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Section S1 contains the technical proofs for the main results in the paper.

Section S2 includes additional simulation results.

S1 Technical Details

S1.1 Notations

Let F; be the conditional distribution of y; given z; for ¢ = 1,...,n, that

is, Fi(x) =Ply; < x| x] for all z € R. Define the diagonal matrices

Hy, = diag [f1 (a:lTﬁ(Tk)) s s I (a:nTﬁ(Tk))] (k=1,...,K,),

where fi,---, f, are defined in Condition 1 of the main paper. Then, for
any vector 0 € RP, define an intrinsic norm as in Belloni and Chernozhukov

(2011),

S XTH X

10]lk.2 =1/
n

5 (k=1,...,K,). (S1.1)
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For any positive constant ¢ and the sets 7" (k = 1,..., K,), defined in

(2.2) in the main paper, let

AP(e) ={0:6#0,6 € R, [|7005

1 < clldrm i} -
Define the function as follows: for £ =1,..., K,,
1 n
QP(8) = - > pnlyi — " B),
i=1

where the subdifferential of Q" (B) at B is the following set of vectors (Wang

et al. (2012)):

n

1- 1
oQM (B) = {5 €RP|4; = *% Zl’ij[(yi >z B) + J inﬂ(yi <z"B) - o injvi} .

Here z;; is the jth component of z;, and v; = 0if y; # 2,7 S and v; € [7—1, 7]

otherwise. For any B = [, ...  gKn)] ¢ RP*Kn et
Ky, »p Kn 1 »
k)| gk k)| ok E—1
O8) = 2 2 BTy g 2 AT AL (51
k=1 j=1 k=2 =1

which is the objective function of our optimization problem, as defined in
(2.3). For any square matrix A, let Apax(A) and Apin(A) be the maximum

eigenvalue and the minimum eigenvalue of A, respectively.

S1.2 Preliminary Results

The following Lemma 1 controls the empirical error over all vectors in
A®) (co) for all k = 1,...,K, and is analogous to Lemma 5 of the Bel-

loni and Chernozhukov (2011).
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Lemma 1. Let ¢y and ty,--- ,tg, be positive numbers. Suppose Condition

1 and RE(2sg,co) hold. Let

QW (v) = B [QW{B(x) + v} — QP {B()}] —Q¥{B(rx) +v} +Q¥{B(x) }

for any v € RP. Then, we have

1 1
P sup >0 O S k)Y <
ve AR (co),||v]| k2 <t k(s0, co) n

(S1.3)

Q" (v)

for some absolute constant C7 > 0.

S1.3 Proof of Theorem 1

We begin by providing several lemmas that will be used in the theoretical

analysis.

Lemma 2. Let ¢ be a positive number. Suppose RE(2sq, co) holds. Then,
we have for allk=1,..., K,,

1+CO

H5H1 < \/8_0\/zk<80,C0)

1+Co

5 ol = — e )
H Hk72’ H H2 - \/zk(ZS(];CO)

1911k.2
for all 6 € AW (cy).

The following Lemma 3 is a fixed design version of (3.7) in Belloni and
Chernozhukov (2011). Lemma 3 provides the lower bound of the difference
of the expected values of quantile loss function over all vectors in the cone

AR (co) for all k = 1,..., K,.

S|
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Lemma 3. Let ¢y be a positive number. Suppose Condition 1 and RNI(2sg, cy)
hold. Then, we have for allk =1,..., K,,

3i3/2q(2so, o)

1
- 181112 A 7118115 2 (S1.4)
8f 4

B [QP{B(re) + 0} - QI{B(r)}| =
for all 6 € A®)(cy).

The following Lemma 4 shows that B (}) — B(7;) is included in the specific

cone for all k.

Lemma 4. Let n be any positive number. Let [V, .-+ 3] be an op-
timum of (2.8) and (2.4) in the main paper. Suppose Condition 2 holds.

Then, on event E,, defined in (3.3) in the main paper, we have

. (dminW1+2)\(W0vW1)> (b=1.. K)

(k) _ c AR
= m) denin W — 2\(Wo V W7
where Wy, W1, and Wy are defined in Table 1 in the main paper.
Let ¢¢ be the parameter defined in Table 1 in the main paper. Let 7,

be the sequence of numbers which satisfy the conditions in Theorem 1. Let

6p = B® —B(r,) (k=1,...,K,). Let B, be the event

~ 1+c¢ sologp
sup ‘Q(’“)(v)‘ gClk—OHcSka\/ﬁ(k:zl,...,Kn),
veA® (co) o2 <13k .2 (s0, co) n

where C is the constant in Lemma 1. By Lemma 1, P(E;) > 1 —1/n.

