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Abstract: This paper deals with the empirical Bayes estimation of the truncation

position of the truncated family under the Linex loss. Nonparametric empirical

Bayes estimator is proposed and its asymptotic optimality and rate are investigated.

Under certain mild conditions without any differentiability assumption on either the

prior or the marginal distribution, it is shown that the proposed empirical Bayes

estimator is asymptotically optimal with convergence rate given. Simulation results

on the performance of the proposed empirical Bayes estimator are also presented.
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1. Introduction

Consider the truncated family with pdf of the following form

f(x|θ) =
h(x)
A(θ)

I(θ,∞)(x), (1.1)

where h(x) is positive, continuous and decreasing, and where θ ≥ 0 is the trunca-
tion parameter of our interest. Important examples are the translated exponen-
tial distribution and the Pareto distribution. (See Mann, Schafer and Singpur-
walla (1974) and Lawless (1982) for model discussions on the translated expo-
nential distribution and applications to lifetime data analysis. See also Arnold
(1983) for the Pareto distribution and applications to socio-economic data.)

In this paper, we consider empirical Bayes estimation of θ under the asym-
metric Linex loss. As we know that, in the lifetime model or in the Pareto distri-
bution for socio-economic data or in many other models, the levels of seriousness
for over-estimation and under-estimation are quite different. The asymmetric
Linex loss was introduced by Varian (1975) and later adopted by Zellner (1986)
in the Bayesian analysis of several statistical estimation and prediction prob-
lems. For other Linex loss applications see also Parsian (1990) for a generalized
Bayes estimator of a multivariate normal mean, Kuo and Dey (1990) for Poisson
mean estimation, Basu and Ebrahimi (1991) for lifetime testing and reliability
estimation and Huang (1995) for empirical Bayes testing procedures in a class of
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non-exponential families. The authors feel that the studies of statistical inferen-
tial problems with Linex loss are still too few despite its practical potentiality.
We hope to make some contribution to the Linex loss literature and to draw more
attention and research efforts to its development and applications.

The Linex loss function is given herewith. Let a denote an estimate of θ.
The loss is

L(θ, a) = exp{c(a− θ)} − c(a− θ) − 1, c ∈ R. (1.2)

For c > 0, the loss function L(θ, a) is quite asymmetric about 0 with over-
estimation being more costly than under-estimation. As |a − θ| → ∞, the loss
L(θ, a) increases almost exponentially when a− θ > 0 and almost linearly when
a− θ < 0. For c < 0, the linearity-exponentiality phenomenon is reversed. Also,
when |a− θ| is very small, L(θ, a) is near c(a− θ)2/2.

In this paper, the Linex loss is employed for estimation of the truncation pa-
rameter in model (1.1). The rest of the paper is organized as follows. In Section
2, a Bayesian framework is introduced and a Bayes estimator is derived in terms
of the prior distribution. A certain nonparametric empirical Bayes (NPEB) es-
timator is proposed to handle the unknown prior in the Bayes estimator. In
Section 3, under certain mild conditions without any differentiability assump-
tion, the proposed NPEB estimator is shown to be asymptotically optimal with
convergence rate (an upper bound) provided. A lower bound for convergence
rate is established in Section 4 and the proposed NPEB estimator is shown to
achieve the rate O(n−2/3). In Section 5, some simulation studies are carried out
to investigate the performance of the proposed estimator.

2. Bayes and Empirical Bayes Estimators

In this paper, we consider only c > 0. Discussion for the other case where
c < 0 is similar and therefore omitted here. Assume that the parameter θ is
a realization of a nonnegative random variable Θ which has an unknown prior
distribution G over [0,∞). Then, the Bayes estimator of the parameter θ given
X = x is ϕG(x) which minimizes

∫ x
θ=0{exp[c(a − θ)] − c(a − θ) − 1}dG(θ|x)

among all estimators a. Let f(x) =
∫ x
θ=0 f(x|θ)dG(θ), the marginal pdf of X,

and ψ(x) =
∫ x
θ=0(A(θ))−1dG(θ). Then the marginal pdf f(x) can be written as

f(x) = h(x)ψ(x).
Some straightforward computation yields ϕG(x) = −c−1 lnE(e−cθ|X) ≡

c−1 ln τG(X), where

τG(x) =
∫ x
0 f(x|θ)dG(θ)∫ x

0 e
−cθf(x|θ)dG(θ)

=
f(x)

e−cxf(x) +K(x)
(2.1)
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with

K(x) =
∫ x

0
ce−ct

(∫ t

0
f(x|θ)dG(θ)

)
dt = h(x)

∫ x

t=0
ce−cth−1(t)f(t)dt.

