
Statistica Sinica: Supplement

Dantzig-type penalization for multiple quantile regression

with high dimensional covariates

Seyoung Park, Xuming He, and Shuheng Zhou

University of Michigan

Section S1 contains the technical proofs for the main results in the paper.

Section S2 includes additional simulation results.

S1 Technical Details

S1.1 Notations

Let Fi be the conditional distribution of yi given xi for i = 1, . . . , n, that

is, Fi(x) = P [yi ≤ x | xi] for all x ∈ R. Define the diagonal matrices

Hk = diag
[
f1

(
x1

Tβ(τk)
)
, · · · , fn

(
xn

Tβ(τk)
)]

(k = 1, . . . , Kn),

where f1, · · · , fn are defined in Condition 1 of the main paper. Then, for

any vector δ ∈ Rp, define an intrinsic norm as in Belloni and Chernozhukov

(2011),

‖δ‖k,2 =

√
δT
XTHkX

n
δ (k = 1, . . . , Kn). (S1.1)
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For any positive constant c and the sets T (k) (k = 1, . . . , Kn), defined in

(2.2) in the main paper, let

A(k)(c) =
{
δ : δ 6= 0, δ ∈ Rp, ‖δ{T (k)}c‖1 ≤ c‖δT (k)‖1

}
.

Define the function as follows: for k = 1, . . . , Kn,

Q(k)
n (β) =

1

n

n∑
i=1

ρτk(yi − xiTβ),

where the subdifferential of Q(k)
n (β) at β is the following set of vectors (Wang

et al. (2012)):

∂Q(k)
n (β) =

{
δ ∈ Rp | δj = − τ

n

∑
i

xijI(yi > xi
Tβ) +

1− τ
n

∑
i

xijI(yi < xi
Tβ)− 1

n

∑
i

xijvi

}
.

Here xij is the jth component of xi, and vi = 0 if yi 6= xi
Tβ and vi ∈ [τ−1, τ ]

otherwise. For any B = [β(1), · · · , β(Kn)] ∈ Rp×Kn , let

G(B) =
Kn∑
k=1

p∑
j=1

w
(k)
j |β

(k)
j |+ λ

Kn∑
k=2

1

|τk − τk−1|

p∑
j=1

v
(k)
j |β

(k)
j − β

(k−1)
j |, (S1.2)

which is the objective function of our optimization problem, as defined in

(2.3). For any square matrix A, let λmax(A) and λmin(A) be the maximum

eigenvalue and the minimum eigenvalue of A, respectively.

S1.2 Preliminary Results

The following Lemma 1 controls the empirical error over all vectors in

A(k)(c0) for all k = 1, . . . , Kn and is analogous to Lemma 5 of the Bel-

loni and Chernozhukov (2011).
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Lemma 1. Let c0 and t1, · · · , tKn be positive numbers. Suppose Condition

1 and RE(2s0, c0) hold. Let

Q̃(k)(v) = E
[
Q(k)
n {β(τk) + v} −Q(k)

n {β(τk)}
]
−Q(k)

n {β(τk)+v}+Q(k)
n {β(τk)}

for any v ∈ Rp. Then, we have

P

{
sup

v∈A(k)(c0),‖v‖k,2≤tk

∣∣∣Q̃(k)(v)
∣∣∣ > C1

1 + c0

k(s0, c0)
tk

√
s0 log p

n
(k = 1, . . . , Kn)

}
≤ 1

n

(S1.3)

for some absolute constant C1 > 0.

S1.3 Proof of Theorem 1

We begin by providing several lemmas that will be used in the theoretical

analysis.

Lemma 2. Let c0 be a positive number. Suppose RE(2s0, c0) holds. Then,

we have for all k = 1, . . . , Kn,

‖δ‖1 ≤
√
s0

1 + c0√
fk(s0, c0)

‖δ‖k,2, ‖δ‖2 ≤
1 + c0√
fk(2s0, c0)

‖δ‖k,2

for all δ ∈ A(k)(c0).

The following Lemma 3 is a fixed design version of (3.7) in Belloni and

Chernozhukov (2011). Lemma 3 provides the lower bound of the difference

of the expected values of quantile loss function over all vectors in the cone

A(k)(c0) for all k = 1, . . . , Kn.
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Lemma 3. Let c0 be a positive number. Suppose Condition 1 and RNI(2s0, c0)

hold. Then, we have for all k = 1, . . . , Kn,

E
[
Q(k)
n {β(τk) + δ} −Q(k)

n {β(τk)}
]
≥

3f3/2q(2s0, c0)

8f̄
‖δ‖k,2 ∧

1

4
‖δ‖2k,2 (S1.4)

for all δ ∈ A(k)(c0).

The following Lemma 4 shows that β̂(k)−β(τk) is included in the specific

cone for all k.

Lemma 4. Let η be any positive number. Let [β̂(1), · · · , β̂(Kn)] be an op-

timum of (2.3) and (2.4) in the main paper. Suppose Condition 2 holds.

Then, on event Eη, defined in (3.3) in the main paper, we have

β̂(k) − β(τk) ∈ A(k)

(
dminW1 + 2λ(W0 ∨W1)

dminW2 − 2λ(W0 ∨W1)

)
(k = 1, . . . , Kn),

where W0, W1, and W2 are defined in Table 1 in the main paper.

Let c0 be the parameter defined in Table 1 in the main paper. Let ηn

be the sequence of numbers which satisfy the conditions in Theorem 1. Let

δk = β̂(k) − β(τk) (k = 1, . . . , Kn). Let E2 be the event

sup
v∈A(k)(c0),‖v‖k,2≤‖δk‖k,2

∣∣∣Q̃(k)(v)
∣∣∣ ≤ C1

1 + c0

k(s0, c0)
‖δk‖k,2

√
s0 log p

n
(k = 1, . . . , Kn),

where C1 is the constant in Lemma 1. By Lemma 1, P (E2) ≥ 1− 1/n.

Proof of (3.4) in Theorem 1. Throughout the proof, we assume E2 ∩ Eηn

holds. Lemma 4 implies that δk is in A(k)(c0) for k = 1, . . . , Kn. By Lemma



S1. TECHNICAL DETAILS

3, it holds that for k = 1, . . . , Kn,

‖δk‖2k,2
4

∧
3f3/2q(2s0, c0)

8f̄
‖δk‖k,2

≤ E
[
Q(k)
n {β̂(k)} −Q(k)

n {β(τk)}
]

= Q(k)
n {β̂(k)} −Q(k)

n {β(τk)}+
(
E
[
Q(k)
n {β̂(k)} −Q(k)

n {β(τk)}
]
−Q(k)

n {β̂(k)}+ Q(k)
n {β(τk)}

)
≤ ηn +

(
E
[
Q(k)
n {β̂(k)} −Q(k)

n {β(τk)}
]
−Q(k)

n {β̂(k)}+ Q(k)
n {β(τk)}

)
≤ ηn + C1

1 + c0
k(s0, c0)

√
s0 log p

n
‖δk‖k,2, (S1.5)

where C1 is the absolute constant stated in Lemma 1.