Proof of (3.4) in Theorem 1. Throughout the proof, we assume E, N E,,

holds. Lemma 4 implies that &, is in A%®)(¢y) for k = 1,..., K,. By Lemma
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3, it holds that for k =1,..., K,,

IN

IA

IN

10117 2 A 3f’/2Q(250, co)
4 8f

E[QP{3®} - 0¥ {B(m)} ]

|0kl &,2

QP (AW} — @ {(m} + (E [QP {39} — 0P {8(r)}] ~ QP (3D} + @ {A(r)})
i+ (E[QP {5} - P {8(m)}] - QP {B®} + QP {B(r)})

14 ¢ sologp”5
k(so,co) n b

M + C1 Hk,Qv (81.5)

where (] is the absolute constant stated in Lemma 1.

Notice that (S1.5) implies that the first term in the left hand side

must be less than the second term. Suppose otherwise, that is, ||Jg|/r2 >

3f'/2q(230, co)/(2f). Then, we have

3f3/QQ(2807 CO)
= ST 10k lk,2 < 1 + C4

1+ ¢ sologp
k(so, co) n

1052,

which contradicts the assumption 0 < 5, < 9f°¢*(2s0,c0)/(32f?). Thus,

we conclude

19517 2 l+cy [sologp
—= <, C
g =7 * "%(s0, co) n

HékaQ (k: 17'-~7Kn)7

which yields

I+c [sologp
) <4C 2vn, (k=1,...,K,). S1.6
H kaV? = 1k<80,00) n + n ( ) ( )

By Lemma 2 and (S1.6), we have

[0k (]2 < 4Cy

(1+¢o)? sglogp 14 ¢
+ V1
k(2s0, co)k(s0,c0)\/f n k(2s0,¢0)/f !

(k:]-v"'7Kn)a
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which implies

X 1+ ¢)? 4C solo
189 Bl < gyt {2 O L

k(2s0, Co)\/z S0, Co) n
sp lo
= 51 08P + s <Sl7>
n
where & = ﬁ {2 + k(ioclco)} . This completes the proof. ]

Proof of (3.5) in Theorem 1. Throughout the proof, we assume E, N E,,
holds. The main idea is to compare the objective functions of our opti-
mization problem, as stated in (2.3), at B and B°. Since B° is feasible,
G(B) must not be greater than G(B°), where the function G(-) is defined
n (S1.2). Hence, it holds that

0 < G(B")fG(B)

- Z Z w ‘B] Tk |+Z‘Tk_7—k 1] Z Uj(’k)|ﬁj(7-k)_ﬂj(7k—l)|

k=1 jeT k) jeB®k)
k k) Ak A(k—1)

SO IR e D IR AL LR e D Wi
k=1 jeT(h k= k=1l o B k=1 je{T(M}e
A (k) 5k) _ plk—1)

k) A(k H(k—1
> 7 — 7h1] > BT =
k=2 je{B®}e

By triangle inequality, the above inequality implies

X T e e S -

k=1je{T(®}e = k1] G{Bw)}c

K
- . & A . N
< Z Z ’wj(k)|ﬁj(k) - ﬁj(ﬂc” + Z m Z U](k)lﬁj(k) — ,Bj(k b ﬁj(Tk) + ﬁj(Tk_l)
k*ljeT(k) = jeBKk)
< W Z IKB™ = B(mi) koo 1 + WA Z ‘7H{BU€) = B(m)}swlh

%Zm — B = B(n-1)} oo

P18
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Now, by the Cauchy-Schwarz inequality with |T®)| < s, and |B®]| <

250, the above inequality implies

IN

K,
WJK*WJ S IHB® — B(m)}3
k=1

Kn
L oo A JK*\/T$ S IHA® - Bm)} I3
k=1

IniIlkzg |Tk — Tk,1|

1
§ (W1 + VW) o K| 280 oy, (S1.8)

where the last inequality follows from Condition 2. Now, by (S1.8) and

IN

the definition of Wj, (3.5) in the main paper holds. This completes the
proof. O]
S1.4 Proofs of Theorem 2

We begin by providing the following lemmas that will be used for the proof

of Theorem 2. Lemma 5 is only used to show Lemma 6.

Lemma 5. For annxp design matriz X = (xq,--+ ,x,)T, which is normal-

ized to have column ly norm \/n, we have with probability at least 1 —1/n,

n

max H ixi[m Iy < xiTﬁ(Tk)}]/nHoo < 3,/108P. (S1.9)
=1
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Recall the event £, defined in (5.1) in the matin paper: for all &,
A< Co/logp/n, [B® = B(i)|l2 < Csy/sologp/n, [|B®lo < Cuso.  (S1.10)
The following lemma implies that we can find a proper 7, on event Fj.

Lemma 6. Suppose the conditions of Theorem 2 hold. Then, we have

P(E,: | E1) > 1 —1/n, where

n: = (0203\/04 +1+Cy m;?X Ak> S log p/n.