Note that
1 ≤ τG(x) =

ecxf(x)
f(x) + ecxK(x)

≤ ecx

for any prior distribution G (could be improper, as long as the resulting f(x) is a
probability density). Therefore, the Bayes estimator ϕG(x) satisfies the condition
0 ≤ ϕG(x) ≤ x.

In this paper we assume that the prior distribution G satisfies condition
(A1) G(θ�) = 1 for some predestined (i.e., known) finite positive constant θ�.

Under (A1), for x > θ�,

τG(x) =
∫ θ�

0 f(x|θ)dG(θ)∫ θ�

0 e−cθf(x|θ)dG(θ)
= τG(θ�) (2.2)

and hence,
ϕG(x) = ϕG(θ�). (2.3)

The minimum Bayes risk, attained by the Bayes estimator ϕG, is

R(G,ϕG)

= E{exp[c(ϕG(X) − Θ)] − c(ϕG(X) − Θ) − 1}
=

∫ ∞

x=0

∫ x

θ=0
{exp[c(ϕG(x) − θ)] − c(ϕG(x) − θ) − 1}dG(θ|x)f(x)dx

=
∫ ∞

x=0

{
exp(cϕG(x))

(∫ x

θ=0
exp(−cθ)dG(θ|x)

)
− cϕG(x)

+
∫ x

θ=0
cθdG(θ|x) − 1

}
f(x)dx

=
∫ ∞

x=0

{ ∫ x

θ=0
cθdG(θ|x) − cϕG(x)

}
f(x)dx, (2.4)

as exp(cϕG(x))
∫ x
θ=0 exp(−cθ)dG(θ|x) = 1. Often the prior distribution G is

unknown and the Bayes estimator ϕG(·) cannot be applied. In this paper, the
empirical Bayes approach is employed to handle the uncertainty of G.

In the empirical Bayes framework, consider i.i.d. copies (X1, θ1),. . .,(Xn, θn)
of (X, θ), where θ has a distribution G and, conditional on θ, X has a dis-
tribution with pdf f(x|θ). The X’s are observed but the θ’s are not. Let
ϕn(X) ≡ ϕn(X;X1, . . . ,Xn) be an empirical Bayes estimator of the truncation
parameter θ based on the past data Xn = (X1, . . . ,Xn) and the present obser-
vation X. Let R(G,ϕn|Xn) denote the conditional Bayes risk of the estimator
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ϕn given Xn, and let R(G,ϕn) = En[R(G,ϕn|Xn)] denote the unconditional
Bayes risk of ϕn, where the expectation En is taken with respect to Xn. Since
ϕG is the Bayes estimator, R(G,ϕn|Xn) − R(G,ϕG) ≥ 0 for all Xn and for all
n. Therefore, R(G,ϕn) − R(G,ϕG) ≥ 0 for all n. The nonnegative regret risk
R(G,ϕn)−R(G,ϕG) is used as a measure of performance of the empirical Bayes
estimator ϕn. A sequence of empirical Bayes estimators {ϕn}∞n=1 is said to be
asymptotically optimal if R(G,ϕn) − R(G,ϕG) → 0 as n → ∞. Moreover, if
R(G,ϕn)−R(G,ϕG) = O(αn), where {αn}∞n=1 is a sequence of positive numbers
such that limn→∞ αn = 0, then the sequence {ϕn}∞n=1 is said to be asymptotically
optimal with convergence rate of order {αn}∞n=1. (See Robbins (1956, 1964).)