Notice that (S1.5) implies that the first term in the left hand side

must be less than the second term. Suppose otherwise, that is, ‖δk‖k,2 ≥

3f 3/2q(2s0, c0)/(2f̄). Then, we have

3f 3/2q(2s0, c0)

8f̄
‖δk‖k,2 ≤ ηn + C1

1 + c0

k(s0, c0)

√
s0 log p

n
‖δk‖k,2,

which contradicts the assumption 0 ≤ ηn < 9f 3q2(2s0, c0)/(32f̄ 2). Thus,

we conclude

‖δk‖2
k,2

4
≤ ηn + C1

1 + c0

k(s0, c0)

√
s0 log p

n
‖δk‖k,2 (k = 1, . . . , Kn),

which yields

‖δk‖k,2 ≤ 4C1
1 + c0

k(s0, c0)

√
s0 log p

n
+ 2
√
ηn (k = 1, . . . , Kn). (S1.6)

By Lemma 2 and (S1.6), we have

‖δk‖2 ≤ 4C1
(1 + c0)2

k(2s0, c0)k(s0, c0)
√
f

√
s0 log p

n
+ 2

1 + c0

k(2s0, c0)
√
f

√
ηn (k = 1, . . . ,Kn),
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which implies

‖β̂(k) − β(τk)‖2 ≤
(1 + c0)2

k(2s0, c0)
√
f

{
2 +

4C1

k(s0, c0)

}√
s0 log p

n
+ ηn

= ξ1

√
s0 log p

n
+ ηn, (S1.7)

where ξ1 = (1+c0)2

k(2s0,c0)
√
f

{
2 + 4C1

k(s0,c0)

}
. This completes the proof.

Proof of (3.5) in Theorem 1. Throughout the proof, we assume E2 ∩ Eηn

holds. The main idea is to compare the objective functions of our opti-

mization problem, as stated in (2.3), at B̂ and Bo. Since Bo is feasible,

G(B̂) must not be greater than G(Bo), where the function G(·) is defined

in (S1.2). Hence, it holds that

0 ≤ G(Bo)−G(B̂)

=

Kn∑
k=1

∑
j∈T (k)

w
(k)
j |βj(τk)|+

Kn∑
k=2

λ

|τk − τk−1|
∑

j∈B(k)

v
(k)
j |βj(τk)− βj(τk−1)|

−
Kn∑
k=1

∑
j∈T (k)

w
(k)
j |β̂

(k)
j | −

Kn∑
k=2

λ

|τk − τk−1|
∑

j∈B(k)

v
(k)
j |β̂

(k)
j − β̂(k−1)

j | −
Kn∑
k=1

∑
j∈{T (k)}c

w
(k)
j |β̂

(k)
j |

−
Kn∑
k=2

λ

|τk − τk−1|
∑

j∈{B(k)}c
v

(k)
j |β̂

(k)
j − β̂(k−1)

j |.

By triangle inequality, the above inequality implies

Kn∑
k=1

∑
j∈{T (k)}c

w
(k)
j |β̂

(k)
j |+

Kn∑
k=2

λ

|τk − τk−1|
∑

j∈{B(k)}c
v

(k)
j |β̂

(k)
j − β̂(k−1)

j |

≤
Kn∑
k=1

∑
j∈T (k)

w
(k)
j |β̂

(k)
j − βj(τk)|+

Kn∑
k=2

λ

|τk − τk−1|
∑

j∈B(k)

v
(k)
j |β̂

(k)
j − β̂(k−1)

j − βj(τk) + βj(τk−1)|

≤ W1

Kn∑
k=1

‖{β̂(k) − β(τk)}T (k)‖1 +W1

Kn∑
k=2

λ

|τk − τk−1|
‖{β̂(k) − β(τk)}B(k)‖1

+W1

Kn∑
k=2

λ

|τk − τk−1|
‖{β̂(k−1) − β(τk−1)}B(k)‖1.
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Now, by the Cauchy-Schwarz inequality with |T (k)| ≤ s0 and |B(k)| ≤

2s0, the above inequality implies

Kn∑
k=1

∑
j∈{T (k)}c

w
(k)
j |β̂

(k)
j |+

Kn∑
k=2

λ

|τk − τk−1|
∑

j∈{B(k)}c
v

(k)
j |β̂

(k)
j − β̂(k−1)

j |

≤ W1

√
Kn
√
s0

√√√√Kn∑
k=1

‖{β̂(k) − β(τk)}‖22

+ 2W1
λ

mink≥2 |τk − τk−1|
√
Kn

√
2s0

√√√√Kn∑
k=1

‖{β̂(k) − β(τk)}‖22

≤ ξ1(W1 +
√

2W1)
√
s0Kn

√
s0 log p

n
+ ηn, (S1.8)

where the last inequality follows from Condition 2. Now, by (S1.8) and

the definition of W2, (3.5) in the main paper holds. This completes the

proof.

S1.4 Proofs of Theorem 2

We begin by providing the following lemmas that will be used for the proof

of Theorem 2. Lemma 5 is only used to show Lemma 6.

Lemma 5. For an n×p design matrix X = (x1, · · · , xn)T , which is normal-

ized to have column `2 norm
√
n, we have with probability at least 1− 1/n,

max
k

∥∥∥ n∑
i=1

xi[τk − I{yi ≤ xi
Tβ(τk)}]/n

∥∥∥
∞
≤ 3

√
log p

n
. (S1.9)
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Recall the event E1, defined in (5.1) in the matin paper: for all k,

λ̃ ≤ C2

√
log p/n, ‖β̃(k) − β(τk)‖2 ≤ C3

√
s0 log p/n, ‖β̃(k)‖0 ≤ C4s0. (S1.10)

The following lemma implies that we can find a proper ηn on event E1.

Lemma 6. Suppose the conditions of Theorem 2 hold. Then, we have

P (Eη∗n | E1) ≥ 1− 1/n, where

η∗n =
(
C2C3

√
C4 + 1 + C4 max

k
Λk

)
s0 log p/n.

Lemma 6 implies

P(Eη∗n ∩E1) = P(E1)P(Eη∗n | E1) ≥ (1− P(Ec
1)) (1− 1/n) ≥ 1− 1

n
− P(Ec

1).

Let δk = β̂(k) − β(τk) (k = 1, . . . , Kn). On event E3, we have

sup
v∈A(k)(ψλ),‖v‖k,2≤‖δk‖k,2

∣∣∣Q̃(k)(v)
∣∣∣ ≤ C1

1 + ψλ
k(s0, ψλ)

‖δk‖k,2

√
s0 log p

n
(k = 1, . . . , Kn),

where ψλ = (dmin +2λ)/(dmin−2λ), as defined in Table 1 in the main paper,

and P(E3) ≥ 1− 1/n by Lemma 1.