Lemma 6 implies

B(E,; 1 Fy) = P(ER(E,; | Fy) > (1—B(E)) (1= 1/n) 21— -~ B(E)

Let &, = f*) — B(m) (k=1,...,K,). On event Ej5, we have

~ 1+ sologp
wp Q)] < O [P (=1 K,
VAW (), o]l 2150 1.2 (50,92) n

where ¢y = (dmin+2A)/(dmin —2X), as defined in Table 1 in the main paper,

and P(F3) > 1—1/n by Lemma 1.

Proof of Theorem 2. Throughout the proof, we assume E,- N E; N E3, where
P(E,: N E1NEs) > 1—2/n—P(E}). To utilize the results of Theorem 1,
we will show that the conditions of Theorem 1 hold with ¢y = %, in the
current setting. Note that Wy Vv W; = W5 = 1 holds because the maximum

absolute value of P, (-) is at most 1 and

P (A7) =16 e{r®y), R (87 -51") =16 e (BY))
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These results follow from

B < 1B = Bl < Coy[ B < (G e (T

1B — BEIL < 18P = Bl ls + 185V — B(mi-r) |2

sologp
n

< 204 <é (je{BW}),

where Condition 4 is used. Therefore, Condition 2 holds and

doin W1 + 2A(Wo V W7)

< .
doinWa — 2A(Wo V W;) = ¥

Since the conditions of Theorem 1 hold with ¢y = ¢\ and n = 7}, we can

utilize the results of Theorem 1 with n =7} and ¢y = ¥,. Hence, we have

16% = 875

S - 2515/%(1330, w)\/z\/so OB | {ChC/Tr T4 Camps A} BT
< & Solzgp (k=1,...,K,), (S1.11)
where
§o = A \/1 + C’gQ),m + Cymax Ay.
(dmin — 2X)2k(2s0, 1/),\)\/z k
This completes the proof. O

S1.5 Proofs of Theorem 3

Let C5 = {(3.7a 4+ C3) V &} and Cg = {(3.7a+2C5)V2& }/ (K, dmin), where

a = (,(sologp/n)~05. First, we state the following lemma.
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Lemma 7. Suppose the conditions of Theorem 3 hold. Then, on event Ey,
we have Wi = 0.

Proof of Theorem 3. Throughout the proof, we assume E,. N E; N E3. By

Lemma 7,

K, K A
B)=> > WP+ e > wIsim) - Binl =0,
k=2 -

k=1je{T*)}e JE{B"}e

where G(+) is the objective function of our optimization problem, as defined
n (S1.2).

Now, notice that the proof of Theorem 1 and the result of Theorem 2
demonstrate that (3.5) in the main paper holds with n = 1 and ¢y = ,.

Then, the equation (3.5) and W; = 0 imply

/B{T(k)}c (k=1,...,K,), {B(k B }{B(k)}c =0 (k=2,...,K,).

In addition, we have

min min |B | > mln mln |8 (k)| —max||6() B(1) ]2

/sologp /sologp (S1.13)

where the second inequality follows from the beta-min condition, as stated

in Theorem 3. Similarly,

min min ]B(k) —B(.kfl)] > min min |B;(7) — Bj(Th—1)| — 2maXHﬁ(k — B(78)]|2

k>2 jek) 7 J k>2 jeBk)

I I
> 252,/80 08D e, [ 008P _ (S1.14)
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By (S1.12), (S1.13), and (S1.14), B provides the exact model structure,

which completes the proof. ]

S1.6 Proofs of Theorem 4

(k)

Here we define the map 7" and new design matrix z; ', as stated in Section

6. First, we define a map M : {1,...,p} x {1,..., K,} — R% as follows:
1. If 3% = 0, then M(j, k) = 0.
2. if A% = BV then M(j,k) = M(j,k —1).

J

3.I A £0, 80 =0 (K =1,...,Ky; j'=1,...,5— 1), and g\ =

0(k'=1,...,k—1), then M(j,k) = 1.
4. 1f B # 0 and 517 # 51V, then
M(j, k) = 1+ max(My, M),
where
My ={MG K): K=1,...,K,; j/=1,...,5 — 1},
My :={M@,K): ¥ =1,... ) k—1}.
5. If ,@j(.l) # 0 for j > 2, then

MG, ) =14+max{M(j K): K=1,....K,; j/=1,...,7—1}.
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By utilizing the map M, we arrive at a new design matrix denoted by

zz-(k) ER% (i=1,...,n; k=1,...,K,). First, let

M(TW k) ={MG,k):jeT®Y (k=1,...,K,),
where the elements in M (T, k) are in ascending order. Let

2®; v gy = Tz, Zl(lj) =0 for j €{1,-- ,do} \ M(T™, k).

Now, to define the map T, let

IM ={(j, k) : M(j,k) #0, M(j, k) # M(j, k —1)},
which is the location indices account for effective components. Then, for
any B € G, T(B) € R%, where T(B); = B (i = 1,...,dy) for i satisfying
M(j,k) =i and (j,k) € IM. It is easily checked that for any B € G, T'(B)

is a dy—dimensional vector.