A sequence of empirical Bayes estimators {ϕn(x)} for the truncation param-
eter is constructed below. Let {bn} be a sequence of positive numbers such that
limn→∞ bn = 0 and limn→∞ nbn = ∞. For each n and x > 0, let

fn(x) = [Fn(x+ bn) − Fn(x)]/bn, (2.5)

where Fn(x) is the empirical distribution based on Xn. The estimator fn is a
kernel estimator with a left-sided uniform kernel. The reason for using a left-sided
kernel instead of, say, a symmetric order 2 (or even higher order) kernel is based
on two reasons. One is from the viewpoint of the consideration to avoid dominant
bias at the left boundary. The other is that, for an order two (or higher order)
kernel we have to assume continuity of the second (or higher) derivative of f(x).
(See Gasser and Müller (1979), Rice (1984) and Schuster (1985) for discussions
on boundary behavior of kernel estimators and related theory. Also see Gasser
and Müller (1979) and Silverman (1986) for general asymptotics and smoothness
assumption.) The smoothness of f(x) depends on the prior distribution G. In
this paper, we do not impose any continuous derivative assumption on G. Let

Kn(x) =
h(x)
n

n∑
j=1

ce−cXj

h(Xj)
I(0,x](Xj). (2.6)

Note that EnKn(x) = K(x). Both fn(x) and Kn(x) are consistent estimators for
f(x) and K(x) respectively. Let

τn(x) =
fn(x)

e−cxfn(x) +Kn(x)
∨ 1,

where a∨ b = max(a, b) and 0/0 ≡ 0. The proposed sequence of empirical Bayes
estimators {ϕn(·)} is

ϕn(X) =
1
c

ln τn(X)I(0,θ�](X) +
1
c

ln τn(θ�)I(θ�,∞)(X). (2.7)

Note that the past data Xn is implicitly contained in the subscript n of ϕn.
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3. Asymptotic Optimality and Convergence Rate

The Bayes risk R(G,ϕn) of ϕn can be written as

R(G,ϕn)

=
∫ ∞

0
En

{
c exp(ϕn(x))

∫ x

θ=0
exp(−cθ)dG(θ|x) − cϕn(x)

+
∫ x

θ=0
cθdG(θ|x) − 1

}
f(x)dx

=
∫ ∞

0
En

{
exp[c(ϕn(x)−ϕG(x))]−cϕn(x)+

∫ x

θ=0
cθdG(θ|x)−1

}
f(x)dx. (3.1)

Also note that, for x > θ�, we have ϕG(x) = ϕG(θ�) and ϕn(x) = ϕn(θ�). Then
from (2.4) and (3.1), we obtain

0 ≤ R(G,ϕn) −R(G,ϕG)

=
∫ ∞

x=0
En{exp[c(ϕn(x) − ϕG(x))] − c(ϕn(x) − ϕG(x)) − 1}f(x)dx

=
∫ θ�

x=0
En{exp[c(ϕn(x) − ϕG(x))] − c(ϕn(x) − ϕG(x)) − 1}f(x)dx

+En{exp[c(ϕn(θ�)−ϕG(θ�))]−c(ϕn(θ�)−ϕG(θ�))−1}{1−F (θ�)}, (3.2)

where F is the distribution function for f . Let νLeb be the Lebesgue measure
and F∞ be the product measure induced by X1,X2, . . . ,Xn, . . . By the Lebesgue
dominated convergence theorem and the following limiting result limn→∞ ϕn(x)
= ϕG(x), νLeb × F∞ − a.s., we can pass to the limit inside the integral and
expectations of (3.2) and get limn→∞R(G,ϕn)−R(G,ϕG) = 0. That is, asymp-
totic optimality is obtained. Below we study the rate of convergence. We need
further assumptions. Let G be such a prior distribution that (A2) and (A3) are
satisfied where (A2) and (A3) are as follows: (A2) As b→ 0,

∫ θ�

θ0

(f(x) − f(x+ b))2

f(x)
dx = O(b2),

where θ0 is the left boundary of G’s support. (A3) For any b > 0,

∫ θ�

θ0

b−1
∫ x+b
x f(t)dt
f(x)

dx <∞.

Remarks on conditions (A2) and (A3)

1. With the translated exponential distribution f(x|θ) = λe−λ(x−θ)I(θ,∞)(x) for
the lifetime model, a sufficient condition for both (A2) and (A3) is that the
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marginal pdf f(x) is decreasing. It is common to expect a decreasing pdf for
lifetime data. However, if we do not expect a decreasing marginal pdf , then
an alternative sufficient condition for (A2) and (A3) is that G(x) is Lipschitz
continuous.