Proof of Theorem 2. Throughout the proof, we assume Eη∗n∩E1∩E3, where

P(Eη∗n ∩ E1 ∩ E3) ≥ 1 − 2/n − P(Ec
1). To utilize the results of Theorem 1,

we will show that the conditions of Theorem 1 hold with c0 = ψλ in the

current setting. Note that W0 ∨W1 = W2 = 1 holds because the maximum

absolute value of Pζn(·) is at most 1 and

Pζn

(
β̃

(k)
j

)
= 1 (j ∈ {T (k)}c), Pζn

(
β̃

(k)
j − β̃

(k−1)
j

)
= 1 (j ∈ {B(k)}c).
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These results follow from

|β̃(k)
j | ≤ ‖β̃(k) − β(τk)‖2 ≤ C3

√
s0 log p

n
< ζn (j ∈ {T (k)}c),

|β̃(k)
j − β̃

(k−1)
j | ≤ ‖β̃(k) − β(τk)‖2 + ‖β̃(k−1) − β(τk−1)‖2

≤ 2C3

√
s0 log p

n
≤ ζn (j ∈ {B(k)}c),

where Condition 4 is used. Therefore, Condition 2 holds and

dminW1 + 2λ(W0 ∨W1)

dminW2 − 2λ(W0 ∨W1)
≤ ψλ.

Since the conditions of Theorem 1 hold with c0 = ψλ and η = η∗n, we can

utilize the results of Theorem 1 with η = η∗n and c0 = ψλ. Hence, we have

‖β̂(k) − β(τk)‖2

≤ 4d2
min

(dmin − 2λ)2k(2s0, ψλ)
√
f

√
s0 log p

n
+ {C2C3

√
C4 + 1 + C4 max

k
Λk}

s0 log p

n

≤ ξ2

√
s0 log p

n
(k = 1, . . . , Kn), (S1.11)

where

ξ2 =
4d2

min

(dmin − 2λ)2k(2s0, ψλ)
√
f

√
1 + C2C3

√
C4 + 1 + C4 max

k
Λk.

This completes the proof.

S1.5 Proofs of Theorem 3

Let C5 = {(3.7α + C3) ∨ ξ2} and C6 = {(3.7α+2C3)∨2ξ2}/(Kndmin), where

α = ζn(s0 log p/n)−0.5. First, we state the following lemma.
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Lemma 7. Suppose the conditions of Theorem 3 hold. Then, on event E1,

we have W1 = 0.

Proof of Theorem 3. Throughout the proof, we assume Eη∗n ∩ E1 ∩ E3. By

Lemma 7,

G(Bo) =

Kn∑
k=1

∑
j∈{T (k)}c

w
(k)
j |βj(τk)|+

Kn∑
k=2

λ

|τk − τk−1|
∑

j∈{B(k)}c
v

(k)
j |βj(τk)− βj(τk−1)| = 0,

where G(·) is the objective function of our optimization problem, as defined

in (S1.2).

Now, notice that the proof of Theorem 1 and the result of Theorem 2

demonstrate that (3.5) in the main paper holds with η = η∗n and c0 = ψλ.

Then, the equation (3.5) and W1 = 0 imply

β̂
(k)

{T (k)}c = 0 (k = 1, . . . , Kn), {β̂(k)−β̂(k−1)}{B(k)}c = 0 (k = 2, . . . , Kn).

(S1.12)

In addition, we have

min
k

min
j∈T (k)

|β̂(k)
j | ≥ min

k
min
j∈T (k)

|βj(τk)| −max
k
‖β̂(k) − β(τk)‖2

> ξ2

√
s0 log p

n
− ξ2

√
s0 log p

n
= 0, (S1.13)

where the second inequality follows from the beta-min condition, as stated

in Theorem 3. Similarly,

min
k≥2

min
j∈B(k)

|β̂(k)
j − β̂

(k−1)
j | ≥ min

k≥2
min
j∈B(k)

|βj(τk)− βj(τk−1)| − 2 max
k
‖β̂(k) − β(τk)‖2

> 2ξ2

√
s0 log p

n
− 2ξ2

√
s0 log p

n
= 0. (S1.14)
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By (S1.12), (S1.13), and (S1.14), B̂ provides the exact model structure,

which completes the proof.

S1.6 Proofs of Theorem 4

Here we define the map T and new design matrix z
(k)
i , as stated in Section

6. First, we define a map M : {1, . . . , p} × {1, . . . , Kn} → Rd0 as follows:

1. If β̂
(k)
j = 0, then M(j, k) = 0.

2. if β̂
(k)
j = β̂

(k−1)
j , then M(j, k) = M(j, k − 1).

3. If β̂
(k)
j 6= 0, β̂

(k′)
j′ = 0 (k′ = 1, . . . , Kn; j′ = 1, . . . , j − 1), and β̂

(k′)
j =

0 (k′ = 1, . . . , k − 1), then M(j, k) = 1.

4. If β̂
(k)
j 6= 0 and β̂

(k)
j 6= β̂

(k−1)
j , then

M(j, k) = 1 + max(M1,M2),

where

M1 := {M(j′, k′) : k′ = 1, . . . , Kn; j′ = 1, . . . , j − 1},

M2 := {M(j, k′) : k′ = 1, . . . , k − 1}.

5. If β̂
(1)
j 6= 0 for j ≥ 2, then

M(j, 1) = 1 + max{M(j′, k′) : k′ = 1, . . . , Kn; j′ = 1, . . . , j − 1}.
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By utilizing the map M , we arrive at a new design matrix denoted by

z
(k)
i ∈ Rd0 (i = 1, . . . , n; k = 1, . . . , Kn). First, let

M(T (k), k) = {M(j, k) : j ∈ T (k)} (k = 1, . . . , Kn),

where the elements in M(T (k), k) are in ascending order. Let

z(k)
i,M(T (k),k) = xi,T (k) , z

(k)
i,j = 0 for j ∈ {1, · · · , d0} \M(T (k), k).

Now, to define the map T , let

IM = {(j, k) : M(j, k) 6= 0, M(j, k) 6= M(j, k − 1)},

which is the location indices account for effective components. Then, for

any B ∈ G, T (B) ∈ Rd0 , where T (B)i = Bj,k (i = 1, . . . , d0) for i satisfying

M(j, k) = i and (j, k) ∈ IM. It is easily checked that for any B ∈ G, T (B)

is a d0–dimensional vector.

Remark 1. Illustrative example of the M and T .

Suppose that we consider the model, where p = 5 and Kn = 3 with the

three quantile levels τ1, τ2, and τ3. Assume that we obtain the following
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estimates from our Dantzig-type optimization problem:

B̂ =



0.9 0.9 0.0

1.1 1.5 1.5

0.0 0.0 0.0

0.5 0.0 1.0

0.0 0.2 0.2


=

[
β̂(1), β̂(2), β̂(3)

]
.

Then, M is the function such that

M(j, k) = M̃j,k for j = 1, · · · , 5, and k = 1, 2, 3,

where

M̃ =



1 1 0

2 3 3

0 0 0

4 0 5

0 6 6


is the indices matrix follows from the model structure of B̂.

