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Abstract: In this paper, we propose a Generalized Approximate Cross Validation

(GACV) function for estimating the smoothing parameter in the penalized log likeli-

hood regression problem with non-Gaussian data. This GACV is obtained by, first,

obtaining an approximation to the leaving-out-one function based on the negative

log likelihood, and then, in a step reminiscent of that used to get from leaving-out-

one cross validation to GCV in the Gaussian case, we replace diagonal elements

of certain matrices by 1/n times the trace. A numerical simulation with Bernoulli

data is used to compare the smoothing parameter λ chosen by this approximation

procedure with the λ chosen from the two most often used algorithms based on the

generalized cross validation procedure (O’Sullivan et al. (1986), Gu (1990, 1992)).

In the examples here, the GACV estimate produces a better fit of the truth in term

of minimizing the Kullback-Leibler distance. Figures suggest that the GACV curve

may be an approximately unbiased estimate of the Kullback-Leibler distance in the

Bernoulli data case; however, a theoretical proof is yet to be found.
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1. Introduction

We are concerned with the problem of the adaptive choice of the smoothing
parameter in penalized log likelihood smoothing spline models for nonparametric
regression with non-Gaussian data from an exponential family. We suppose that
yi, i = 1, . . . , n are independent observations from an exponential family with
density of the form

f(yi, η(xi), φ) = exp{(yiη(xi) − b(η(xi)))/a(φ) + c(yi, φ)}, (1.1)

where a, b and c are given, with b a strictly convex function of η on any bounded
set, the xi are vectors of covariates, φ is a nuisance parameter, and η(xi) is the
so-called canonical parameter. The goal is to estimate η(·). For the purposes of
exposition, we assume that xi is on the real line, but our arguments extend to
more general domains for x. A wide variety of distributions can be put in the form
of (1.1) (see McCullagh and Nelder (1989)). In the particular case of Bernoulli



676 DONG XIANG AND GRACE WAHBA

data, which we will study by Monte Carlo methods, a(φ) = 1, b(η) = log(1+ eη),
c(y, φ) = 0, and yi is 1 or 0 with probability pη(xi) = eη(xi)/(1 + eη(xi)). The
Bernoulli case is of particular interest because of its applicability in risk factor
estimation.

In the usual parametric GLIM models, η(·) is assumed to be of parametric
form, and then maximum likelihood methods may be used to estimate and assess
the fitted models. A variety of approaches have been proposed to allow for more
flexibility than that inherent in simple parametric models. We will not review
the general literature, other than to note that regression splines have been used
for this purpose by, for example, Friedman (1991), Stone (1994) and others.
O’Sullivan (1983), O’Sullivan, Yandell and Raynor (1986), Gu (1990), Wahba
(1990) and references cited there, and others allow η(·) to take on a more flexible
form by assuming that η(·) is an element of some (reproducing kernel Hilbert)
space H of smooth functions, and estimating η(·) by minimizing a penalized
log likelihood. Assuming that a(φ) = 1 (or, is absorbed into λ below), define
l(yi, η(xi)) by

l(yi, η(xi)) = yiη(xi) − b(η(xi)).

The smoothing spline (or penalized log likelihood) estimate ηλ(·) of η(·) is the
minimizer in H of

−
n∑

i=1

l(yi, η(xi)) +
nλ

2
J(η), (1.2)

where the smoothing parameter λ ≥ 0 balances the tradeoff between minimizing
the negative log likelihood function

L = −
n∑

i=1

l(yi, η(xi))

and the “smoothness” J(η). Here J is a quadratic penalty functional defined
on H. Since H is infinite dimensional the log likelihood may be maximized by
interpolating the data, in the Bernoulli case for example resulting in pη(xi) ≈ yi.
If J1/2(·) is a norm in H or a seminorm in H with low dimensional null space
(the “parametric part”) satisfying some conditions, then it is well known that
ηλ, the minimizer of (1.2), is in a known n-dimensional subspace Hn in H with
basis functions that are known functions of the reproducing kernel for H and a
basis for the null space of J . See Wahba (1990), O’Sullivan (1983), Kimeldorf
and Wahba (1971), and below. For the purposes of discussing our estimate for λ,
we assume that (1.2) will be minimized numerically in some N ≤ n dimensional
space HB , that is, ηλ(·) =

∑N
j=1 θjBj(·), where the Bj are suitable basis functions

which may span Hn, or may constitute a convenient, sufficiently rich, (linearly
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independent) approximation to a spanning set. See Wahba (1990), Chapter 7,
and references cited there.