2. For the Pareto distribution, we have f(x|θ) = αθα/xα+1 I(θ,∞), where α >

0 is known and where x and θ can be explained as income and minimum
income respectively. Same as in the translated exponential distribution, the
decreasing property assumption of f(x) is sufficient for conditions (A2) and
(A3). However, the decreasingness of f(x), which is common in the lifetime
model, may not be realistic for income data. Therefore we look for other
sufficient conditions. The Lipschitz continuity assumption on G,

sup
t,x∈(0,θ�]

|G(x+ t) −G(x)|
t

≤ α for some constant α > 0,

ensures that the minimum income distribution G has bounded first divided
difference (or first derivative if it exists) everywhere. This assumption together
with the assumption that θ0 > 0 are sufficient for conditions (A2) and (A3).

Lemma 3.1. For a, b ≥ 0, ea−b − (a− b) − 1 ≤ (ea − eb)2.

Some calculus leads to the above inequality, and the proof is omitted.
By Lemma 3.1 and the definitions of ϕn(x) and ϕG(x), we have

En{exp[c(ϕn(x) − ϕG(x))] − c(ϕn(x) − ϕG(x)) − 1}
≤ En{exp(cϕn(x)) − exp(cϕG(x))}2

= En

(
(

fn(x)
e−cxfn(x) +Kn(x)

∨ 1) − f(x)
e−cxf(x) +K(x)

)2

≤ En

(∣∣∣ fn(x)
e−cxfn(x) +Kn(x)

− f(x)
e−cxf(x) +K(x)

∣∣∣ ∧ ecx)2
, (3.3)

since 1 ≤ τn(x) ≤ ecx and 1 ≤ τG(x) ≤ ecx. A lemma due to Singh (1977) is
needed.

Singh’s Lemma. Let y, z 	= 0 and L > 0 be real numbers. If Y and Z are two
random variables, then for every r > 0,

E (| y/z − Y/Z | ∧L)r

≤ 2r+(r−1)∨0|z|−r
{
E|y − Y |r +

(
|y/z|r + 2−(r−1)∨0Lr

)
E|z − Z|r

}
,

where the expectation E is taken with respect to the joint distribution of (Y,Z).
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Proceeding from (3.3), we have

En{exp[c(ϕn(x) − ϕG(x))] − c(ϕn(x) − ϕG(x)) − 1}
≤ 8

[e−cxf(x) +K(x)]2
En[fn(x) − f(x)]2

+
12e2cxEn[e−cxfn(x) +Kn(x) − e−cxf(x) −K(x)]2

[e−cxf(x) +K(x)]2

=
20[Enfn(x) − f(x)]2 + 32Var (fn(x)) + 24e2cxVarKn(x)

[e−cxf(x) +K(x)]2
, (3.4)

as Var (X + Y ) ≤ 2(Var X + Var Y ) for random variables X and Y .

Lemma 3.2. For x > 0, we have
(a) Var (fn(x)) ≤ b−1

n

∫ x+bn

x f(t)dt/(nbn),
(b) Var Kn(x) ≤ c2ψ(x)h(x)(1 − e−2cx)/(2n).

Proof. (a)

Var (fn(x)) =
[F (x+ bn) − F (x)][1 − F (x+ bn) + F (x)]

nb2n

≤ F (x+ bn) − F (x)
nb2n

=
b−1
n

∫ x+bn
x f(t)dt
nbn

.

(b) Begin with

Var (Kn(x)) =
c2h2(x)

n
Var (e−cX1h−1(X1)I(0,x](X1))

≤ c2h2(x)
n

En[e−2cX1(h−1(X1))2I(0,x](X1)]

=
c2h2(x)

n

∫ x

0
e−2cth−1(t)ψ(t)dt ≤ c2ψ(x)h(x)(1 − e−2cx)

2n
. (3.5)

End of proof.
From (3.4) and Lemma 3.2,∫ θ�

0
En{exp[c(ϕn(x) − ϕG(x))] − c(ϕn(x) − ϕG(x)) − 1}f(x)dx

≤
∫ θ�

x=0

32f(x)b−1
n

∫ x+bn

x f(t)dt
[e−cxf(x) +K(x)]2nbn

dx+
∫ θ�

x=0

20f(x)(Enfn(x) − f(x))2

[e−xf(x) +K(x)]2
dx

+
∫ θ�

x=0

12c2f(x)(e2cx − 1)h(x)ψ(x)
[e−cxf(x) +K(x)]2n

dx

≤
∫ θ�

x=θ0

32e2cxb−1
n

∫ x+bn
x f(t)dt

nbnf(x)
dx+

∫ θ�

x=θ0

20e2cx(Enfn(x) − f(x))2

f(x)
dx

+
∫ θ�

x=θ0

12c2e2cx(e2cx − 1)
n

dx, (3.6)
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as f2(x)/[e−cxf(x) +K(x)]2 ≤ e2cx. By conditions (A2) and (A3), we have

