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Abstract: We use a reproducing kernel Hilbert space approach to develop a

methodology for testing hypotheses about the slope function in a functional linear

regression for time series. In contrast to most existing studies, which tests for the

exact nullity of the slope function, we are interested in the null hypothesis that the

slope function vanishes only approximately, where deviations are measured with

respect to the L2-norm. We propose an asymptotically pivotal test that does not

require estimating nuisance parameters or long-run covariances. The key technical

tools that we use to prove the validity of our approach include a uniform Bahadur

representation and a weak invariance principle for a sequential process of estimates

of the slope function. Lastly, we demonstrate the potential of our methods using a

small simulation study and a data example.
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1. Introduction

Numerous statistical methods exist for analyzing functional data; see Ramsay

and Silverman (2005), Ferraty and Vieu (2010), Horváth and Kokoszka (2012),

Hsing and Eubank (2015), and Wang, Chiou and Müller (2016). Because of its

good interpretability, the functional linear regression model

Yi =

∫ 1

0

Xi(s)β0(s) ds+ εi, i ∈ Z, (1.1)

has become a useful tool for functional data analysis (e.g., see Cardot, Ferraty and

Sarda (1999); Müller and Stadtmüller (2005); Yao, Müller and Wang (2005); Hall

and Horowitz (2007); Yuan and Cai (2010)). In our study, {(Xi, εi)}i∈Z denotes a

strictly stationary time series, where Xi is a mean zero square-integrable random

function on the interval [0, 1], and εi is a real-valued centered random noise.

Because the slope function β0 characterizes the dependence between the

predictor and the response, many studies have focused on its estimation and

corresponding statistical inference. A popular method for analyzing the slope

function in model (1.1) is to use functional principle components (FPCs) (e.g.,
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see Yao, Müller and Wang (2005); Hall and Horowitz (2007); Horváth and

Kokoszka (2012); Hilgert, Mas and Verzelen (2013)). Others use a reproducing

kernel Hilbert space (RKHS) approach to develop inference tools for β0 and the

corresponding theoretical results on consistency and optimality. Yuan and Cai

(2010) and Cai and Yuan (2012) study an RKHS estimator and its prediction

risk in a scalar-on-function linear regression model, and Shin and Lee (2016)

use an RKHS approach for a robust functional linear regression. Shang and

Cheng (2015) propose an RKHS inference framework for a generalized functional

linear regression, and Hao et al. (2021) consider the functional Cox model. These

authors also suggest tests for the nullity of the slope function. Recently, Dette

and Tang (2021) used an RKHS approach to develop a statistical inference

methodology in the function-on-function linear model, measuring deviations from

the null hypothesis with respect to the sup-norm focusing on confidence bands.

Statistical inference for functional time series has also been studied extensively

(e.g., see Chen and Song (2015); Kokoszka, Rice and Shang (2017); van Delft

and Eichler (2018); Dette, Kokot and Aue (2020); Dette, Kokot and Volgushev

(2020); Cui and Zhou (2022)).

A common feature of the statistical theory for the functional linear regression

model is that the proposed methodologies depend on the knowledge of nuisance

parameters that appear in the asymptotic variance of the estimators of the slope

function. As discussed in Section 3, these parameters are related to the long-run

covariance structure of the data, and describe the behavior of a sequence of

solutions of a system of estimated integro-differential equations induced by the

covariance operator of the predictor. As a result, their estimation is not an easy

problem. In the case of independent data (as considered in all works that use the

RKHS approach), several estimators have been proposed and studied. On the

other hand, for time series data, these nuisance parameters have an even more

complicated structure, because of the dependencies in the data, making their

estimation yet more difficult.