Remark 1. Illustrative example of the M and 7.
Suppose that we consider the model, where p = 5 and K,, = 3 with the

three quantile levels 7, 75, and 73. Assume that we obtain the following
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estimates from our Dantzig-type optimization problem:

09 09 0.0

1.1 1.5 1.5

ouh
I

0.0 0.0 0.0 = [B<1>,@<2>,5(3>].

0.5 0.0 1.0

0.0 0.2 0.2

Then, M is the function such that

M(j, k)= M;x for j=1,---.5 and k=123,

where

is the indices matrix follows from the model structure of B.

Here dy = 6, and
T(B) =1[0.9,1.1,1.5,0.5,1.0,0.2]".

Lemma 8. Assume dyM?*(logn)? = o(n). Let A >0 and © = {0 € R% :
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10|l < A}. For any 6 € O, let

ERCI

1
L(0) = T 3 /0 I(e” < 2) = I(e” < 0)da,
k i

where e = y; — 2,78(1,) = y; — {zi(k)}TT(B"). Then, with probability at

%

least 1 —n~9doloen _9FK /n,

sup |1(0) — E[L(0)]| < Tn~ V4K, AY2s3/*(dy)**(log n)*/2.
0O

Proof of Theorem 4. We will show that for any constant € > 0, there exists

a sufficiently large constant A > 0, satisfying

IP[ inf Ln<T(B°)+\/%0> S LaTB))] >1—¢  (S1.15)

16]2=A, 6eRdo

where Ly, (0) = 3, 32 pr i — {27176) for any 6 € R%. Since L, is a strict
convex function over # € R%, (S1.15) implies that the global minimum T'(B)
lies within the ball whose center is T'(B°) and the radius is Ay/dy/n, with

probability at least 1 — €, which proves the theorem. Let

Ga(0) = L, (T(B”) + \/%9) — L, (T(B°).
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By the Knight'’s identity,

G0) = Dol YT - D 010] — o [y — Y T(8°)

- \@Z Z{ka) Yo{I(e” < 0) -}

\/7{ (k)}Ta
+ Z Z/ I(eP < 2) = 1P < 0)da

= 11(6’) + 15(0),

where egk) is defined in Lemma 8. First, consider I;(f). Let v(k) I (egk) <

0) — 7, and © = {6 € R% : ||f||, = A}. Then, we have

2
do (0,
E I2(9)] =
[ggg 1(0)] ”;“gge{ ZZ }
= @E[ sup QTZZTQ}
(R TP
do

IN

AQE[AmaX(ZZT)] (S1.16)
where Z = ), Zl{zl(k)vz(k)} We have noticed that ZZ" is a zero matrix

or a rank-one matrix, and that Z7Z is a eigenvalue of ZZ7 when ZZ7 is

a rank—one matrix. Hence,

Aax(Z227) < 277, (S1.17)
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Therefore (S1.16) and (S1.17) imply

E[supI7(0)] < f@A%mZTZ]
0co

— AQEZZZU Uk/){z(k T, ']
= EA2 SN (AT — ) Z{zik)}Tzi(k/)
kK i

< NP

Hence, by Markov inequality,

AK
P sup [1(0) = Shndo) < £
l6]l2€0 €/2 2

Hence, with probability at least 1 —€/2, we have supg,ceo [11(6)] <

AKndo
/2

consider I5(#). Then, for any 0 € O,

\/>{ (k)37

Now

E(I»(0)) = ZZ/ P(y; <27 B(m) +2) =P (v < 27 B(myp)) da
NETEOILY 2
-2y oo (17 B(r) + B + 5
. szz .Z’Z B(1x) do { (k)}TG fzz do 15{ (k)}Ta]
- dszzeTl 20Ty _ AM, f\d; \FzzeTl B N0y
where #") € (0,2) depends on i and k in the second line. The first and

the second inequality follow from Condition 1 and the fact
{2370 < (1201162 < May/soA.

Since dysy = o(n) holds and the nonzero parts of ), sz){zi(k)}T/n is a
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sk X sp—dimensional sub-matrix of > ixixiT /n, it holds that
1 K dof
} :2 : T+ (k T 2 2

By Lemma 8 and Condition 6(a), we have

K,d
L,(6) > 40—k2(30, 0)A% — A2, (K,dy),

where 0,(1) is uniformly over 6 € O.

Hence, for any € > 0, with probability at least 1 — €/2,

. n Of ) 2 A3/2 _ AKndo
elgg Gn(0) > 1 =k*(s0,0)A% — A%=0,(K,,dy) " >0
with a sufficiently large A, which completes the proof. O

S1.7 Proofs of Theorem 5

Lemma 9. Recall the matrices A, and B,, defined in Theorem 5. We have

f_2¢_2(50)k2(30, 0)(mkin ) (1 — ml?XTk) < )\min(An_anAn_l),

Amax (An ' Bp A, < Ly 2é(s0)k ™ (s0,0).