(3.6) = O(
1
nbn

) +O(b2n) +O(
1
n

). (3.7)

Also from Lemma 3.2 and conditions (A2) and (A3), we can easily get

En{exp[c(ϕn(θ�) − ϕG(θ)�)] − c(ϕn(θ�) − ϕG(θ)�) − 1}
= O(

1
nbn

) +O(b2n) +O(
1
n

).

The results obtained above are summarized in the theorem below.

Theorem 3.1. Let {ϕn}∞n=1 be the sequence of empirical Bayes estimators
constructed in section 2. Suppose conditions (A1), (A2) and (A3) hold. Then
{ϕn}∞n=1 is asymptotically optimal and, as n→ ∞,

R(G,ϕn) −R(G,ϕG) = O(
1
nbn

) +O(b2n) +O(
1
n

).

4. A Lower Bound for R(G,ϕn) −R(G,ϕG)

Consider the translated exponential distribution with h(x) = e−x. We as-
sume that the prior distribution G is as given below.

G(θ) =




0, if θ < 0,
1
2 + 1

2θ, if 0 ≤ θ ≤ 1,
1, if θ > 1.

(4.1)

Then,

f(x) =

{
1
2 , if 0 < x ≤ 1,
1
2e

1−x, if x > 1.
(4.2)

Conditions (A1), (A2) and (A3) are satisfied. Also,

K(x) =




c(e−x−e−cx)
2(c−1) , if 0 < x ≤ 1,

e−x

2 ( c
c−1 − e1−c

c−1 − e1−cx), if x > 1,
(4.3)

and

τG(x) =

{
c−1

ce−x−e−cx , if 0 < x ≤ 1,
c−1

ce−1−e−c , if x > 1.
(4.4)

(When c = 1, the above expressions for K(x) and τG(x) are still valid by taking
limc→1.) For the prior distribution G given in (4.1), we claim the following result.
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Theorem 4.1. Let {ϕn}∞n=1 be the sequence of empirical Bayes estimators con-
structed in section 2. Assume that lim supn→∞ nb3n = β with 0 ≤ β < ∞. If the
prior distribution G is the one given in (4.1), then

R(G,ϕn) −R(G,ϕG) ≥ γ1(nbn)−1 + γ2b
2
n

for some constants γ1 > 0 and γ2 > 0.
The lower bound rate in Theorem 4.1 is established below. Note that

R(G,ϕn) −R(G,ϕG)

=
∫ 1

x=0
En{exp[c(ϕn(x) − ϕG(x))] − c(ϕn(x) − ϕG(x)) − 1}f(x)dx

+En{exp[c(ϕn(1) − ϕG(1))] − c(ϕn(1) − ϕG(1)) − 1}[1 − F (1)]

=
∫ 1

x=0
En

(
τn(x)
τG(x)

− ln
τn(x)
τG(x)

− 1
)
f(x)dx

+En

(
τn(1)
τG(1)

− ln
τn(1)
τG(1)

− 1
)

[1 − F (1)]. (4.5)

The following two inequalities are needed. (They can be obtained by elementary
calculus.)

Lemma 4.1.
(t− 1)2

2
≤ t− ln t− 1, for 0 < t ≤ 1,

(1 − t−1)2

2
≤ t− ln t− 1, for t > 1.