The purpose of this study is to develop pivotal statistical inference tools for

the slope function β0 in the functional linear regression model (1.1) by using an

RKHS approach, which avoids needing to estimate nuisance parameters. Most

existing works focus on testing hypotheses of the form

H0 : d0 :=

∫ 1

0

|β0(s)|2 ds = 0 versus H1 : d0 ̸= 0, (1.2)

which is the classical hypothesis of the null effect (β0 ≡ 0) of the functional

covariate; see, for example, Cardot et al. (2003); Garćıa-Portugués, González-

Manteiga and Febrero-Bande (2014); Lei (2014); Kong, Staicu and Maity (2016);

Su, Di and Hsu (2017); Tekbudak et al. (2019) among man others. In contrast,
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we develop a pivotal test for the hypotheses

H0 : d0 =

∫ 1

0

|β0(s)|2 ds ≤ ∆ versus H1 : d0 > ∆. (1.3)

Here, ∆ > 0 is a (small) prespecified threshold that represents the maximal

acceptable deviation (measured with respect to the L2-distance) of β0 from

the null function. Note that in contrast to (1.2), the hypotheses in (1.3) are

symmetric, in the sense that the null and the alternative can be interchanged.

This allows us to investigate, at a controlled type-I error, whether the effect of

the covariate on the response is negligible by testing the hypotheses

H0 : d0 > ∆ versus H1 : d0 ≤ ∆. (1.4)

Throughout this paper, we refer to hypotheses of the form (1.2) as“classical”,

and to those of the form (1.3) or (1.4) as “relevant” hypotheses. We discuss the

pros and cons of these hypotheses in more detail in Section 2.

Our aim is to develop a pivotal methodology for testing relevant hypotheses

(1.3) (or (1.4)), with no need to estimate nuisance parameters. Our approach is

based on an RKHS and a novel self-normalization technique, recently introduced

by Dette, Kokot and Volgushev (2020) in the context of testing relevant

hypotheses about the mean and covariance functions of stationary time series.

As such, our approach differs substantially from the common self-normalization

approaches for testing classical hypotheses about finite-dimensional parameters

(see Lobato (2001); Shao (2010); Shao and Zhang (2010), among many others).

Because a statistical inference about the slope function is an inverse problem, it

cannot be addressed directly using classical methods. In Section 3, we introduce

a sequential RKHS estimator for the slope function in model (1.1). Section 4 is

devoted to the development of our self-normalization methodology for the relevant

hypotheses (1.3). As a by-product, we also construct (asymptotically) pivotal

confidence intervals for the L2-norm of the slope function. Here, the crucial

result is a weak invariance principle for the process of estimators {β̂(ν)}ν∈[ν0,1],

where ν0 ∈ (0, 1] is a constant and β̂(ν) denotes the estimator of β0 calculated

from the data {(Xi, Yi)}i=1,...,⌊nν⌋ (see Theorem 2 and the discussion in the

subsequent paragraph). In Section 5, we provide details for the numerical

implementation of our approach, and present simulated data experiments and

a real-data example. The proofs of our theoretical results are given in the online

Supplementary Material. The Matlab program for implementing our method is

available at https://github.com/jttang/SN_RKHS.

To the best of our knowledge, testing relevant hypotheses about the slope

function has only recently been considered, recently by Kutta, Dierickx and Dette

(2022), who investigate a normal equation corresponding to the linear model (1.1),

which they solve by applying a regularized inverse based on a spectral-cut-off

https://github.com/jttang/SN_RKHS
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series estimator. Although their approach has some theoretical advantages, its

practical usefulness is limited, because it requires an estimation of the spectral

decomposition of the regularized inverse. In contrast, the proposed estimator is

defined as the minimizer of a regularized loss function in an appropriate RKHS.

In Section 5, we demonstrate the advantages of our approach.