Here d0 = 6, and

T (B̂) = [0.9, 1.1, 1.5, 0.5, 1.0, 0.2]T .

Lemma 8. Assume d0M
4
n(log n)2 = o(n). Let ∆ > 0 and Θ = {θ ∈ Rd0 :
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‖θ‖2 ≤ ∆}. For any θ ∈ Θ, let

I2(θ) =
1

‖θ‖2

∑
k

∑
i

∫ √
d0
n
{z(k)i }

T θ

0

I(ε
(k)
i ≤ x)− I(ε

(k)
i ≤ 0)dx,

where ε
(k)
i = yi − xiTβ(τk) = yi − {z(k)

i }TT (Bo). Then, with probability at

least 1− n−9d0 logn − 2f̄Kn/n,

sup
θ∈Θ
|I2(θ)− E[I2(θ)]| ≤ 7n−1/4Kn∆1/2s

3/4
0 (d0)5/4(log n)3/2.

Proof of Theorem 4. We will show that for any constant ε > 0, there exists

a sufficiently large constant ∆ > 0, satisfying

P
[

inf
‖θ‖2=∆, θ∈Rd0

Ln

(
T (Bo) +

√
d0

n
θ
)
> Ln(T (Bo))

]
≥ 1− ε, (S1.15)

where Ln(θ) =
∑

k

∑
i ρτk [yi−{z

(k)
i }T θ] for any θ ∈ Rd0 . Since Ln is a strict

convex function over θ ∈ Rd0 , (S1.15) implies that the global minimum T (B̂)

lies within the ball whose center is T (Bo) and the radius is ∆
√
d0/n, with

probability at least 1− ε, which proves the theorem. Let

Gn(θ) = Ln

(
T (Bo) +

√
d0

n
θ

)
− Ln (T (Bo)) .
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By the Knight’s identity,

Gn(θ) =
∑
k

∑
i

ρτk

[
yi − {z(k)

i }TT (Bo)−
√
d0

n
{z(k)

i }T θ
]
− ρτk

[
yi − {z(k)

i }TT (Bo)
]

=

√
d0

n

∑
k

∑
i

{z(k)
i }T θ{I(ε

(k)
i < 0)− τk}

+
∑
k

∑
i

∫ √
d0
n
{z(k)i }

T θ

0

I(ε
(k)
i ≤ x)− I(ε

(k)
i ≤ 0)dx

:= I1(θ) + I2(θ),

where ε
(k)
i is defined in Lemma 8. First, consider I1(θ). Let v

(k)
i = I(ε

(k)
i <

0)− τk and Θ = {θ ∈ Rd0 : ‖θ‖2 = ∆}. Then, we have

E
[

sup
θ∈Θ

I2
1 (θ)

]
=

d0

n
E

 sup
‖θ‖2∈Θ

{
(
∑
k

∑
i

z
(k)
i v

(k)
i )T θ

}2


=
d0

n
E
[

sup
‖θ‖2∈Θ

θTZZT θ
]

≤ d0

n
∆2E[λmax(ZZT )], (S1.16)

where Z =
∑

k

∑
i{z

(k)
i v

(k)
i }. We have noticed that ZZT is a zero matrix

or a rank–one matrix, and that ZTZ is a eigenvalue of ZZT when ZZT is

a rank–one matrix. Hence,

λmax(ZZT ) ≤ ZTZ. (S1.17)
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Therefore (S1.16) and (S1.17) imply

E
[

sup
θ∈Θ

I2
1 (θ)

]
≤ d0

n
∆2E[ZTZ]

=
d0

n
∆2E[

∑
k

∑
k′

∑
i

v
(k)
i v

(k′)
i {z

(k)
i }T z

(k′)
i ]

=
d0

n
∆2
∑
k

∑
k′

(τk ∧ τk′ − τkτk′)
∑
i

{z(k)
i }T z

(k′)
i

≤ ∆2K2
nd

2
0.

Hence, by Markov inequality,

P

(
sup
‖θ‖2∈Θ

|I1(θ)| ≥ ∆Knd0√
ε/2

)
≤ ε

2
.

Hence, with probability at least 1− ε/2, we have sup‖θ‖2∈Θ |I1(θ)| ≤ ∆Knd0√
ε/2

.

Now, consider I2(θ). Then, for any θ ∈ Θ,

E (I2(θ)) =
∑
k

∑
i

∫ √
d0
n {z

(k)
i }

T θ

0

P
(
yi ≤ xiTβ(τk) + x

)
− P

(
yi ≤ xiTβ(τk)

)
dx

=
∑
k

∑
i

∫ √
d0
n {z

(k)
i }

T θ

0

xfi
(
xi
Tβ(τk)

)
+
x2

2
f ′i(xi

Tβ(τk) + x̃
(k)
i )dx

≥
∑
k

∑
i

fi
(
xi
Tβ(τk)

)
2

d0

n
[{z(k)

i }
T θ]2 − f̄

6

∑
k

∑
i

(d0

n

)1.5
[{z(k)

i }
T θ]3

≥
d0f

2

∑
k

∑
i

θT
1

n
z

(k)
i {z

(k)
i }

T θ −
∆Mnf̄d

1.5
0

√
s0

6
√
n

∑
k

∑
i

θT
1

n
z

(k)
i {z

(k)
i }

T θ,

where x̃
(k)
i ∈ (0, x) depends on i and k in the second line. The first and

the second inequality follow from Condition 1 and the fact

|{z(k)
i }T θ| ≤ ‖z

(k)
i ‖2‖θ‖2 ≤Mn

√
s0∆.

Since d0s0 = o(n) holds and the nonzero parts of
∑

i z
(k)
i {z

(k)
i }T/n is a
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sk × sk–dimensional sub–matrix of
∑

i xixi
T/n, it holds that

E (I2(θ)) ≥
d0f

4

∑
k

∑
i

θT
1

n
z

(k)
i {z

(k)
i }T θ ≥

Knd0f

4
k2(s0, 0)∆2.

By Lemma 8 and Condition 6(a), we have

I2(θ) ≥
Knd0f

4
k2(s0, 0)∆2 −∆3/2op(Knd0),

where op(1) is uniformly over θ ∈ Θ.

Hence, for any ε > 0, with probability at least 1− ε/2,

inf
θ∈Θ

Gn(θ) ≥
Knd0f

4
k2(s0, 0)∆2 −∆3/2op(Knd0)− ∆Knd0√

ε/2
> 0

with a sufficiently large ∆, which completes the proof.

S1.7 Proofs of Theorem 5

Lemma 9. Recall the matrices An and Bn defined in Theorem 5. We have

f̄−2φ−2(s0)k2(s0, 0)(min
k
τk)(1−max

k
τk) ≤ λmin(An

−1BnAn
−1),

λmax(An
−1BnAn

−1) ≤ L−2
0 φ(s0)k−4(s0, 0).