Given λ, the computational problem is then to find θ = (θ1, . . . , θN )T to
minimize

Iλ = −
n∑

i=1

l(yi, ηi(θ)) +
nλ

2
θTΣθθ, (1.3)

where ηi(θ) =
∑N

j=1 θjBj(xi) and Σθ is defined by θTΣθθ = J(
∑N

j=1 θjBj).
Letting li(·) = l(yi, ·) and using the fact that all li(·) are strictly concave

with respect to “·”, we may compute θ via a Newton iteration. Define wi =
−d2li/dη2

i , ui = −dli/dηi. Each iteration for θ is equivalent to finding θ to
minimize

min
θ

1
n

∑
w̃i(ỹi − ηi(θ))2 + λθTΣθθ, (1.4)

where ỹi = η̃i − ũi/w̃i and η̃i, ũi, w̃i are the values of ηi, ui and wi based on
the last iteration. The ỹi will be called the pseudo data here. This problem will
have a unique minimizer provided Σθθ = 0 and ηi(θ) = 0, i = 1, . . . , n ⇒ θ = 0.
(See O’Sullivan et al. (1986), Gu (1990).) For reference below, recall that by
the properties of the exponential family, if η(xi) is the true canonical parameter
evaluated at xi, then Eyi = ui, and Var (yi) = wi.

If HB = Hn, or HB is sufficiently large, then a sufficiently small λ allows
the ηi to effectively interpolate the data while a sufficiently large λ forces the
estimate to the null space of J(·) in HB.

With respect to the choice of λ, in the case of Gaussian data with un-
known variance, Generalized Cross Validation (GCV) was proposed by Craven
and Wahba (1979) and its properties have been extensively studied, see, for ex-
ample Li (1986). In the Gaussian case with known variance, an unbiased risk
estimate based on Mallows CL was also proposed in Craven and Wahba (1979).
In the GLIM context, O’Sullivan et al. (1986) adapted GCV to the non Gaussian
case by considering the quadratic approximation to the negative log likelihood
available at the final stage of their Newton iteration for θ. The GCV score they
proposed is

V1(λ) =
1
n‖Ŵ−1/2(Y − û)‖2

[ 1
n tr(I − Â(λ))]2

, (1.5)

where Y = (y1, . . . , yn)T , û = (û1, . . . , ûn)T , Ŵ = diag(ŵ1, . . . , ŵn), Â(λ) is the
influence matrix relating û to Y , and the “ˆ” indicates that these quantities are
evaluated at the final step of the Newton iteration for θ, based on the quadratic
approximation available then. It was suggested in Yandell (1986) to evaluate the
GCV score as the iteration proceeded. Gu (1992) proposed a similar GCV score

V (λ|ỹ) =
1
n‖(I − Ã(λ))W̃ 1/2ỹ‖2

[ 1
n tr(I − Ã(λ))]2

, (1.6)
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where ỹ = (ỹ1, . . . , ỹn)T . Here the matrix Ã(λ) satisfies (w̃1/2
1 η̃λ(x1), . . . , w̃

1/2
1

η̃λ(xn))T = A(λ)(w̃1/2
1 ỹ1, . . . , w̃

1/2
1 ỹn)T , and η̃λ =

∑N
j=1 θ̃jBj where θ̃ is the min-

imizer of (1.4), W̃ = diag(w̃1, . . . , w̃n) and the “˜” means that these quantities
are evaluated at the iteration indexed by “˜” in (1.4). (To see the relation be-
tween these two scores, note that dui/dηi = wi). Since Ã(λ) and W̃ vary with
the iteration, a decision must be made as to how to evaluate V . Gu (1992), by
simulation studies and a theoretical argument, demonstrated that it was prefer-
able to update λ at each iteration by minimizing V (λ) (called Algorithm 2), as
opposed to iterating to convergence and then evaluating and minimizing V (λ)
(called Algorithm 1, Algorithm 1 is given in Wahba (1990), but is not generally
recommended), see Gu (1992).

In the case of Bernoulli data, there is no unknown variance or nuisance
parameter. Using this fact, Gu (1992) gave a criteria similar to the unbiased risk
(UBR) estimate in Craven and Wahba (1979) for Gaussian data for choosing λ,
which is

U(λ|ỹ) =
1
n
‖(I − Ã(λ))W̃ 1/2ỹ‖2 +

2
n

tr Ã(λ). (1.7)

He believed that (1.7) is a proxy for the symmetrized Kullback-Leibler distance
between ηλ(·), and the true η(·), summed over the xi, and demonstrated via some
simulations, that the U criteria, computed via Algorithm 2, gave more favorable
results than V (also computed via Algorithm 2).