2. Classical and Relevant Hypotheses

Our particular interest in hypotheses of the form (1.3) and (1.4) stems from

the fact that in many cases it is rare, and perhaps impossible, to have a null

hypothesis that can be exactly modeled as β0 ≡ 0 (see Berger and Delampady

(1987) for a detailed discussion). More precisely, in most applications, such as

in our data example in Section 5.3, the covariate X has some (possibly small)

effect on the response Y . Thus, a more reasonable question is whether this effect

is small and negligible. We address this point by testing the relevant hypotheses

in (1.3), where we measure the size of the effect by the (squared) L2-norm of the

the function β0, although other norms can be considered as well.

Although relevant hypotheses have only recently been considered in the

context of functional data ( see Fogarty and Small (2014); Dette, Kokot and

Aue (2020); Dette, Kokot and Volgushev (2020), among others), they have a

long history in (mathematical) statistics. Early references include the paper of

Hodges and Lehmann (1954) and the textbook by Lehmann (1959). Testing

relevant hypotheses (in particular those of the form (1.4)) for real-valued

(or finite-dimensional) parameters has found considerable interest in the bio-

statistics community (see the mongraphs of Chow and Liu (1992); Wellek (2010)).

Moreover, in the context of drug development, several authors have considered

relevant hypotheses for comparing dose response files (see Liu, Hayter and Wynn

(2007); Liu et al. (2009), among others), where they estimate parametric curves

from real-valued data. On the other hand, hypotheses of the form (1.3) have

found considerable interest in mathematical statistics; see Spokoiny (1996) and

Lepski and Spokoiny (1999) for some early works and Blanchard and Fermanian

(2021) and Brutsche and Rohde (2022) for some more recent references.

From a statistical point of view, whether to use classical or relevant

hypotheses is often a subjective decision. Relevant hypotheses should be preferred

if there is clear evidence that exact equality cannot hold (otherwise we are testing

a hypothesis that we know in advance is not true). As pointed out by Berger

and Delampady (1987), this situation appears rather frequently. On the other

hand, using hypotheses (1.3) and (1.4) means we have to specify the threshold

∆, which is often not an easy task. This choice is case dependent, and requires

a careful investigation of the scientific problem and a discussion with scientists

from other fields to define what is considered relevant in the specific application.

Note that for bioequivance testing, these discussions have already been completed
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(see Chow and Liu (1992); Wellek (2010)). Here, regulators such as the EMA or

FDA have have defined thresholds for specific applications.

Moreover, even if the choice of the threshold is difficult, the proposed

methodology still provides useful alternatives to testing classical hypotheses. On

the one hand, it is possible to test for relevant differences for a finite number

of thresholds simultaneously, and to determine for a fixed level α, the largest

threshold such that the null hypothesis is rejected. On the other hand, we can

construct confidence intervals for the measure d0 =
∫ 1

0
|β0(s)|2ds (see Remark 2).

3. The RKHS Approach to Functional Linear Regression

We first introduce the notation used throughout this article. Let L2([0, 1])

denote the Hilbert space of square-integrable functions on [0, 1] equipped with the

usual L2-inner product ⟨·, ·⟩L2 and the corresponding L2 norm ∥·∥L2 . Let ℓ∞([0, 1])

denote the set of all bounded real-valued functions on [0, 1] with corresponding

norm ∥ · ∥∞, let “⇝” denote weak convergence in ℓ∞([0, 1]), and let “
d−→” denote

the usual convergence in distribution in Rk (for some positive integer k). Write

an ≍ bn if there exist constants c1, c2 > 0 such that c1 ≤ an/bn ≤ c2, for all n.

For a ∈ R, let ⌊a⌋ denote the largest integer smaller than or equal to a.