Lemma 10. Assume conditions of Theorem 5 hold. Then, for any sequence

of αn ∈ Rd0 with ‖αn‖2 = 1, the following asymptotic normality holds:

n−1/2αTn (An
−1BnAn

−1)−1/2An
−1
∑
k

∑
i

z
(k)
i

(
I(yi − xiTβ(τk) < 0)− τk

)
→ N(0, 1).

Proof of Theorem 5. Recall

T (B̂po) = arg min
β∈Rd0

∑
k

∑
i

ρτk(yi − {z
(k)
i }Tβ). (S1.18)
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By θ =
√
n/d0 (β − T (Bo)), T (B̂po) = T (Bo) +

√
d0/nθ̂, where

θ̂ = arg min
θ∈Rd0

∑
k

∑
i

ρτk

[
yi − {z(k)

i }TT (Bo)−
√
d0

n
{z(k)

i }T θ
]
. (S1.19)

Then, θ̂ can be written as θ̂ = Gn(θ), where

Gn(θ) = arg min
θ∈Rd0

∑
k

∑
i

ρτk

(
yi − {z(k)

i }TT (Bo)−
√
d0

n
{z(k)

i }T θ

)
−

∑
k

∑
i

ρτk

(
yi − {z(k)

i }TT (Bo)
)
.

Consider θ over the set Θn = {θ ∈ Rd0 | ‖θ‖2 ≤ C} with some positive

constant C independent of n. Decompose Gn into two terms:

Gn(θ) = I1(θ) + I2(θ),

where

I1(θ) =

√
d0

n

∑
k

∑
i

{z(k)
i }T θ{I(ε

(k)
i < 0)− τk},

I2(θ) =
∑
k

∑
i

∫ √
d0
n
{z(k)i }

T θ

0

I(ε
(k)
i ≤ x)− I(ε

(k)
i ≤ 0)dx.

Consider the term I2(θ). From the proof of Theorem 4,∣∣∣E[I2(θ)]−
∑
k

∑
i

∫ √
d0
n
{z(k)i }

T θ

0

fi(xi
Tβ(τk))xdx

∣∣∣
≤

∣∣∣∑
k

∑
i

∫ √
d0
n
{z(k)i }

T θ

0

x2

2
f ′i(x̃

(k)
i )dx

∣∣∣
≤ f̄

6

∑
k

∑
i

(d0

n

)1.5|{z(k)
i }T θ|3

≤ f̄

6
Kn

d1.5
0

√
s0Mn√
n

‖θ‖3
2φ(s0)

= o(‖θ‖2Kn),
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where x̃
(k)
i ∈ (xi

Tβ(τk), xi
Tβ(τk)+x) depends on i and k in the first inequal-

ity. The second inequality follows from Condition 1. The third inequality

holds due to Sparse(s0) and the fact that

|{z(k)
i }T θ| ≤ ‖z

(k)
i ‖2‖θ‖2 ≤Mn‖θ‖2

√
s0.

The last small o results follows from M2
nd

3
0s0 = o(n). Moreover, Lemma 8

and the conditions of Theorem 5 imply

I2(θ)− E[I2(θ)] = op(‖θ‖2Kn),

where op is uniform over θ ∈ Θn. Hence, for all θ ∈ Θn,

I2(θ) =
∑
k

∑
i

fi(xi
Tβ(τk))

2

d0

n
[{z(k)

i }T θ]2 + op(‖θ‖2Kn).

Thus, for all θ ∈ Θn, Gn(θ) can be written as

Gn(θ) =

√
d0

n

∑
k

∑
i

{z(k)
i }T θ

(
I(ε

(k)
i < 0)− τk

)
+

∑
k

∑
i

fi(xi
Tβ(τk))

2

d0

n
[{z(k)

i }T θ]2 + op(‖θ‖2Kn).

By matrix calculus,

θ̂ =

√
n

d0

{∑
k

∑
i

fi(xi
Tβ(τk))z

(k)
i {z

(k)
i }

T
}−1∑

k

∑
i

z
(k)
i {I(ε

(k)
i < 0)− τk}

+

(∑
k

∑
i

fi(xi
Tβ(τk))

2

d0

n
z

(k)
i {z

(k)
i }

T

)−1

Knop(1)

= (nd0)−0.5An
−1
∑
k

∑
i

z
(k)
i {I(ε

(k)
i < 0)− τk}+ 2A−1

n

Kn

d0
op(1)

= d−0.5
0 (An

−1BnAn
−1)

1
2

[
n−0.5(An

−1BnAn
−1)−

1
2An

−1
∑
k

∑
i

z
(k)
i {I(ε

(k)
i < 0)− τk}

]
+

1

d0
op(1),
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where op(1) represents any d0-dimensional vector whose `2 norm is op(1).

For any αn ∈ Rd0 with ‖αn‖2 = 1, Lemma 10 implies

αTn

[
n−0.5(An

−1BnAn
−1)−

1
2An

−1
∑
k

∑
i

z
(k)
i {I(ε

(k)
i < 0)− τk}

]
→ N(0, 1).

Hence, by Lemma 9,

‖θ̂‖2 ≤ d−0.5
0 λmax{(An−1BnAn

−1)
1
2}Op{

√
d0}+ op(1)

≤ L−1
0

√
φ(s0)k−2(s0, 0)Op(1).

Since C can be chosen to be much larger than L−1
0

√
φ(s0)k−2(s0, 0), θ̂ is

included in Θn. Hence, by Lemma 10 ,

αTn
√
n(An

−1BnAn
−1)−

1
2

√
d0

n
θ̂ → N(0, 1).

Thus,

αTn
√
n(An

−1BnAn
−1)−

1
2{T (B̂po)− T (Bo)} → N(0, 1),

which completes the proof.

S1.8 Proof of Lemmas

Proof of Lemma 1,2 and 3. The proofs essentially follow from the proofs of

Lemmas 4 and 5 in Belloni and Chernozhukov (2011).

Proof of Lemma 4. Suppose Eη holds. Then, β(τk) ∈ R(k)(rk) (k = 1, . . . , Kn),

where R(k)(rk) is defined in (3.1). This implies that

B(k) = [β̂(1), · · · , β̂(k−1), β(τk), β̂
(k+1), · · · , β̂(K)]
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is feasible for all k. We fix any k. Since B̂ is a global minimizer of (3.1), we

have G(B̂) ≤ G
(
B(k)

)
, where G(·) is defined in (S1.2). This implies

p∑
j=1

w
(k)
j |β̂

(k)
j |+

λ

|τk − τk−1|

p∑
j=1

v
(k)
j |β̂

(k)
j − β̂(k−1)

j |+ λ

|τk+1 − τk|

p∑
j=1

v
(k+1)
j |β̂(k)

j − β̂(k+1)
j |

≤
p∑
j=1

w
(k)
j |βj(τk)|+ λ

|τk − τk−1|

p∑
j=1

v
(k)
j |βj(τk)− β̂(k−1)

j |+ λ

|τk+1 − τk|

p∑
j=1

v
(k+1)
j |βj(τk)− β̂(k+1)

j |.