Algorithms for the estimation of multiple smoothing parameters via an Al-
gorithm 2 iteration of U have been developed, (Wang (1995)) based on RKPACK
(Gu (1989)) and successfully used in data analysis (Wahba et al. (1994a,b, 1995),
Wang (1994)).

Although it appears that the Algorithm 2 computation using U generally
converges, it is not guaranteed to do so, since changing λ along the iteration
also changes the optimization problem. From a theoretical point of view, given
that the algorithm converges, the goal function that is being minimized is not
explicitly known, and so it is hard to analyze theoretically.

These considerations, as well as the widely discussed proposal of Moody
(1991) in the neural net literature concerning a possible general form for an
explicitly defined goal function, spurred our search for an explicit, computable,
unbiased-risk-like proxy for the Kullback-Leibler distance between ηλ(·) and the
true η(·).

One approach is to attempt to obtain directly an unbiased estimate for the
Kullback-Leibler distance (or some comparative loss function) between the spline
fit ηλ(·) for a particular λ and the true η. Suppose ηλ(·) is the estimate of η. The
Kullback-Leibler distance KL(η, ηλ) is defined by

KL(η, ηλ) =
1
n

n∑
i=1

Eη log
(

f(yi, η(xi))
f(yi, ηλ(xi))

)
, (1.8)
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where Eη denotes expectation under η, and the comparative KL loss CKL(λ),
defined by

CKL(λ) = KL(η, ηλ) − 1
n

n∑
i=1

[−Eηyiη(xi) + b(η(xi))]

≡ 1
n

n∑
i=1

[−Eηyiηλ(xi) + b(ηλ(xi))] (1.9)

differs from the Kullback-Leibler distance by a quantity which does not depend
on λ.

Wong (1992) showed that for yi having a Poisson distribution (b(η) = eη , Eηyi

= eη(xi)), a unique unbiased estimator for CKL(λ) is

1
n

n∑
i=1

[−yiη
i
λ(xi) + eηλ(xi)], (1.10)

where ηi
λ is the smoothing spline fit (that is, the minimizer of (1.3)) with re-

spect to data (y1, . . . , yi−1, yi − 1, yi+1, . . . , yn). Wong’s estimate is very elegant;
however, it is computationally expensive, requiring n solutions of the variational
problem of (1.3) to evaluate (1.10) for each λ.

Wong also obtained an exact unbiased risk estimate for y from a gamma
distribution with known shape parameter and unknown scale parameter. The
unbiased estimate for the Gaussian case with known variance has been referred
to already. However, in general, it is not straightforward to obtain an exactly
unbiased estimates of the Kullback-Leibler distance or other loss functions. In
the case yi is Binomial (mi, pη(xi)), Wong proved that when ηλ, considered as
a function of yi, is a polynomial of degree greater than mi − 1, there does not
exist an unbiased estimator for the mean square error. In particular, for mi = 1
(Bernoulli data), there does not exist an unbiased estimate for the mean square
error loss function and it is evident that the same techniques can be used to show
that there also does not exist an exactly unbiased estimate for CKL(λ). Thus we
can only have approximately unbiased estimates. This, no doubt, explains why
smoothing parameter selection with Bernoulli data has resisted a final, definitive
answer so far.

In this paper, we apply first leaving-out-one cross validation to the likelihood
function, which amounts to a comparative KL loss function. Since using the exact
cross validation in this case is not computationally feasible for large data sets, we
use a first order approximation for the cross validation of the likelihood function
and get an approximate leaving-out-one cross validation function. Then, in a
step reminiscent of the step in Craven and Wahba (1979) which gets to GCV
from leaving-out-one cross-validation, we replace diagonal entries from certain
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matrices with their averages. The end result is what might be considered an
explicit form of GCV as opposed to iterative methods based on Algorithm 2. A
small simulation study here with Bernoulli data shows that the estimate performs
better in the examples tried than either V or U based on Algorithm 2. Theoretical
justification for these promising numerical results remains to be found.

While this paper was being prepared, we become aware of Liu (1995). He
gives a formula which approximates a leaving-out-one estimate under general
circumstances, including when the estimate is a neural net. His formula is one of
the steps in our derivation. For completeness, we have left in our derivation, but
will note, which step may also be found in Liu. We remark that the arguments
here also apply to a neural net estimate with weight penalties, but details are
omitted.