For every x ∈ (0, 1],

En

(
τn(x)
τG(x)

− ln
τn(x)
τG(x)

− 1
)

≥ 1
2
En

(
(
τn(x)
τG(x)

− 1)2I(
τn(x)
τG(x)

≤ 1)
)

+
1
2
En

(
(
τG(x)
τn(x)

− 1)2I(
τn(x)
τG(x)

> 1)
)

≥ e−2cx

2
En[(τn(x) − τG(x))2I(τn(x) ≤ τG(x))]

+
e−2cx

2
En[(τn(x) − τG(x))2I(τn(x) > τG(x))], as τn(x), τG(x) ≤ ecx

=
e−2cx

2
En[τn(x) − τG(x)]2. (4.6)

From (4.5) and (4.6),

R(G,ϕn) −R(G,ϕG) ≥ e−2c

2

∫ 1

x=0
En[τn(x) − τG(x)]2f(x)dx

+
e−2c

2
En[τn(1) − τG(1)]2[1 − F (1)]. (4.7)
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Let 0 < δ < 1/2 be an arbitrary positive number. For x ∈ [δ, 1 − δ], let

Bn(x) = I(
fn(x)

e−cxfn(x) +Kn(x)
≥ 1) and Bc

n(x) = 1 −Bn(x)

Lemma 4.2. For δ ≤ x ≤ 1 − δ, we have

lim
n→∞En[Bc

n(x)] = 0 and lim
n→∞En[Bn(x)] = 1.

Proof. Assume n is sufficiently large such that bn < δ to ensure x + bn inside
(0,1). For x ∈ [δ, 1 − δ],

En[Bc
n(x)] = P

{
fn(x)

e−cxfn(x) +Kn(x)
< 1

}

= P

{
[1 − e−cx][fn(x) − f(x)] − [Kn(x) −K(x)] < −(1 − e−cx)f(x) +K(x)

}
.

Since f(x) is constant for x ∈ (0, 1] as appeared in (4.2), Efn(x) = f(x). Also
EnKn(x) = K(x). Therefore,

En

{
(1 − e−cx)[fn(x) − f(x)] − [Kn(x) −K(x)]

}
= 0.

Also note that, from (4.2) and (4.3),

(1 − e−cx)f(x) −K(x) =
1
2
(1 − ce−x

c− 1
+
e−cx

c− 1
) > 0

for 0 < x ≤ 1. By Chebychev’s inequality, Lemma 3.2 and equation (3.6),

En[Bc
n(x)]

≤ 4Var [(1 − e−cx)fn(x) −Kn(x)]
(
1 − ce−x

c− 1
+
e−cx

c− 1

)−2

≤ 8
{
Var [(1 − e−cx)fn(x)] + Var [Kn(x)]

}(
1 − ce−x

c− 1
+
e−cx

c− 1

)−2

≤ 8
(
1 − ce−x

c− 1
+
e−cx

c− 1

)−2(h(x)ψ(x + bn)
nbn

+
c2h(x)ψ(x)

2n

)
,

which tends to 0 as n → ∞. Therefore, we have limn→∞En[Bc
n(x)] = 0 and

limn→∞En[Bn(x)] = 1. End of proof.

Lemma 4.3. We have
∫ 1
0 En[τn(x) − τG(x)]2f(x)dx ≥ γ1(nbn)−1 for some con-

stant γ1 > 0.

Proof. Start with∫ 1

0
En[τn(x) − τG(x)]2f(x)dx ≥

∫ 1−δ

δ
En[(τn(x) − τG(x))2Bn(x)]f(x)dx.
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For x ∈ [δ, 1 − δ], we have

En[(τn(x) − τG(x))2Bn(x)]

= En

(
(

fn(x)
e−cxfn(x) +Kn(x)

− c− 1
ce−x − e−cx

)2Bn(x)
)
, (4.8)

Enfn(x) = f(x), EnKn(x) = K(x), Var (fn(x)) = f(x)(1 − bnf(x))/(nbn), and
Var (Kn(x)) = O(1/n). For x > 0 and as n→ ∞,√

nbn [fn(x) − f(x)] d→ N(0, f(x)),√
nbn (Kn(x) −K(x))

p→ 0, and

[e−cxfn(x) +Kn(x)] p→ [e−cxf(x) +K(x)] =
ce−x − e−cx

2(c− 1)
.