By the triangle inequality and the definition of dmin, it reduces to

∑
j∈{T (k)}c

w
(k)
j |β̂

(k)
j | ≤

∑
j∈T (k)

w
(k)
j (|βj(τk)| − |β̂(k)

j |) +
λ

dmin

p∑
j=1

(v
(k)
j + v

(k+1)
j )|β̂(k)

j − βj(τk)|.

Rearranging the terms yields

∑
j∈{T (k)}c

[
w

(k)
j −

λ

dmin
{v(k)
j + v

(k+1)
j }

]
|β̂(k)
j −βj(τk)| ≤

∑
j∈T (k)

[w
(k)
j +

λ

dmin
{v(k)
j +v

(k+1)
j }]|β̂(k)

j −βj(τk)|.

By the definition of W2, W1, and W ,

∑
j∈{T (k)}c

(
W2 −

2λ(W0 ∨W1)

dmin

)
|β̂(k)
j −βj(τk)| ≤

∑
j∈T (k)

(
W1 +

2λ(W0 ∨W1)

dmin

)
|β̂(k)
j −βj(τk)|.

Condition 2 implies W2− 2λ
dmin

(W0∨W1) > 0, and we have for k = 1, . . . , Kn,

∑
j∈{T (k)}c

|β̂(k)
j − βj(τk)| ≤

dminW1 + 2λ(W0 ∨W1)

dminW2 − 2λ(W0 ∨W1)

∑
j∈T (k)

|β̂(k)
j − βj(τk)|,

which completes the proof.

Proof of Lemma 5. Lemma 1.5 in Ledoux and Talagrand (1991) implies

that for any independent mean zero random variables Z1, · · · , Zn and pos-

itive constants c1, · · · , cn, which satisfy |Zi| ≤ ci (i = 1, . . . , n), we have

that for any t > 0,

P

(
|

n∑
i=1

Zi| > t

)
≤ 2 exp

(
− t2

2
∑n

i=1 c
2
i

)
. (S1.20)
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Fix j, k, and any t > 0. Let Zi = xij[τk − I{yi ≤ xi
Tβ(τk)}]/n, where xij is

the jth component of xi. By (S1.20), it holds that

P

(∣∣∣∣∣
n∑
i=1

xij [τk − I{yi ≤ xiTβ(τk)}]/n

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− t2

2
∑n
i=1 x

2
ij/n

2

)
= 2 exp

(
−nt

2

2

)
,

where we set ci = xij/n. By the union bound,

P

(
max
k

max
j
|

n∑
i=1

xij[τk − I{yi ≤ xi
Tβ(τk)}]/n| ≥ t

)
≤ 2Knp exp(−nt

2

2
).

Letting t = 3
√

log p/n yields

P

(
max
k

max
j
|

n∑
i=1

xij[τk − I{yi ≤ xi
Tβ(τk)}]/n| ≥ 3

√
log p/n

)
≤ 1

n
,

where we use p > n ∨Kn. This completes the proof.

Proof of Lemma 6. Suppose E1 holds. Then, we have for all k = 1, . . . , Kn,

‖β̃(k) − β(τk)‖1 ≤
√
‖β̃(k) − β(τk)‖0‖β̃(k) − β(τk)‖2

≤
√

(C4 + 1)s0C3

√
s0 log p

n
. (S1.21)

Note that (S1.21) uniformly holds for all k, with probability at least

1− γn.

In the Dantzig-type joint quantile regression setting, stated in Section

4, rk = Q(k)
n {β̃(k)}+ Λks̃ log p/n, where s̃ = maxk ‖β̃(k)‖0. Hence, the event

Eη, defined in (3.3), is equivalent to

Q(k)
n {β(τk)} ≤ Q(k)

n (β̃(k)) + Λk
s̃ log p

n
≤ Q(k)

n {β(τk)}+ η (k = 1, . . . , Kn).

(S1.22)
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To prove (S1.22), we use the fact that Q(k)
n is a convex function and

−
∑n

i=1 xi[τk − I{yi ≤ xi
Tβ(τk)}]/n is the subgradient of Q(k)

n at β(τk).

Hence, we have

Q(k)
n {β̃(k)} −Q(k)

n {β(τk)}

≥

(
− 1

n

n∑
i=1

xi[τk − I{yi ≤ xi
Tβ(τk)}]

)T

{β̃(k) − β(τk)}

≥ −‖ 1

n

n∑
i=1

(xi[τk − I{yi ≤ xi
Tβ(τk)}])‖∞‖β̃(k) − β(τk)‖1. (S1.23)

Let E4 be the event

E4 =

{
‖ 1

n

n∑
i=1

(xi[τk − I{yi ≤ xi
Tβ(τk)}])‖∞ ≤ 3

√
log p

n

}
. (S1.24)

By Lemma 5, P (E4) ≥ 1 − 1/n. Combining (S1.21), (S1.23), and (S1.24),

we have on event E4,

Q(k)
n {β̃(k)} −Q(k)

n {β(τk)} ≥ −3
√
C4 + 1C3

s0 log p

n
,

≥ −Λk
s̃ log p

n
, (S1.25)

where the last inequality utilizes Condition 4. Hence, the first inequality

of (S1.22) holds for all k.

Now, by using the fact that β̃(k)s and λ̃ satisfy (S1.10) on event E1, we

can demonstrate that the second inequality of (S1.22) holds with η = η∗n as
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follows:

Q(k)
n {β̃(k)}+ Λk

s̃ log p

n
≤ Q(k)

n {β(τk)}+ λ̃{‖β(τk)‖1 − ‖β̃(k)‖1}+ Λk
s̃ log p

n

≤ Q(k)
n {β(τk)}+ λ̃‖β(τk)− β̃(k)‖1 + Λk

s̃ log p

n

≤ Q(k)
n {β(τk)}+ C2C3

√
C4 + 1

s0 log p

n
+ Λk

s̃ log p

n

≤ Q(k)
n {β(τk)}+ {C2C3

√
C4 + 1 + C4 max

k
Λk}

s0 log p

n

= Q(k)
n {β(τk)}+ η∗n. (S1.26)

Here the first inequality follows from the definition of β̃(k). Combining (S1.25)

and (S1.26) implies that (S1.22) holds with η = η∗n, which completes the

proof.

Proof of Lemma 7. Suppose E1 holds. Then, we have

min
k

min
j∈T (k)

|β̃(k)
j | ≥ min

k
min
j∈T (k)

|βj(τk)| −max
k
‖β̃(k) − β(τk)‖2

≥ (3.7α + C3)

√
s0 log p

n
− C3

√
s0 log p

n

= 3.7α

√
s0 log p

n
= 3.7ζn, (S1.27)

where the second inequality follows from Condition 5. Similarly,

min
k≥2

min
j∈B(k)

|β̃(k)
j − β̃

(k−1)
j | ≥ min

k≥2
min
j∈B(k)

|βj(τk)− βj(τk−1)| − 2 max
k
‖β̃(k) − β(τk)‖2

≥ (aα + 2C3)

√
s0 log p

n
− 2C3

√
s0 log p

n

= aα

√
s0 log p

n
≥ aζn. (S1.28)
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By (S1.27) and (S1.28), we have W1 = 0, which completes the proof.