2. Generalized Approximate Cross Validation Function

Define the ordinary, or leaving-out-one cross validation function CV (λ),

CV (λ) =
1
n

n∑
i=1

[−yiη
(−i)
λ (xi) + b(ηλ(xi))], (2.1)

where η
(−i)
λ (·) is the minimizer of (1.2) with the ith data point omitted. CV (λ)

can be expected to be at least roughly unbiased for CKL(λ) of (1.9) if η is
“smooth” and the data are dense. For any fixed λ, in order to evaluate CV (λ),
we have to get n leaving-out-one estimates η

(−i)
λ (xi) i = 1, . . . , n. Cox and Chang

(1990) used an iterated state space algorithm to calculate the CV (λ) function.
But their algorithm can only be applied to one covariate. In general, it will
be very expensive to compute η

(−i)
λ (xi). Using CV (λ) is almost infeasible for

large data sets. We introduce an approximation for CV (λ) via several first order
Taylor series expansions.

From (2.1), we have

CV (λ) =
1
n

∑
[−yiη

(−i)
λ (xi) + b(ηλ(xi))]

=
1
n

∑
[−yiηλ(xi) + b(ηλ(xi))] + yi[ηλ(xi) − η

(−i)
λ (xi)]

= L(λ) +
1
n

∑
yi[ηλ(xi) − η

(−i)
λ (xi)] (2.2)

= L(λ) +
1
n

∑
yi

(ηλ(xi) − η
(−i)
λ (xi))

yi − µ
(−i)
λ (xi)

(yi − µ
(−i)
λ (xi))

= L(λ) +
1
n

∑
yi

(ηλ(xi) − η
(−i)
λ (xi))

yi − µ
(−i)
λ (xi)

(yi − µλ(xi))

1 − µλ(xi)−µ
(−i)
λ

(xi)

yi−µ
(−i)
λ

(xi)

.
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Using µλ(xi) = b′(ηλ(xi)) gives

µλ(xi) − µ
(−i)
λ (xi)

yi − µ
(−i)
λ (xi)

=
b′(ηλ(xi)) − b′(η(−i)

λ (xi))

yi − µ
(−i)
λ (xi)

≈ b′′(ηλ(xi))
ηλ(xi) − η

(−i)
λ (xi)

yi − µ
(−i)
λ (xi)

.

Therefore, CV (λ) can be approximated by

CV (λ) ≈ L(λ) +
1
n

n∑
i=1

yi
(ηλ(xi) − η

(−i)
λ (xi))

yi − µ
(−i)
λ (xi)

yi − µλ(xi)

1 − b′′(ηλ(xi))
ηλ(xi)−η

(−i)
λ

(xi)

yi−µ
(−i)
λ

(xi)

= L(λ) +
1
n

n∑
i=1

yi(yi − µλ(xi))
yi−µ

(−i)
λ

(xi)

ηλ(xi)−η
(−i)
λ

(xi)
− b′′(ηλ(xi))

. (2.3)

To avoid the calculation of

ηλ(xi) − η
(−i)
λ (xi)

yi − µ
(−i)
λ (xi)

(2.4)

explicitly in (2.3), we develop an approximation for this ratio. Before obtaining
an approximation for (2.4), we need to generalize the leaving-out-one lemma of
Craven and Wahba (1979).
Lemma 2.1. (Leaving-out-one lemma) Let −l(yi, η(xi)) = −yiη(xi) + b(η(xi))
and Iλ(η, Y ) = −l(yi, η(xi)) − ∑

j �=i l(yj, η(xj)) + nλ
2 J(η). Suppose hλ(i, z, ·) is

the minimizer in H or HB of Iλ(η, Z), where Z = (y1, . . . , yi−1, z, yi+1, . . . , yn)T ,
then

hλ(i, µ(−i)
λ (xi), ·) = η

(−i)
λ (·),

where η
(−i)
λ (·) is the minimizer of −∑

j �=i l(yj , η(xj)) + nλ
2 J(η), and µ

(−i)
λ (·) is

the mean corresponding to η
(−i)
λ (·).

Proof. See Appendix A.
What this lemma says is that replacing the ith observation yi by µ

(−i)
λ (xi),

the minimizer of Iλ with respect to η(·) will be η
(−i)
λ (·).

For the argument below we first observe that if ηλ(·) is a minimizer of Iλ,
it is in a certain linear space of dimension at most n, and then J(ηλ) can be
written as a quadratic form in its values at xi. With some abuse of notation we
will sometimes write below J(η) = ηT Ση, where, in this context, we are letting
η = (η(x1), . . . , η(xn))T .

Let

ηλ = (ηλ(x1), . . . , ηλ(xn))T and η
(−i)
λ = (η(−i)

λ (x1), . . . , η
(−i)
λ (xn))T ,
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also,

Y = (y1, . . . , yn)T and Y (−i) = (y1, . . . , yi−1, µ
(−i)
λ (xi), yi+1, . . . , yn)T .

