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Supplementary Material

Abstract: In this appendix, we provide technical details on asymptotic prop-
erties of the composite likelihood estimators in the corresponding paper. All
statements of the asymptotic results and the related definitions can be found
in the main paper. We have included some key information in the appendix
to make it nearly self-contained.

Suppose we have a set of observations {Yt}Tt=1 from a hidden Markov model in which
the conditional distribution of Yt given its hidden state is f(y; θ). The marginal joint
distribution of Yt, Yt+1 has density function

f(yt, yt+1; Ψ) =

∫
f(yt; θ)f(yt+1; θ∗) dΨ (1)

for some mixing distribution Ψ. We define the composition log likelihood after some
regularization as

`cl(Ψ) =

T−1∑
t=1

log f(yt, yt+1; Ψ) + C
∑
i, j

log πij . (2)

Given a random sample of n observations from f(y1, y2; Ψ), the corresponding MLE
Ψ̂ for Ψ is consistent under simple conditions on f(y; θ); see Kiefer and Wolfowitz (1956).
In this paper, y(1:T ) = {Yt}Tt=1 is instead a time series generated according to an HMM.
We show that a nearly identical proof is applicable under a set of high-level assumptions.
These assumptions can be easily verified from conditions similar to those in Kiefer and
Wolfowitz (1956).

A1 (Identifiability). F (y1, y2; Ψ1) = F (y1, y2; Ψ2) for all (y1, y2) if and only if Ψ1 = Ψ2.

A2 (Compactness). The space of the mixing distribution Ψ can be expanded to form a
compact metric space M; and f(y1, y2; Ψ) can be continuously extended to M.

A3 (Jensen’s inequality). Let Ψ0 be the true mixing distribution under the HMM. After
extension, for any Ψ ∈M and Ψ 6= Ψ0, there exists an ε > 0 such that

EΨ0{log[f(Y1, Y2; Ψ, ε)/f(Y1, Y2; Ψ0)]} < 0
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where f(Y1, Y2; Ψ, ε) = max
[
1, sup{f(Y1, Y2; Ψ′) : ‖Ψ′ −Ψ‖ ≤ ε}

]
.

A4 The time series y(1:T ) is from a finite-state HMM such that its hidden Markov chain
is irreducible and the series is in equilibrium.

One may notice that A3 implies A1. At the same time, A1 together with some
continuity and integration conditions implies A3; retaining A1 makes the proof easier
to understand. Establishing A2 and A3 were major steps in the proof of Kiefer and
Wolfowitz (1956). A2 is violated when the kernel distribution is two-parameter normal.
The consistent result under a normal kernel will be addressed with additional steps. The
norm ‖ · ‖ is the distance between two mixing distributions. The high-level assumptions
are helpful for avoiding non-innovative and tedious details in the proof. With A4, the
essential steps in Kiefer and Wolfowitz (1956) remain valid under the HMM.

Theorem 1: Under A1–A4, the maximum composite likelihood estimator of Ψ is strongly
consistent as T →∞.

Proof: A key step is to show the validity of the law of large numbers for log f(Y1, Y2; Ψ, ε).
Leroux (1992) shows that when the HMM is in equilibrium and the Markov chain is ir-
reducible (A4), Y (1:T ) is ergodic. Together with A3, this implies

T−1
T−1∑
t=1

log f(Yt, Yt+1; Ψ, ε)→ EΨ0
log f(Yt, Yt+1; Ψ, ε)

almost surely. With the addition of A2, it implies that for any ε > 0, there is a δ > 0
such that

sup{
T−1∑
t=1

log f(Yt, Yt+1; Ψ) : ‖Ψ−Ψ0‖ > ε} <
T−1∑
t=1

log f(Yt, Yt+1; Ψ0)− δT

almost surely. The regularization term
∑

log πij = O(log T ) when minπij ≥ T−1. The
smoothness of f(x; θ) in θ implies

EΨ0
log f(Yt, Yt+1; Ψ)− EΨ0

log f(Yt, Yt+1; Ψ0)→ 0

when Ψ→ Ψ0. Thus, if none of πij = 0 in Ψ0, then
∑

log πij = O(1). If some πij = 0 in
Ψ0, we can find a Ψ in a T−1-distance neighborhood such that its

∑
log πij = O(log T )

and

EΨ0 log f(Yt, Yt+1; Ψ) ≥ EΨ0 log f(Yt, Yt+1; Ψ0)− δ/2. (3)

Clearly, these discussions imply

sup{`cl(Ψ) : ‖Ψ−Ψ0‖ > ε} < sup{`cl(Ψ) : ‖Ψ−Ψ0‖ < T−1}.

Hence, the MLE of Ψ is in an ε-neighborhood of Ψ0 almost surely for some ε > 0. This
implies the strong consistency and completes the proof.
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Notably, if the kernel distribution of the HMM is N(µ, σ2), A2 is not satisfied. Thus,
Theorem 1 is not directly applicable. For this special case, we have defined

`pcl(Ψ) = `cl(Ψ)− T−1/2
N∑
i=1

{
log(σ2

i /σ̂
2
0) + σ̂2

0/σ
2
i

}
, (4)

with a regularization term on σ2. This regularization term confines the MLE into a
restricted space of Ψ on which A1–A4 are satisfied.

Lemma 1 Suppose {Yt}∞t=1 is generated by an HMM with a normal kernel. Let Ψ̂ be
the maximum point of the specially regularized composite likelihood `pcl(Ψ) given in (4).
Then, there exists a small enough ε such that as T →∞,

P
(

min
1≤j≤N

σ̂2
j > ε

)
→ 1.