Hence, by Slutsky’s theorem,

√
nbn

(
fn(x)

e−cxfn(x) +Kn(x)
− c− 1
ce−x − e−cx

)
Bn(x)

d→ N

(
0,

f(x)
[e−cxf(x) +K(x)]2

)
. (4.9)

Denote the above variance by σ2(x). The following convergence theorem is
needed: If Un → U in distribution, then EU2 ≤ lim infEU2

n. The above the-
orem can be easily obtained from Skorohod’s theorem and Fatou’s lemma. (For
reference, see Theorem 25.6 (and possibly also Theorem 25.11 for similar proof)
in Billingsley (1986).) From (4.8) and (4.9), we have

lim infEn[nbn(τn(x) − τG(x))2Bn(x)] ≥ σ2(x) (4.10)

for x ∈ [δ, 1 − δ]. By Fatou’s lemma again,

lim inf
∫ 1−δ

δ
En[nbn(τn(x) − τG(x))2Bn(x)]f(x)dx

≥
∫ 1−δ

δ
lim infEn[nbn(τn(x) − τG(x))2Bn(x)]f(x)dx

≥
∫ 1−δ

δ

σ2(x)
2

dx > 0.

Hence there exists a constant γ1 > 0 such that
∫ 1
0 En[τn(x) − τG(x)]2f(x)dx ≥

γ1(nbn)−1. End of proof.

Lemma 4.4. Suppose that lim supn→∞ nb3n = β with 0 ≤ β < ∞. Then there
exists a constant γ2 > 0 such that

En[τn(1) − τG(1)]2 ≥ γ2b
2
n.
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Proof. Let An = I(|τn(1) − τG(1)| ≥ bn). Then

En[τn(1) − τG(1)]2 ≥ b2nEn[AnBn(1)]

≥ b2nEnI(τn(1) − τG(1) ≥ bn)Bn(1)

= b2nP

{
fn(1)

e−cfn(1) +Kn(1)
− c− 1
ce−1 − e−c

≥ bn

}

= b2nP

{√
nbn

(
fn(1)

e−cfn(1) +Kn(1)
− c− 1
ce−1 − e−c

)
≥

√
nb3n

}

≥ γ2b
2
n, (for n large enough)

where γ2 is any number satisfying 0 < γ2 < 1 − Φ
(√
β /σ(1)

)
with Φ the cdf of

the standard normal. End of proof.

Proof of Theorem 4.1. Theorem 4.1 is a direct result of (4.7), Lemmas 4.3
and 4.4. End of proof.

From Theorems 3.1 and 4.1, there is a prior distribution G satisfying condi-
tions (A1), (A2) and (A3) such that

γ1(nbn)−1 + γ2b
2
n ≤ R(G,ϕn) −R(G,ϕG) = O(

1
nbn

) +O(b2n).

With bn = O(n−1/3) the optimal convergence rate of the proposed estimator is
of order O(n−2/3).

5. Simulation Studies

Monte Carlo studies have been carried out to investigate the performance of
the proposed empirical Bayes estimator ϕn. In this simulation study, we consider
the translated exponential distribution with h(x) = e−x. Two prior distributions
are studied. They are:

G1(θ)=




0, if θ < 0,
1
2 + 1

2θ, if 0≤θ≤1,
1, if θ > 1.

G2(θ)=




0, if θ < 0,
e

2e−1 + e
2e−1 [1 − e−θ], if 0≤θ≤1,

1, if θ > 1.

For each prior distribution Gi, let fi(x) denote the corresponding marginal
pdf of the random variable X. Then,

f1(x)=




0, if x < 0,
1
2 , if 0 ≤ x ≤ 1,
1
2e

1−x, if x>1.
f2(x)=




0, if x < 0,
e

2e−1 [e−x + xe−x], if 0≤x≤1,
2e

2e−1e
−x, if x > 1.

We take c = 1. At state n + 1, let Xn = (X1, . . . ,Xn) denote the past n
random observations and Xn+1 denote the present random observation. Define

Dn(Xn+1) = exp(ϕn(Xn+1) − ϕG(Xn+1)) − (ϕn(Xn+1) − ϕG(Xn+1)) − 1.
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Consider the expectation of Dn(Xn+1) taken with respect to (Xn,Xn+1). Then,

EDn(Xn+1) = En{E[Dn(Xn+1)|Xn]}
= En

∫ ∞

x=0
[exp(ϕn(x) − ϕG(x)) − (ϕn(x) − ϕG(x)) − 1]f(x)dx

= R(G,ϕn) −R(G,ϕG). (5.1)

That is, Dn(Xn+1) is an unbiased estimator of the regret risk of the empirical
Bayes estimator ϕn. Our simulation study is based on (5.1). The simulation
schemes used in this paper are described below.