Because (ηλ, Y ) and (η(−i)
λ , Y (−i)) are two local minimizers of Iλ(η, Z),

∂Iλ/∂θ equal zero on those two points. Thus,

∂Iλ(η, Z)
∂η

(ηλ, Y ) =
∂Iλ

∂θ

∂θ

∂η
(ηλ, Y ) = 0

and
∂Iλ(η, Z)

∂η
(η(−i)

λ , Y (−i)) =
∂Iλ

∂θ

∂θ

∂η
(η(−i)

λ , Y (−i)) = 0.

From

Iλ = −
n∑

j=1

l(yj, η(xj)) +
λn

2
ηT Ση =

n∑
j=1

[−yiη(xj) + b(η(xj))] +
λn

2
ηT Ση,

the second derivative of Iλ with respect to η will be

∂2Iλ

∂η(xi)∂η(xj)
=

{
b′′(η(xi)) + nλσii, if i = j,
nλσij, if i �= j,

where σij is the ijth element of Σ.
Hence, we have

∂2Iλ

∂η∂ηT
= W + nλΣ,

∂2Iλ

∂Y ∂ηT
= −I,

where W (η) = diag(b′′(η(x1)), . . . , b′′(η(xn))) = diag(w1, . . . , wn).
Using a first-order Taylor expansion to expand (∂Iλ/∂η)(η(−i)

λ , Y (−i)) at the
point (ηλ, Y ), we have the following equation:

0 =
∂Iλ

∂η
(η(−i)

λ , Y (−i))

=
∂Iλ

∂η
(ηλ, Y ) +

∂2Iλ

∂η∂ηT
(η∗λ, Y ∗)(η(−i)

λ − ηλ) +
∂2Iλ

∂Y ∂ηT
(η∗λ, Y ∗)(Y (−i) − Y ),

or

ηλ − η
(−i)
λ = (W (η∗λ) + nλΣ)−1(Y − Y (−i)),

where (η∗λ, Y ∗) is a point somewhere between (ηλ, Y ) and (η(−i)
λ , Y (−i)).
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Approximate W (η∗λ) by W (ηλ) and note that Y − Y (−i) = (0, . . . , 0, yi −
µ

(−i)
λ (xi), 0, . . . , 0)T . We have




ηλ(x1) − η
(−i)
λ (x1)

...
ηλ(xi) − η

(−i)
λ (xi)

...
ηλ(xn) − η

(−i)
λ (xn)




� (W (ηλ) + nλΣ)−1




0
...

yi − µ
(−i)
λ (xi)
...
0




, (2.5)

i.e.
ηλ(xi) − η

(−i)
λ (xi)

yi − µ
(−i)
λ (xi)

� hii, (2.6)

where H = [W (ηλ) + nλΣ]−1 is the inverse Hessian of Iλ(η, Y ) with respect to η

and hii is the ith diagonal element of H. The derivation of (2.5) follows that of
Liu’s Equation (6).

Combining (2.3) and (2.6), we have an Approximate Cross Validation func-
tion

ACV (λ) =
1
n

n∑
i=1

(−yiηλ(xi) + b(ηλ(xi))) +
1
n

n∑
i=1

hiiyi(yi − µλ(xi))
1 − hiib′′(ηλ(xi))

. (2.7)

In (2.7), replacing hii by tr(H)/n and replacing hiib
′′(ηλ(xi) by tr(W 1/2H

W 1/2)/n, we have a generalized form for the approximate cross validation

GACV (λ) =
1
n

n∑
i=1

(−yiηλ(xi) + b(ηλ(xi))) +
tr(H)

n

∑n
i=1 yi(yi − µλ(xi))

n − tr(W 1/2HW 1/2)
. (2.8)

As an example, in the Bernoulli case, b(ηλ(xi)) = log(1 + eηλ(xi)), µλ(xi) =
pλ(xi) and b′′(ηλ(xi)) = pλ(xi)(1−pλ(xi)), and W = diag(pλ(x1)(1−pλ(x1)), . . .,
pλ(xn)(1 − pλ(xn)). Then the GACV function will be

GACV (λ) =
1
n

n∑
i=1

(−yiηλ(xi) + log(1 + eηλ(xi))) +
tr(H)

n

∑n
i=1 yi(yi − pλ(xi))

n − tr(W 1/2HW 1/2)
.