The proof is omitted because it is similar to that of Chen et al. (2008) but much
more involved.

Corollary 1 Under the conditions of Lemma 1, the maximum point Ψ̂ of `pcl(Ψ) defined
in (4) is consistent for Ψ.

We next investigate the asymptotic normality. Consider the situation where Ψ
is a smooth function of some identifiable vector γ with true mixing distribution Ψ0

corresponding to γ0 that is in the interior of its corresponding parameter space. We
further assume that πij 6= 0 at γ0. Bickel et al. (1998) imposed practically the same
conditions on Ψ for MLE under the FL. The asymptotic normality under more relaxed
conditions is likely tedious and is more appropriate as a separate research project.

For notational simplicity, we introduce g(xt; γ) = log f(yt, yt+1; Ψ) and assume that
it is twice differentiable with respect to γ. That is, we simplify log f into g, (yt, yt+1) to
xt, and highlight that Ψ is in fact determined by γ. Its derivatives with respect to γ are
conveniently written as g′(·) and g′′(·).

The regularized composite likelihood is written as

`cl(γ) =

T−1∑
t=1

g(xt; γ) +
∑
i, j

log πij .

The consistency of the CL MLE of Ψ leads to the consistency of the CL MLE γ̂. The
consistency and γ0 being an interior point imply that `′cl(γ̂) = 0. Let the implied MLE
be π̂ij . We must have

0 = `′cl(γ̂) =

T−1∑
t=1

g′(xt; γ0) +

T−1∑
t=1

g′′(γ0)(γ̂ − γ0){1 + op(1)}+
∑
i, j

∂(log π̂ij)/∂γ.
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Clearly, γ̂ is asymptotically normal when T−1/2
∑
g′(xt; γ0) is, and T−1

∑
g′′(xt; γ0) has

a positive definite matrix limit. The regularization term has no effect on the limiting
distribution if ∑

i, j

∂(log π̂ij)/∂γ = op(T−1/2)

uniformly in a neighborhood of γ0. This is implied when γ0 is an interior point.

The α-mixing coefficients of a stationary process {Xt}±∞t=0 are defined to be

α(t) = sup
A∈F∞t ;B∈F0

−∞

|P (AB)− P (A)P (B)|

for t = 1, 2, . . ., where Fm
n is the σ-algebra generated by {Xt}mt=n. We base our normality

proof on the following standard result of Ibragimov (1962).

Lemma 2 Suppose a stationary process {Xt}±∞t=0 satisfies:

(a) E(X0) = 0 and E(|X0|3) <∞;

(b)
∑∞

t=1{α(t)}1/3 <∞ for its α-mixing coefficients.

Then, as T →∞,

σ2 = lim
T→∞

T−1Var

( T∑
t=1

Xt

)
<∞

and T−1/2
∑T

t=1Xt → N(0, σ2) in distribution.

Consider the stochastic process g′(Xt; γ0). The equilibrium assumption A4 implies
that {g′(Xt; γ0)}∞t=0 is stationary. The HMM with finite number of state leads to α(t)
decaying at an exponential rate (Durrett, 2010, Page 264). Hence, condition (b) is
satisfied.

The moment conditions in (a) must be verified for each f(y; θ). They are satis-
fied by most commonly used distributions such as the Poisson, binomial, and normal
distributions. Let

Σ(γ0) = lim
T→∞

T−1Var

{ T∑
t=1

g′(Xt; γ0)

}
.

We have

T−1
T−1∑
t=1

g′′(Xt; γ0)→ I(γ0)

with I(γ0) = E{g′′(Xt; γ0}. The above discussion leads to

T 1/2(γ̂ − γ0) = {T−1`′′(γ0)}−1{T−1/2`′(γ0)}+ op(1)→ N(0, V )

with V = I−1(γ0)Σ(γ0)I−1(γ0).
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Even though many of these conditions can be verified from the basics as discussed
above, we choose to state the result under “high level” conditions as follows.

Theorem 2 Let {Yt}∞t=0 be a time series satisfying A1–A4. Assume

(a) Ψ in the composite likelihood (2) is a twice differentiable function of γ;

(b) the induced stochastic process g′(Xt; γ0) is well defined and satisfies the condi-
tions of Lemma 2;

(c) the true value γ0 is an interior point in the space of γ;

(d) the limit I(γ0) is positive definite and finite.

Then, the composite likelihood MLE of γ is asymptotically normal: T 1/2(γ̂ − γ0)→
N(0, V ) with V = I−1(γ0)Σ(γ0)I−1(γ0).

Because the true variances σ2
j > 0, the consistency of Ψ̂ established in Corollary 1

for the HMM with a normal kernel leads to σ̂2
j ≥ δ > 0 in probability for some δ. Once

σj ’s are constrained away from zero, the proof of Theorem 2 is equally applicable to the
HMM with a normal kernel and we state the result as follows.

Corollary 2 Under the conditions of Lemma 2, the maximum point Ψ̂ of `pcl(Ψ) is
asymptotically normal as stated in Theorem 2.

Clearly, Σ(γ0) is a sum of infinite series. This expression is not very useful for
constructing a corresponding variance estimator. This is also the case for Bickel et
al. (1998). Developing easily applicable asymptotic results remains a challenging task,
but it will be much simpler for the CL than for the FL.
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