Lemma 10. Assume conditions of Theorem 5 hold. Then, for any sequence

of a,, € R® with ||, ||z = 1, the following asymptotic normality holds:
n V2l (A, B AT T2, Y S T Iy — 2T B(r) < 0) — 71) — N(0,1).

Proof of Theorem 5. Recall

T(B) = argmind 2>~ pry(: — {27} 5). (SL.18)

BER0
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By 0 = \/n/dy (8 — T(B°)), T(B") = + \/dy/nf, where
0 = arg mlnz Z P, [yz — 2180 — %{zﬁ)}T@]. (S1.19)

fcR%

Then,  can be written as 6 = G,,(0), where
d
Cin(0) = arg min ZZM@tWWWW-%$W>
9eRdo P n
L (k) TT B°
SN o (- Y TB).
koo
Consider 6 over the set ©, = {# € R | ||0|]» < C} with some positive
constant C' independent of n. Decompose G,, into two terms:

where

::V§§Zilﬁﬁ%u@“<m—mh
ZZ/ W <o) - 1 <o

Consider the term I5(6). From the proof of Theorem 4,

Ve PyTe
‘E[[2(9)] N Z Z/ fz(szﬁ<Tk))£Ed:C

[\
=[]
s
no| 8
R
=
G
=
8

f d
< E3 (o
k 7
F o dbS /s,
< L, VMg

(@}

NG
= o([|0]l2K5x),
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where 2% € (2,7 8(r.), #:78() +x) depends on i and k in the first inequal-
ity. The second inequality follows from Condition 1. The third inequality

holds due to Sparse(sy) and the fact that
k k
1{29370] < 112812110112 < M 8]]2+/50.

The last small o results follows from M?2d3sy = o(n). Moreover, Lemma 8

and the conditions of Theorem 5 imply
15(0) = E[L(0)] = 0p([|0]|2/),

where o, is uniform over 6 € ©,,. Hence, for all 6 € ©,,

(o) = Y0 3 M PED b e o, o), ),

k

Thus, for all § € 6,,, G,,(6) can be written as
Go(0) = /% 33 (=97 (1(&“ <0)— Tk)
' neg Z

" ;Zw%{é’“}w+op<||e||2Kn>.

By matrix calculus,

A n B
b = \EO{Xk:Z:fi(wiTB(Tk))zZ(’“){zi(’“)}T} zk:;zz(k){f(eﬁ-k) <0)— 7}

(s et o)
k 7

+
_ —05 4 —1 (k) (k) 1Ky
= (ndy) "°A, Zk:zz {I(e” < 0) — 7} + 24, d—oopu)
= g™ (AT B 00 (A, B A ) AT YD ST A (N < 0) - 7}
k 7
1
+ 70?(1)7
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where 0,(1) represents any dyp-dimensional vector whose ¢ norm is o0,(1).

For any o, € R% with |la,||» = 1, Lemma 10 implies
of [0 (A, B AT AT IS A < 0) = 7} | - N0, ).
k 7
Hence, by Lemma 9,
10l < dy " Mnas{ (A Budn ™) 230, {/do} + (1)
< LoV o(s0)k(50,0)0,(1).

Since C' can be chosen to be much larger than Lgty/¢(so)k 2(s0,0), 6 is

included in ©,,. Hence, by Lemma 10 ,

L [dy -
ol (A, BaA, ) 2 —0 = N(0,1).
n
Thus,

ol V/n(A, " B, A, ) TH{T(B) — T(B°)} — N(0, 1),

which completes the proof. O

S1.8 Proof of Lemmas

Proof of Lemma 1,2 and 3. The proofs essentially follow from the proofs of

Lemmas 4 and 5 in Belloni and Chernozhukov (2011). O

Proof of Lemma 4. Suppose E, holds. Then, (1) € R®)(ry) (k=1,..., K,),

where R(*)(r},) is defined in (3.1). This implies that

B® = [BM) ... BE=1 gz, e+ ... FK))
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is feasible for all k. We fix any k. Since B is a global minimizer of (3.1), we
have G(B) < G (B®), where G(-) is defined in (S1.2). This implies

Z (k+1)|ﬂ k) 5(k+1)|

|7'k+1 — Tk\

(k+1) _ Alk+1)
—Tk| Z wﬂ J ‘

By the triangle inequality and the definition of d,;,, it reduces to

p p
(k)| Ak) A (k) A(k) _ Alk=1)
jz::le Iﬂ] ‘ + |7'k — Tk—1| Zvj |ﬁ] - Bj | +

< S wli(n)l+ ﬁzm@ () = BV +

=1 |Tk+1

. A L
ST w1 ST w8 - 1B8) o3 ().
FE{T () }e jET ™) dmin j=1

Rearranging the terms yields

k A k Ak K, A k) | (k Ak
S [ - A oD B < B [l (o o I~ )l

je{T(k)}c JET )
By the definition of Wy, W, and W,
2A(Wy v W - 2A(Wo vV W A (k
> (wa - 2O 0y < 3 (wn 2O 0.
JE{T(k)}{‘ min JET(’C> min
Condition 2 implies W- —%(ngWl) > 0, and we have for k =1,..., K,
. AninW1 + 2A(Wy v W)
k min ¥V 1 0 1 (k
> 187 =Bl < Z 1B = By(mu)l,