(2.9)

3. Simulation Results

In this section, we are going to perform several simulations to study the
GACV curve and compare the λ chosen from GACV (λ), U(λ) and V (λ).
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3.1. Computation of ηλ, Σ and the GACV function

Finite representations for the (exact) minimizer of (1.2) are well known when
J(η) is a seminorm in a reproducing kernel space H. A popular example is
J(η) =

∫ 1
0 (η′′(x))2dx. We have chosen to use the exact representation in our

simulations. If H is decomposed into H0 ⊕H1, where H0 is the null space of J ,
then the (exact) minimizer of (1.2) in H has a representation

ηλ(·) =
m∑

ν=1

dνφν(·) +
n∑

i=1

ciξi(·), (3.1)

where the {φν} span the null space of J in H, and it is being assumed that
the n × m matrix S with iνth entry φν(xi) is of full column rank. (Otherwise
the minimizer is not necessarily unique.) ξi(x) = K(x, xi), where K(x, y) is
the reproducing kernel for H1, and c = (c1, . . . , cn)T satisfies the m conditions
ST c = 0. Furthermore J(ηλ) = cT Qc where Q is the n × n matrix with ijth
entry K(xi, xj). See Wahba (1990). Thus to find ηλ to minimize (1.2), we only
need to find d = (d1, . . . , dm)T and c to minimize

−
n∑

i=1

li
( m∑

ν=1

dνφν(xi) +
n∑

j=1

cjξj(xi)
)

+ cT Qc. (3.2)

In order to compute GACV (λ) we need to find Σ satisfying ηT
λ Σηλ = cT Qc. Q

may not be of full rank, despite the fact that ηλ is unique. (This will happen if,
for example, if the xi are not distinct.) We have the following lemma:

Lemma 3.1. Let ∆ be any n × (n − m) matrix of orthogonal vectors whose
columns are all perpendicular to the columns of S, and let † be the Moore-Penrose
generalized inverse. Then

Σ = ∆(∆Q∆T )†∆T . (3.3)

If Q is of full rank, we can write

Σ = Q−1 − Q−1S(ST Q−1S)−1ST Q−1. (3.4)

Proof. See Appendix B.

We remark that in large problems the computation of H and especially Σ
may be unstable, but we encountered no problems in our examples below with
n = 100 nicely spaced xi, where Q−1 was computed via the eigenvalue-eigenvector
decomposition. (See Note Added in Proof.)

For most of our experiments we took H as the Sobolev space W2 = {η :
η, η′ abs. cont, η′′ ∈ L2} and J(η) =

∫ 1
0 (η′′(x))2dx. In this case, m = 2, φ1(x) =
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1, φ2(x) = x−1/2 and ξi(x) = K(x, xi) where K(u, v) = k2(u)k2(v)−k4([u−v]),
where n!kn(u) is the nth Bernoulli polynomial and [τ ] is the fractional part of
τ . In one example, we assumed that η was periodic, in this case, m = 1, φ2 is
deleted from the above representation, and K(u, v) becomes −k4([u − v]). We
have chosen to use the representation (3.1) for our simulation studies in order to
use the code RKPACK, which is used as a subroutine at each step of the iteration
in (1.4), although other representations are available. We defer discussion of
efficient numerical methods appropriate for large data sets for a later paper.

3.2. The GACV (λ) curve
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Figure 3.1. Two GACV (λ) (solid lines) and CKL(λ)(dotted lines) curves.
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Figure 3.2. Average GACV (λ)(solid lines) and CKL(λ) (dotted lines) curves.

Figure 3.1 contains two typical GACV (λ) and CKL(λ) curves from an exam-
ple using logistic regression for Bernoulli data, that is yi is 1 or 0 with Eyi =p(xi)
and η(x)= logit(p(x))= log(p(x)/(1−p(x))), b(η(x))= log(1 + eη(x)). In this fig-
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ure η(x)=2 sin(2πx) and xi =(i−.5)/100, i=1, . . . , 100 are equally spaced from
0 to 1, and KL(η, ηλ) may be obtained from CKL(λ) by subtracting the con-
stant 0.51157. The figure shows that the minima of GACV (λ) and CKL(λ) are
very close in these two examples. Figure 3.2 gives the average of GACV (λ) and
CKL(λ) curves over two hundred replicates of curves generated as in Figure 3.1.

3.3. Compare λ from GACV (λ), U(λ) and V (λ)

In this subsection, we are going to use simulations to compare the λ chosen
from GACV (λ), U(λ) and V (λ), with the U and V implementation via Algorithm
2.

Four different logistic or probability curves, which were used in Cox and
Chang (1990), are reused in this section, they are

η1(x) = 3 − (5x − 2.5)2

η2(x) = 2 sin(10x)

p3(x) =

{
−1.6x + .9, if x ≤ .5,
+1.6x − .7, if x > .5,

p4(x) =

{
3.5x/3, if x ≤ .6,
.7, if x > .6.

Also, we include a periodic function, η5(x) = 2 sin(2πx), and a linear function,
η6(x) = 0.218 − 4.312x, in the simulations. For the periodic function, we will
minimize (1.2) in the space of periodic functions in W2.