Proof of Lemma 8. Fx k ∈ {1, · · · , Kn}. Let

I
(k)
2 (θ) :=

∑
i

1

‖θ‖2

∫ √
d0
n
{z(k)i }

T θ

0

I(ε
(k)
i ≤ x)− I(ε

(k)
i ≤ 0)dx :=

∑
i

I
(k)
2,i (θ).

Let D := {θ ∈ Rd0 | ‖θ‖2 ≤ 1
nd0Mn

√
n
}. First, consider the case in which

‖θ‖2 ∈ D. Then,∣∣∣∣∣
√
d0

n
{z(k)

i }T θ

∣∣∣∣∣ ≤
√
d0s0

n

Mn

nd0Mn

√
n
≤ 1

n2
.

Define the events B and C as follows:

B =

{
|ε(k)
i | >

1

n2
, for all i.

}
, C =

{
sup
θ: θ∈D

I
(k)
2 (θ) = 0

}
.

Then, P(B) ≥ 1− n2f̄
n2 = 1− 2f̄

n
, which implies P(C) ≥ 1− 2f̄

n
. Moreover, it

holds that

sup
θ∈D

∣∣∣E[I
(k)
2 (θ)]

∣∣∣ ≤ (1− P(C))
2f̄

n
Mn

√
nd0s0 ≤

2f̄Mn

√
d0s0√

n
.

Hence, with probability at least 1− 2f̄/n, we have

sup
θ∈D

∣∣∣I(k)
2 (θ)− E[I

(k)
2 (θ)]

∣∣∣ ≤ 2f̄Mn

√
d0s0√

n
.

Now, consider the case in which ‖θ‖2 > 1/(nd0Mn

√
n). We have for

any λ > 0,

P
(
|I(k)

2 (θ)− E[I
(k)
2 (θ)]| ≥ t

)
≤ exp

(
−λt− λE[I

(k)
2 (θ)]

)
E
[
exp(λI

(k)
2 (θ))

]
.

(S1.29)
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We have

E
[
exp(λI

(k)
2 (θ))

]
=

∏
i

E
[
exp(λI

(k)
2,i (θ))

]
=

∏
i

E
[
1 + λI

(k)
2,i (θ) + λ2(I

(k)
2,i (θ))2O(1)

]
=

∏
i

(
1 + λE[I

(k)
2,i (θ)] + λ2O(E[(I

(k)
2,i (θ))2])

)
≤ exp

(
λ
∑
i

E[I
(k)
2,i (θ)] + λ2

∑
i

O(E[(I
(k)
2,i (θ))2])

)
, (S1.30)

where in the second equality O(1) holds uniformly for all i and θ, provided

that maxi |λI(k)
2,i (θ)| ≤ λMn

√
d0s0
n

= o(1). Combining (S1.29) and (S1.30),

we have

P
(
|I(k)

2 (θ)− E[I
(k)
2 (θ)]| ≥ t

)
≤ exp

(
−λt− λE[I

(k)
2 (θ)] + λ

∑
i

E[I
(k)
2,i (θ)] + λ2

∑
i

O(E[(I
(k)
2,i (θ))2])

)

= exp

(
−λt+ λ2

∑
i

O(E[(I
(k)
2,i (θ))2])

)

= exp

(
−λt+ λ2O

(
∆
s

3/2
0 d

3/2
0√
n

))
. (S1.31)

Here we use the fact that

∑
i

E[(I
(k)
2,i (θ))2] ≤ 1

‖θ‖22

√
d0

n

f̄d0

2n

∑
i

‖{|z(k)
i }

T θ‖22 max
i
|{z(k)

i }
T θ| ≤ ∆f̄M3

n

2

s
3/2
0 d

3/2
0√
n

.

Since tMn

∆s0d0 logn
= o(1), choosing λ = t

√
n

2∆s
3/2
0 d

3/2
0 logn

in (S1.31) implies

P(|I(k)
2 (θ)− E[I

(k)
2 (θ)]| ≥ t) ≤ exp

(
− t2

√
n

4∆s
3/2
0 d

3/2
0 log n

)
.

Now, to apply the chaining argument, consider ε-size balls that cover



S1. TECHNICAL DETAILS

Θ. Let B be the set of centers of the balls. Then, we have

P(sup
θ∈B
|I(k)

2 (θ)− E[I
(k)
2 (θ)]| ≥ t) ≤ exp

(
d0 log

2∆

ε
− t2

√
n

4∆s
3/2
0 d

3/2
0 log n

)
.

Moreover, if θ1, θ2 /∈ D and |θ1 − θ2| ≤ ε, then∣∣∣I(k)
2 (θ1)− E[I

(k)
2 (θ1)]− I(k)

2 (θ2) + E[I
(k)
2 (θ2)]

∣∣∣
≤

∣∣∣I(k)
2 (θ1)− I(k)

2 (θ2)
∣∣∣+
∣∣∣E[I

(k)
2 (θ1)]− E[I

(k)
2 (θ2)]

∣∣∣ .
Note that

|I(k)
2 (θ1)− I(k)

2 (θ2)| ≤ 1

‖θ1‖2‖θ2‖2

∣∣∣∣∣∑
i

‖θ2‖2‖θ1‖2I(k)
2i (θ1)−

∑
i

‖θ1‖2‖θ2‖2I(k)
2i (θ2)

∣∣∣∣∣
≤ n3d2

0M
2

(
‖θ2‖2

∣∣∣∣∣∑
i

‖θ1‖2I(k)
2i (θ1)−

∑
i

‖θ2‖2I(k)
2i (θ2)

∣∣∣∣∣+ |‖θ2‖2 − ‖θ1‖2|

∣∣∣∣∣∑
i

‖θ2‖2I(k)
2i (θ2)

∣∣∣∣∣
)

≤ n3d2
0M

2
n

(
∆n

√
d0

n

√
s0Mnε+ εn

√
d0

n

√
s0Mn∆

)
= 2n3.5d2.5

0 s0.5
0 M3

nε∆.

Similarly,∣∣∣E[I
(k)
2 (θ1)]− E[I

(k)
2 (θ2)]

∣∣∣ ≤ n3d2
0M

2
n

(
f̄
d0

n
ns0M

2
nε

2 + f̄ εn∆2d0

n
s0M

2
n

)
≤ 2n3d3

0s0M
2
nε∆

2.

If we choose t such that εn3.5d3
0M

3
n = o(t) and εn3d4

0M
2
n = o(t) with ε

being small enough, then we have

P

(
sup
θ∈Θ\D

|I(k)
2 (θ)− E[I

(k)
2 (θ)]| ≥ 2t

)
≤ exp

(
d0 log

2∆

ε
− t2

√
n

4∆s
3/2
0 d

3/2
0 log n

)
.