je{T(k)}c dman2 - 2)\ WO V Wl i

which completes the proof. n

Proof of Lemma 5. Lemma 1.5 in Ledoux and Talagrand (1991) implies
that for any independent mean zero random variables 71, - -+ , Z, and pos-
itive constants ¢y, - -, ¢,, which satisfy |Z;| < ¢; (i = 1,...,n), we have

that for any ¢ > 0,

n 2
i=1 =1 "1
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Fix j, k, and any t > 0. Let Z; = z[m — I[{y; < ;" B(7%)}]/n, where z;; is

the jth component of ;. By (S1.20), it holds that

P >t] <2 r P nt?
exp| ———=—5——= | =2exp|—— ],
; I P73 >y g /n? P 2

> aijlne — Iy < 2" B(me)H/n
=1
where we set ¢; = x;;/n. By the union bound,

P(WVmM4§:%W%—Hméxfﬂmﬂvmzt>SZmem—%ﬁ-
J

=1

Letting t = 34/logp/n yields
P (mgxmaX\ > wijlme = Ky < & B(7)})/n| > 3\/10gp/n> <
j

S

=1

where we use p > n V K,,. This completes the proof. O

Proof of Lemma 6. Suppose E; holds. Then, we have forall k =1,..., K,

139~ Bl < /1B — Bl — Bl

< V(Ci+ D)soCsy/ @. (S1.21)

Note that (S1.21) uniformly holds for all k, with probability at least
1 — v,

In the Dantzig-type joint quantile regression setting, stated in Section
4,7 = Qfmk){ﬁ(k)} + Ag3log p/n, where § = maxy, || 3®]o. Hence, the event

E,, defined in (3.3), is equivalent to

QW {B(r)} < QW (F®) + 4,182 < QW B 47 (k=1,... Kp).

n




S1. TECHNICAL DETAILS

To prove (S1.22), we use the fact that Q' is a convex function and
— > xime — Hy: < x;7B8(m)}]/n is the subgradient of QP at B(Tx).

Hence, we have

Q{B™MY — QP {B(m)}
> (‘% D wilm — H{yi < %Tﬁ(ﬂc)}]) {B% — B(m)}

=1

‘”% > (@il — Hys < 2" B()}) ool B*) = B(7) |11 (S1.23)

=1

v

Let E, be the event

By = {H% > (@il — H{ys < 27 B(r) )l < 3\/1051)} . (SL.24)

i=1

By Lemma 5, P(E;) > 1 — 1/n. Combining (S1.21), (S1.23), and (S1.24),

we have on event Fjy,

QP{FM} — QW {B(r)} > —3y/Cat 10,2002,

n

_p, loer (S1.25)

n

where the last inequality utilizes Condition 4. Hence, the first inequality
of (S1.22) holds for all k.
Now, by using the fact that B®s and A satisfy (S1.10) on event E;, we

can demonstrate that the second inequality of (S1.22) holds with n =7} as
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follows:

~ 51 ~ ~ 31
QPBMY + M =2E < QW{BE)} + MBI — 1BV} + A =—2E

@ ﬁ T —|— T 10
n T + 2 ] 1 A 1
(k‘){/}’( k’)} C 03 C + 8() nogp kS (;lgp

QPH{B(m)} + {CoCV/Ca+ 14 C max Ak}so logp

IN

IN

IN

= QW{B(m)} + 1. (S1.26)

Here the first inequality follows from the definition of 5*). Combining (S1.25)
and (S1.26) implies that (S1.22) holds with n = 7}, which completes the

proof. n

Proof of Lemma 7. Suppose E; holds. Then, we have

min min |B | > min mln 18, (%) —max||6 B(11)|2
k ]ET("‘) k

1 1
> (8704 /80 o8P _ /80 og p
1
= 3704/ 2 Sgp = 3.7¢,, (S1.27)

where the second inequality follows from Condition 5. Similarly,

_ Atk | _ 50 _
min gg)! B 2 min min 18;(n) = B;(7k)| = 2max |57 = B
1 1
> (aa +205)y ) 208 o0y, [2008P
n n

1
— a2 ;’gp > 4Gy (S1.28)
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By (S1.27) and (S1.28), we have W, = 0, which completes the proof. =~ [

Proof of Lemma 8. Fx k € {1,--- | K,}. Let

dg ¢ (k)\T

0Lz
)\ 1 n (k) (k) _ (k)
19(9) = Z H9H2/0 1D < )= 1(e® < 0)dw = 3 19 (0).