The experiments are conducted as follows: On xi = (i − .5)/100, i =
1, . . . , 100, Bernoulli data were generated according to the logit functions. Cal-
culating ηλ by minimizing (1.2) on a grid of log10 nλ = −6(.08)0, and eval-
uating GACV (λ) on the same grid to find the minimizing λ̂GACV . To ob-
tain tr H, we use EISPACK to do the eigenvalue-eigenvector decomposition of
(W (ηλ) + nλΣ) to find the eigenvalues of H, call them γ1, . . . , γn. Tr(H) =∑

1/γi. For tr(HW ), we have to calculate exactly H and then HW before
we get Tr(HW ). Also from V (λ) and U(λ), we have λGCV , λUBR available.
Then from ηGACV , ηGCV , ηUBR, we calculated three Kullback-Leibler Distances,
KL(η, ηGACV ),KL(η, ηGCV ),KL(η, ηUBR), where KL(η, ηλ) =

∑n
i=1 p(xi)(η(xi)

−ηλ(xi)) − log(1 + eη(xi)) + log(1 + eηλ(xi)). The true p(x) curves of the six test
functions above, and a set of data generated from each test function are plotted
in Figure 3.3.
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Figure 3.3. The true p(x) and a set of data, for the six cases with p(x)
determined by by (a):η1,(b):η2,(c):p3,(d):p4,(e):η5 and (f):η6.

To evaluate the effectiveness of the methods, 200 sets of data for each function
were generated and relative efficiencies were calculated based on

eff(η̂) =
minλ KL(η, ηλ)

KL(η, η̂)
.

Figure 3.4 shows the boxplots of efficiency for the three methods of estimating
λ. The example of Figure 3.3(b) appears to be the closest example to Gu’s
(1992) example, and the boxplots for V and U in Figure 3.3(b) appear to be
roughly comparable to the V and U boxplots in Gu (1992), Figure 3. In all the
cases we tried, the GACV λ provides the best fitting among these three λ’s,
especially for the case (f) when the true η(·) is only a linear function. In general,
the distribution of efficiencies for the GACV estimate appears to have a higher
median and a shorter tail than either of its two competitors.



688 DONG XIANG AND GRACE WAHBA

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

V GACV U

(a)

0.
2

0.
4

0.
6

0.
8

1.
0

V GACV U

(b)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

V GACV U

(c)
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

V GACV U

(d)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

V GACV U

(e)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

V GACV U

(f)

Figure 3.4. Boxplots of the efficiency for 6 different examples, for GCV (Al-
gorithm 2), UBR (Algorithm 2) and GACV.

4. Discussion

In this paper we have proposed a proxy, GACV (λ) for the comparative
Kullback-Leibler distance CKL(λ), by starting with a leaving-out-one proxy,
approximating it by repeated use of a Taylor series expansion, and, finally, re-
placing individual diagonal entries in certain matrices by the average diagonal
entry. The end result, the GACV (λ), appears from simulations to be an excel-
lent proxy for the Kullback-Leibler distance, in the sense that the minimizer of
GACV (λ) is close to the minimizer of CKL(λ); furthermore, in the examples
tried, the estimates of λ appeared superior to the popular and successful V and
U estimates computed via Algorithm 2. A theoretical explanation of these re-
sults remains to be found. Also, in order for this method to be competitive with
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Gu’s (Algorithm 2) U for large data sets, stable numerical methods for n ≈ 1000
must be found. We remark that the GACV can also be used in the context of
choosing regularization parameters in a neural net where there is a penalty on
the net weight (see Moody (1991), Liu (1995)).

We have tried other proxies starting with a leaving-out-one expression, and
using different approximations at certain stages. For example, if we start with
using mean square error for our cross validation function, replacing negative
log likelihood by the mean square error in (2.1), the same derivation will lead us
to the weighted GCV function, ‖Y − µλ‖2/[tr(I − HW )]2, which is identical to
GCV (λ) for the Gaussian case if the noise are from identical normal distributions.