(a) Generate random variables X1, . . . ,Xn+1 according to a distribution function
Fi(x) having fi(x) as its pdf .

(b) Compute ϕn(Xn+1), ϕG(Xn+1) and Dn(Xn+1) using bn = n−1/3.
(c) The above process was repeated 500 times. Denote the jth run sampled

Dn(Xn+1) value by Dnj , j = 1, . . . , 500. Let D̄n = 1
500

∑500
j=1Dnj. We use

D̄n as an estimator of the regret risk R(G,ϕn) − R(G,ϕG). The associated
standard deviation of the sample mean D̄n is estimated by SE(D̄n), where
SE2(D̄n) = 1

499×500

∑500
j=1(Dnj − D̄n)2.

Tables 1 and 2 are simulation results with prior distributions G1 and G2,
respectively. Values of n2/3D̄n are provided. They are becoming stable when n

is getting large. This phenomenon is consistent with the optimal rate found in
Section 4.

Table 1. Small sample performance of ϕn using prior G1.
n 40 80 120 160 200
D̄n 12.892 (-3) 10.723 (-3) 8.599 (-3) 7.918 (-3) 6.919 (-3)
SE(D̄n) 6.831 (-4) 6.170 (-4) 5.538 (-4) 5.310 (-4) 4.825 (-4)
n2/3D̄n 0.1509 0.1992 0.2092 0.2334 0.2366

n 240 280 320 360 400
D̄n 7.145 (-3) 5.956 (-3) 5.432 (-3) 4.812 (-3) 4.690 (-3)
SE(D̄n) 4.838 (-4) 4.250 (-4) 3.924 (-4) 3.825 (-4) 3.444 (-4)
n2/3D̄n 0.2759 0.2549 0.2541 0.2435 0.2550

n 560 720 880 1040 1200
D̄n 3.920 (-3) 3.387 (-3) 2.775 (-3) 2.767 (-3) 2.121 (-3)
SE(D̄n) 2.982 (-4) 2.783 (-4) 2.462 (-4) 2.105 (-4) 1.720 (-4)
n2/3D̄n 0.2663 0.2721 0.2503 0.2840 0.2395

n 1360 1520 1680 1840 2000
D̄n 2.083 (-3) 1.921 (-3) 1.896 (-3) 1.763 (-3) 1.594 (-3)
SE(D̄n) 1.730 (-4) 1.730 (-4) 1.6844 (-4) 1.592 (-4) 1.377 (-4)
n2/3Dn 0.2557 0.2540 0.2679 0.2647 0.2530

� The entry 1.342 (-3) means 1.342 × 10−3.
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Table 2. Small sample performance of ϕn using prior G2.
n 40 80 120 160 200
D̄n 10.797 (-3) 7.564 (-3) 6.728 (-3) 5.317 (-3) 5.192 (-3)
SE(D̄n) 5.926 (-4) 4.219 (-4) 3.709 (-4) 3.045 (-4) 2.983 (-4)
n2/3D̄n 0.1263 0.1404 0.1637 0.1567 0.1776

n 240 280 320 360 400
D̄n 4.281 (-3) 4.976 (-3) 4.433 (-3) 4.171 (-3) 4.178 (-3)
SE(D̄n) 2.651 (-4) 2.761 (-4) 2.696 (-4) 2.642 (-4) 2.629 (-4)
n2/3D̄n 0.1653 0.2130 0.2074 0.2111 0.2268

n 560 720 880 1040 1200
D̄n 3.006 (-3) 2.957 (-3) 2.302 (-3) 2.276 (-3) 2.498 (-3)
SE(D̄n) 2.129 (-4) 2.101 (-4) 1.777 (-4) 1.674 (-4) 1.824 (-4)
n2/3D̄n 0.2043 0.2375 0.2114 0.2336 0.2820

n 1360 1520 1680 1840 2000
D̄n 2.073 (-3) 1.821 (-3) 1.752 (-3) 1.710 (-3) 1.544 (-3)
SE(D̄n) 1.600 (-4) 1.400 (-4) 1.418 (-4) 1.524 (-4) 1.251 (-4)
n2/3Dn 0.2544 0.2408 0.2475 0.2924 0.2452

� The entry 1.342 (-3) means 1.342 × 10−3.
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