Hence,

P

(
sup

θ∈Θ\D
|I2(θ)− E[I2(θ)]|/‖θ‖2 ≥ 2tKn

)
≤ exp

(
logKn + d0 log

2∆

ε
− t2

√
n

4∆s
3/2
0 d

3/2
0 log n

)
.
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Letting t = 3n−1/4∆1/2s
3/4
0 d

5/4
0 (log n)3/2 and ε = n−9 with the growth

condition d0M
4
n log2 n = o(n) yields

P( sup
θ∈Θ\D

|I2(θ)−E[I2(θ)]|/‖θ‖2 ≥ 6n−1/4Kn∆1/2s
3/4
0 d

5/4
0 (log n)3/2) ≤ n−9d0 logn.

We have shown with probability at least 1− 2f̄Kn
n

that

sup
θ∈D
|I2(θ)− E[I2(θ)]| ≤ 2f̄Mn

√
d0s0Kn√
n

.

Therefore, we have with probability at least 1− n−9d0 logn − 2f̄Kn
n

,

sup
θ∈Θ
|I2(θ)− E[I2(θ)]| ≤ 7n−1/4Kn∆1/2s

3/4
0 d

5/4
0 (log n)3/2.

Proof of Lemma 9. First, we have

Knfk
2(s0, 0) ≤ λmin(An) ≤ λmax(An) ≤ Knf̄φ(s0),

(∑
k,k′

τk∧τk′−τkτk′
)
k2(s0, 0) ≤ λmin(Bn) ≤ λmax(Bn) ≤

(∑
k,k′

τk∧τk′−τkτk′
)
φ(s0).

Hence, it holds that

λmin(An
−1BnAn

−1) ≥ λ2
min(An

−1)λmin(Bn)

= λ−2
max(An)λmin(Bn)

≥ f̄−2φ−2(s0)k2(s0, 0)

∑
k,k′ τk ∧ τk′ − τkτk′

K2
n

≥ f̄−2φ−2(s0)k2(s0, 0)(min
k
τk)(1−max

k
τk).
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Similarly, we have

λmax(An
−1BnAn

−1) ≤ λ2
max(An

−1)λmax(Bn)

= λ−2
min(An)λmax(Bn)

≤ L−2
0 φ(s0)k−4(s0, 0)

∑
k,k′ τk ∧ τk′ − τkτk′

K2
n

≤ L−2
0 φ(s0)k−4(s0, 0),

which completes the proof.

Proof of Lemma 10. Recall ε
(k)
i = yi − xiTβ(τk) = yi − {z(k)

i }TT (Bo). Now,

define Dn as follows:

Dn = αTn (An
−1BnAn

−1)−
1
2An

−1n−0.5
∑
i

∑
k

z
(k)
i {I(ε

(k)
i < 0)−τk} :=

∑
i

Zni,

where Zni = (n−0.5)
[
αTn (An

−1BnAn
−1)−

1
2An

−1∑
k z

(k)
i {I(ε

(k)
i < 0) − τk}

]
.

Then, E[Zni] = 0 and

∑
i

Var(Zni)

=
∑
i

αTn (An
−1BnAn

−1)−
1
2An

−1
∑
k,k′

1

n
z

(k)
i {z

(k)
i }

T {min(τk, τk′)− τkτk′}An−1(An
−1BnAn

−1)−
1
2αn

= αTn (An
−1BnAn

−1)−
1
2An

−1BnAn
−1(An

−1BnAn
−1)−

1
2αn

= 1.

Consider an upper bound of Zni for all i = 1, . . . , n:

|Zni| ≤

∥∥∥∥∥∑
k

z
(k)
i {I(ε

(k)
i < 0)− τk}

∥∥∥∥∥
2

∥∥∥An−1(An
−1BnAn

−1)−
1
2αn

∥∥∥
2
/
√
n.

(S1.32)
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Since
∑

k z
(k)
i {I(ε

(k)
i < 0)− τk} is a d0-dimensional vector and the absolute

value of each components is upper bounded by KnMn,

‖
∑
k

z
(k)
i {I(ε

(k)
i < 0)− τk}‖2 ≤

√
d0KnMn. (S1.33)

Since ‖αn‖2 = 1, we have

‖(An−1BnAn
−1)−

1
2αn‖2 ≤ λmax{(An−1BnAn

−1)−
1
2}

= {λmin(An
−1BnAn

−1)}−0.5

≤ f̄φ(s0)k−1(s0, 0)(min
k
τk)
−0.5(1−max

k
τk)
−0.5,

where the second inequality utilizes Lemma 9. Similarly, it holds that

‖An−1(An
−1BnAn

−1)−
1
2αn‖2 ≤ λmax(An

−1)‖(An−1BnAn
−1)−

1
2αn‖2

≤ K−1
n L−1

0 k−3(s0, 0)f̄φ(s0)(min
k
τk)
−0.5(1−max

k
τk)
−0.5. (S1.34)

Combing (S1.32), (S1.33), and (S1.34), it can be derived that

max
i
|Zni| ≤

√
d0/nMnL

−1
0 k−3(s0, 0)f̄φ(s0)(min

k
τk)
−0.5(1−max

k
τk)
−0.5.

Hence, we have

∑
i

E(|Zni|3) ≤
∑
i

E(|Zni|2)

√
d0

n
MnL

−1
0 k−3(s0, 0)f̄φ(s0)(min

k
τk)−0.5(1−max

k
τk)−0.5

=
√
d0/nMnL

−1
0 k−3(s0, 0)f̄φ(s0)(min

k
τk)−0.5(1−max

k
τk)−0.5

→ 0.
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Thus, {Zni}ni=1 for all n are triangular array satisfying Lyapunov Condition.

By central limit theorem for triangular arrays,

∑
i

Zni → N(0, 1),

which completes the proof.

S2 Additional simulation results

This section includes the additional examples of the simulation study. See

Section 7 of the main paper for details of the simulation settings. We

considered the following additional examples to investigate the stability

of selected models from four methods; Lasso, ALasso, FAL, and Dantzig,

which are defined in Section 7. The performance measures are shown in

Figure 1.

Example 1. Consider the model, which is same as Example 1 in the main

paper except that εi’s follow the standard Cauchy distribution.

Example 2. Consider the model, which is same as Example 1 in the main

paper except that εi’s follow the standard Laplace distribution.

Across all figures, the largest standard errors for the false positives, the

false negatives, and the size of set differences are less than 0.9, 0.1, and 0.4,
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respectively. As shown in Figure 1, the results are consistent with those

reported in the main paper.
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Figure 1: Results for Example 1 (top) and 2 (below): Each plot shows the false posi-

tives(left), the false negatives (middle), and the stability measures (right). Four com-

peting procedures are evaluated: Lasso, ALasso, FAL, and Dantzig.
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