Consider a slightly different leaving-out-one, say

CV2(λ) =
1
n

n∑
i=1

[−yiη
(−i)
λ (xi) + b(η(−i)

λ (xi))];

then, by using the approximation b(η(−i)
λ (xi))− b(ηλ(xi)) ≈ −b′(ηλ(xi))[ηλ(xi)−

η
(−i)
λ (xi)] = −µλ(xi)[ηλ(xi) − η

(−i)
λ (xi)] we have an expression similar to (2.2),

namely,

CV2(λ) = L(λ) +
1
n

∑
(yi − µλ(xi))[ηλ(xi) − η

(−i)
λ (xi)]. (4.1)

The same argument as that following (2.2) results in

ACV2(λ) =
1
n

n∑
i=1

hii(yi−µλ(xi))2

1−hiib′′(ηλ(xi))
+

1
n

n∑
i=1

(−yiηλ(xi)+b(ηλ(xi)))

=
1
n

n∑
i=1

hiib
′′
(ηλ(xi))(yi−µλ(xi))2/b

′′
(ηλ(xi))

1−hiib′′(ηλ(xi))
+

1
n

n∑
i=1

(−yiηλ(xi)+b(ηλ(xi)));

another way to take the generalization step from the above ACV (λ) will give us

GACV2(λ) =
1
n

n∑
i=1

(−yiηλ(xi) + b(ηλ(xi)))

+
tr(W 1/2HW 1/2)

n

∑n
i=1(yi − µλ(xi))2/b

′′
(ηλ(xi))

n − tr(W 1/2HW 1/2)
. (4.2)

In particular, for Bernoulli data,

GACV2(λ) =
1
n

n∑
i=1

(−yiηλ(xi) + b(ηλ(xi)))

+
tr(W 1/2HW 1/2)

n

∑n
i=1(yi−pλ(xi))2/(pλ(xi)(1−pλ(xi)))

n−tr(W 1/2HW 1/2)
. (4.3)



690 DONG XIANG AND GRACE WAHBA

Since (yi − pλ(xi))2/(pλ(xi)(1 − pλ(xi)) ≈ 1, we have

GACV2(λ) =
1
n

n∑
i=1

(−yiηλ(xi) + b(ηλ(xi))) +
k

n
tr(W 1/2HW 1/2), (4.4)

where k = n/(n−tr(W 1/2HW 1/2)). This version of GACV is very similar to that
proposed by Gu in (1.7), where in (1.7), the first part is an approximation of the
log likelihood in (4.4). But for the examples we studied in this paper, simulation
suggests that GACV is better than GACV2
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Appendix

A. Proof of Lemma 2.1

First define Y −i =(y1, . . . , yi−1, µ
(−i)
λ (xi), yi+1, . . . , yn). Since −l(µ(−i)

λ (xi), τ)
= −u

(−i)
λ (xi)τ + b(τ), we have

−l(µ(−i)
λ (xi), η

(−i)
λ (xi)) ≤ −l(µ(−i)

λ (xi), η(xi)) . (A.1)

This follows since setting

∂l(µ(−i)
λ (xi), τ)

∂τ
= −µ

(−i)
λ (xi) + b′(τ) = 0

and using the fact that b′′(τ) > 0, implies that l(u(−i)
λ (xi), η) achieves its (unique)

minimum for b′(η) = µ
(−i)
λ (xi). Thus for any η,

Iλ(η, Y −i) = −l(µ(−i)
λ (xi), η(xi)) −

∑
j �=i

l(yj, η(xj)) + n
λ

2
J(η)

≥ −l(µ(−i)
λ (xi), η

(−i)
λ (xi)) −

∑
j �=i

l(yj, η(xj)) + n
λ

2
J(η)

≥ −l(µ(−i)
λ (xi), η

(−i)
λ (xi)) −

∑
j �=i

l(yj, η
(−i)
λ (xj)) + n

λ

2
J(η(−i)

λ ).

The first inequality is because of (A.1), the second inequality is due to the
fact that η

(−i)
λ is the minimizer of −∑

j �=i l(yj , η(xj)) + nλ
2J(η). Thus we have

hλ(i, µ(−i)
λ ) = η

(−i)
λ .
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B. Proof of Lemma 3.1

Since η(xi) =
∑m

ν=1 dνφ(xi) +
∑n

j=1 cjK(xi, xj),

Qc + Sd = η

ST c = 0.
(B.1)

Let c = ∆γ for some n−m dimensional vector γ, where ∆ is as defined in the text.
This is necessary and sufficient to insure that ST c = 0. Then cT Qc = γT ∆T Q∆γ.
Substituting into (B.1) gives (∆T Q∆)γ = ∆T η. Then cT Qc = γT (∆T Q∆)γ =
γT (∆T Q∆)(∆T Q∆)+(∆T Q∆)γ = ηT ∆(∆T Q∆)+∆T η. If Q is of full rank then
formulas for the block inverse of a matrix gives the result.

Note Added in Proof

We have recently shown that the calculation of matrix inverses as described
following (3.4) can be avoided by using the randomized trace method to estimate
tr(H) and tr(W 1/2HW 1/2), see Xiang, D. (1996), Model fitting and testing for
non-Gaussian data with large data sets. (PhD thesis.) Technical Report 957.
Dept. of Statistics, University of Wisconsin, Madison, WI.
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