increasing, by writing log x = 2 log

√
x ≤ 2(

√
x− 1)

for 0 < x < ∞, and by the second expression for squared Hellinger distance.

Proof of Theorem 3

Lemma 3. For f strictly unimodal with mode µ, there exists a δ > 0 such that
for all unimodal g with mode µ0 �= µ, we have

h2(f, g) > δ (15)

where δ depends on µ0, µ, and f .

Proof. Suppose without loss of generality that µ0 < µ, and let G be the set of
unimodal densities with mode µ0. Since f is strictly unimodal, we have f(µ0) <

f(µ). Let h2
0(f, g) =

∫ µ
µ0

(√
f −√

g
)2

dx. We show that, since all g ∈ G are
nonincreasing on [µ0, µ], the function which minimizes h2

0(f, g) over G is the
constant function c where

√
c =

∫ µ
µ0

√
fdx/(µ − µ0). Expanding the square gives

∫ µ

µ0

(√
f −√

g
)2

dx

=
∫ µ

µ0

(√
f −√

c
)2

dx +
∫ µ

µ0

(√
c −√

g
)2

dx − 2
∫ µ

µ0

(√
f −√

c
) (√

g −√
c
)
dx

and the last term is negative since it is the covariance between a non-increasing
function and a non-decreasing one. This gives infg∈G h2(f, g) ≥ h2(f, c) and the
lemma is proved with δ = h2(f, c)/2 > 0.

Lemma 4. If g is unimodal and 0 ≤ g(x) ≤ c, ∀x, then

∣∣∣ 1
n

n∑
i=1

log[g(xi) + ε]−
∫

log[g + ε]dF
∣∣∣ ≤ 2 sup

x

∣∣∣Fn(x)−F (x)
∣∣∣ log(c + ε

ε

)
. (16)

Proof.
∣∣∣ 1
n

n∑
i=1

log[g(xi) + ε] −
∫

log[g + ε]dF
∣∣∣ = ∣∣∣ ∫ log[g + ε]d(Fn − F )

∣∣∣
=
∣∣∣ ∫ [Fn(x) − F (x)]d log(g + ε)

∣∣∣
≤ 2 sup

x
|Fn(x) − F (x)| [log(c + ε) − log(ε)].

Lemma 5. We have∫
log

(
g + ε

f

)
fdx ≤ 2

√
ε

∫ √
fdx − h2(f, g) (17)
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Proof.

∫
log

(
g + ε

f

)
fdx ≤ 2

∫ (√
g + ε

f
− 1

)
fdx

= 2
∫ √

f
(√

g + ε −√
g
)
dx − 2 + 2

∫ √
fgdx

The lemma follows since the last two terms are −h2(f, g), and the function√
y + ε −√

y is maximized at y = 0.

Proof of the Theorem. As in (3), let ln(g) =
∑n

i=1 log g(xi)−nαng(µg), where
µg maximizes g(x). Since f̂n is the maximum likelihood estimate, we have

ln(f̂n) ≥ ln(f), ∀n. (18)

For the penalized estimate, we have

f̂n(x) ≤ 1
αn

, ∀n (19)

by (4). Let Uc be the set of unimodal densities g with g(x) ≤ c. Then

1
n

[ln(g) − ln(f)] ≤ 1
n

n∑
i=1

log[g(xi) + ε] −
∫

log(g + ε)dF

+
∫

log
(g + ε

f

)
dF−

[ 1
n

n∑
i=1

log f(xi)−
∫

log fdF
]
−αn[g(xm̂(n))−f(xm̂(n))].

By Lemmas 3 and 4 and the Law of Large Numbers, this is not greater than

2 sup
x

|Fn(x) − F (x)| log
(

c + ε

ε

)
+ 2

√
ε

∫ √
fdx − h2(f, g) + op(1) + αnf(µ).

Let cn = 1/αn and εn = 1/n. Then

1
n

[
ln(f̂n) − ln(f)

]
≤ sup

x
|Fn(x) − F (x)| log

(
1 +

n

αn

)

+2n− 1
2

∫ √
fdx − h2(f̂n, f) + op(1) + αnf(µ).

Rearranging the inequality and using (18) gives:

h2(f̂n, f) ≤ sup
x

|Fn(x) − F (x)| log
(

1 +
n

αn

)
+ 2n− 1

2

∫ √
fdx + op(1)

which goes to zero since supx |Fn(x) − F (x)| goes to zero like n−1/2.
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