Let D := {0 e R® | |0, < m} First, consider the case in which

10]]2 € D. Then,

[do (k)T
‘ n{zz }9

Define the events B and C as follows:

1
B = {|e£k)| > —, forall i.}, C= { sup IS7(9) = 0}.
n

0: 6eD

doSQ Mn < 1
n ndyM,\/n — n?

<

Then, P(B) > 1 — n2l =1— 2L which implies P(C)>1—- %f Moreover, it

n? n

holds that
f 2fM,\/d
sup IE[IQ('“)(H)]) < (1= P(C) 2L 0, /rdgsg < 2 MV oS0
6eD n vn

Hence, with probability at least 1 — 2f/n, we have

2f_Mn\/ doSQ
< ——
J— ﬁ

Now, consider the case in which ||0]|s > 1/(ndoM,+/n). We have for

sup | 4 (6) — E15°(9)

0D

any A > 0,

P (115°(6) — B[ (0)]] > t) < exp (—2t = AE[LY(0)]) E [exp(\00))]

(S1.29)
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We have

E exp(ﬂg’”(e))} - HE[exp(M;{j.)(e))}

i

= TIE 1+ 216 + 221 0)200)]

=TT (1+ B @) + 2O®(I 9)))

i

exp (A Z E[57 (8)] + A2 Z O(E[(1$) (9 ) , (S1.30)

IN

where in the second equality O(1) holds uniformly for all ¢ and 6, provided
that max; |/\]§?(9)| < AM,y /92 = o(1). Combining (S1.29) and (S1.30),

we have

P (|I§’“><9> ~E[L"(0)]] > t)

eXp< Xt — +>\Z]E 15 (9 +)\QZO E[(15" (0 )>
= exp (—At + A2 Zom[(é?(@ﬂ))

i

3/2d3/2
= exp (—/\t+)\20 <A Oﬁ )) (S1.31)

Here we use the fact that

IN

3/2 ,3/2
<k> 1 do fdo T ()T A fM3 d
E[(1, 0 max |{z; g < =L—nZ0 0
> < oV . S Y O )70 -
. tM,, o . - t\f . . .
Slnce —Asodo logn 0(1), ChOOSng A\ = m mn (Slvgl) 1mphes

P<|f§’“><e>—Eu§‘“’<eﬂ|zt>Sexp( tvn )

4As ‘Q'/Zd?’/2 logn

Now, to apply the chaining argument, consider e-size balls that cover
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©. Let B be the set of centers of the balls. Then, we have

2A t*vn
(k) . (k) — =
]P’(sup ‘[2 (9) E[[Q (9)” > t) < exp (do IOg € 4As 3/2d3/2 log n) ‘

0eB

Moreover, if 01,605 ¢ D and |0, — 65| < €, then
18901 ~ B (00)] - 17 (8:) + B[ (62)

< ‘Iék)(el) — 17(6,)

+ B 0] - BILO (62)]].
Note that

1189 (0,) — 159 (92)|_”91”|9”‘Z||92||291|21(k)() ST 16002002125 (62)

n3d3M? <|92||2 Znelnﬂ(’“ ZH92||2I(k) 62)

n3diM? (AnffMe+en\/>\ﬁM A)

= m30d3 050 M3eA.

k
||2I( ) (62)

IN

+ 1162112 — [161]]2]

)

IN

Similarly,
E[LF 0] — B[P (6,)]] < nPd2M? ( f%nsoMjeQ + fenAQ%soMg)
< 2nidisoMZeA.
If we choose t such that en®°d3M3 = o(t) and en®dgM? = o(t) with €

being small enough, then we have

2A t2\/n
P sup [IP(0) —E[IF (@) > 2t | <exp | dylog 2= — .
<0€®]\DD| > (0) (L7 (0)]] = > €XPp | Qo 108 . AAs S/ng/zlogn

Hence,

2A t?
P( sup [L2(0) —E[L(0)]|/10]2 > 2tK, | <exp | log K, + dylog — — % .
0cO\D € 4Asy" “dy' " logn
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Letting ¢t = 3n*1/4A1/2sg/4d8/4(10g n)*? and € = n~® with the growth

condition doM*log*n = o(n) yields

P<ng€D | L(0)—E[L())]]/|6]]2 > 6n71/4KnA1/258/4d8/4(10g n)3/2> < p9dologn,
€

We have shown with probability at least 1 — 2’?% that

Qan\/ doSoKn
Sup 11(0) — E[1»(0)]] < NG :

—9dologn _ 2fKn

n Y

Therefore, we have with probability at least 1 —n

sup | (6) — E[L(0)]| < Tn V4K, A3/ dY* (log n)*/2.
0coO

Proof of Lemma 9. First, we have
Knik2(307 0) S )\mln(An) S )\max(An) S an(b(SO)?

(ZTk/\Tk'_Tka’)k2<307O) < Amin(Bn) < Amax(Bn) < (ZTk/\Tk/—Tka')¢(So)-
o, o,

Hence, it holds that

)\min<An_1BnAn_1) > )\2

- min

(An_l))‘min(Bn)

= )‘r:lix(An))‘min(Bn)

Zk,k’ T N\ Trr — TrTr
2
K2

Z f_72¢72(80>k2(80, O)(mkll’l Tk)(l — Hl]?X Tk).

> [0 7% (s0)k* (50, 0)
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Similarly, we have

/\maX(AnianAnil) S /\2 (Anil)Amax<Bn>

max

= Auin (An) Amax(Bn)
Dk TE N Tht — TETr

K3

IN

L62¢($0)k_4<80, O)

S L52¢(80)k_4(807 O)a
which completes the proof. O]

Proof of Lemma 10. Recall egk) =y — ;' B(Th) = yi — {zi(k)}TT(BO). Now,

define D,, as follows:

D, = ag(AnlenAnfl)*%An*1n70'5 Z Z zl-(k){f(egk) <0)—7x} = Z i
ik i

_1

where Zn; = (n79%) |0 (A, ' BpA, )24, S0, 2R < 0) — Tk}:|

n

Then, E[Z,;] = 0 and

ZVar(Zm-)

1
Zag(An—anAn—l)—%An—l Z ﬁzgk){zi(k)}T{min(Tk,TkI) -~ Tka’}An_l(An_anAn_l)_%an
@ K,k

aZ(An_anAn_l)_%An_anAn_l(An_anAn_l)_%Oln

= 1.
Consider an upper bound of Z,; for all 2 =1,...,n:
Zoi] < |32 291 (9 < 0) —Tk}‘ HA;l(AnlenA;l)—%anH /v,
2
k 2

(S1.32)
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Since ), zi(k){] (egk) < 0) — 7} is a dp-dimensional vector and the absolute

value of each components is upper bounded by K, M,,,
1Y 241 < 0) = e }la < VoK, M, (S1.33)
k
Since ||a,||2 = 1, we have

(A Bodn ™) 2amlls < Amax{(An 'BrA, )72}
= {)\min(An_anAn_l)}io.S

S fgb(s())k:_l(s(), 0)(mk1n Tk)_O'S(l — m}?X Tk)_0'5,

where the second inequality utilizes Lemma 9. Similarly, it holds that
A2 (AT BuAs ™) 2l € A4 DA Bua ™) F e
< K 'LgtkT3(s0,0) fqb(so)(mkin ) %P (1 — max 7). (S1.34)
Combing (S1.32), (S1.33), and (S1.34), it can be derived that
max | Zni| < \/do/nMyLg "k~ (s0,0) fé(s0) (min 7)) ~"?(1 — max 7))~
Hence, we have

SIE(Zf) < S E(Zl) 0 0L K (50,0) F(so) (min i) ~0%(1 — max )03
= \/do/nMnLo_lk*:z(so, O)fd)(so)(mkin Tk)*o"r’(l — ml?xm)*o"r’

— 0.



S2. ADDITIONAL SIMULATION RESULTS

Thus, {Z,;}}, for all n are triangular array satisfying Lyapunov Condition.

By central limit theorem for triangular arrays,

> Zuy— N(0,1),

which completes the proof. O]

S2 Additional simulation results

This section includes the additional examples of the simulation study. See
Section 7 of the main paper for details of the simulation settings. We
considered the following additional examples to investigate the stability
of selected models from four methods; Lasso, ALasso, FAL, and Dantzig,
which are defined in Section 7. The performance measures are shown in

Figure 1.

Example 1. Consider the model, which is same as Example 1 in the main

paper except that ¢;’s follow the standard Cauchy distribution.

Example 2. Consider the model, which is same as Example 1 in the main

paper except that ¢;’s follow the standard Laplace distribution.

Across all figures, the largest standard errors for the false positives, the

false negatives, and the size of set differences are less than 0.9, 0.1, and 0.4,
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respectively. As shown in Figure 1, the results are consistent with those

reported in the main paper.

2 17 50 T
\' +-Lasso

0
18 ,V.,.—-—-—'V ------ -Fee 187, 45*‘\_ F-ALasso
v Y o il
" i {1+ Dantzig

14 i

14 13

09
[ 1
6 L L L 08
FP1 FF’2 FP3 FP4 FP
20 06 50 T
[ Y - Lasso
" 7 055 - 45?, —¥-ALasso
AT ofi OFAL
v V\-\.\_\. 05 ‘.\ - Dantzig
16 i i
3 \
045
14 04
0.35
V.
031"
0.25
02
FN

Figure 1: Results for Example 1 (top) and 2 (below): Each plot shows the false posi-
tives(left), the false negatives (middle), and the stability measures (right). Four com-

peting procedures are evaluated: Lasso, ALasso, FAL, and Dantzig.
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