Suppose a sample of n observations (X1, Y1), . . . , (Xn, Yn) generated by the

functional linear regression model (1.1) is available, and let ν0 ∈ (0, 1] be an

arbitrary, but fixed constant. For any ν ∈ [ν0, 1], we first define an estimator

of β0 based on the first ⌊nν⌋ observations (X1, Y1), . . . , (X⌊nν⌋, Y⌊nν⌋). For this

purpose, let

H =
{
β : [0, 1] → R

∣∣ ∂(θ)β is absolutely continuous,

for 0 ≤ θ ≤ m− 1 ; ∂(m)β ∈ L2([0, 1])
}

(3.1)

denote the Sobolev space of order m > 1/2 of functions defined on [0, 1] (e.g., see

Wahba (1990)), and define for ν ∈ [ν0, 1], the estimator

β̂n,λ(·, ν) = argmin
β∈H

[
1

2⌊nν⌋

⌊nν⌋∑
i=1

{
Yi −

∫ 1

0

Xi(s)β(s) ds
}2

+
λ

2
J(β, β)

]
, (3.2)

for the function β0. Here, λ > 0 is a regularization parameter, and for β1, β2 ∈ H,

J(β1, β2) =

∫ 1

0

β
(m)
1 (s)β

(m)
2 (s) ds (3.3)

defines the penalty functional. In (3.2), we use the notation β̂n,λ(·, ν) to reflect

the dependence of the estimator on the parameters λ and ν. We emphasize

that β̂n,λ(·, ν) is the estimator based on the first ⌊nν⌋ observations (X1, Y1), . . . ,

(X⌊nν⌋, Y⌊nν⌋), and that the parameter ν ∈ [ν0, 1] stands for the proportion of the
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sample {(Xi, Yi)}ni=1 used to obtain β̂n,λ(·, ν). The case ν = 1 corresponds to

using the full sample {(Xi, Yi)}ni=1 to estimate the slope function β0, and we use

the statistic

T̂n =

∫ 1

0

|β̂n,λ(s, 1)|2 ds (3.4)

as an estimate for its squared L2-norm. It can be shown that T̂n defines a

consistent estimator of d0 =
∫ 1

0
|β0(s)|2ds, such that the null hypothesis in (1.3)

should be rejected if T̂n is large. In fact, it follows from Theorem 3 that, under

suitable conditions,

√
nλ(2a+1)/(2D)(T̂n − d0)

d−→ N(0, 4σ2
d), (3.5)

where

σ2
d = lim

λ↓0

∫ 1

0

∫ 1

0

CU,λ(s, t)β0(s)β0(t) ds dt, (3.6)

CU,λ(s, t) = λ(2a+1)/D
+∞∑

ℓ=−∞

cov
{
ε0 τλ(X0)(s), εℓ τλ(Xℓ)(t)

}
, (3.7)

τλ is an operator defined by

τλ(z) =
∞∑
k=1

⟨z, φk⟩L2

1 + λρk
φk , (3.8)

{(ρk, φk)}k≥1 is the eigensystem of certain integro-differential equations defined

by the covariance operator of the predictor X, and the constants a and D in (3.5)

depend on the maximum norm of the eigenfunctions φk and on the eigenvalues

ρk (see Assumption 2 and the subsequent discussion).

As a result, in practice, the normalizing factor
√
nλ(2a+1)/(2D), the long-run

covariance CU,λ in (3.7), and the asymptotic variance σ2
d in (3.6) are often either

intractable or difficult to estimate. This is because σ2
d is defined as the limit of a

series, which in turn relies on the operator τλ in (3.8), and therefore depends on

the eigensystem {(ρk, φk)}k≥1 of the integro-differential equations. Moreover, the

normalizing factor in (3.5) and the operator CU,λ defined in (3.7) depend on the

unknown nuisance parameters a andD, making estimation even more challenging.

These difficulties motivate us to propose a self-normalization approach so that

pivotal tests can be constructed for the relevant hypotheses (1.3), even without

knowledge of σ2
d in (3.6) and the nuisance parameters a and D. The approach is

described in detail in Section 4, but a heuristic argument ignoring the technical

details follows. For a fixed value ν0 ∈ (0, 1] and a given probability measure ω on

the interval [ν0, 1], we define the statistic
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V̂n =

[ ∫ 1

ν0

∣∣∣ν2

∫ 1

0

{
β̂ 2
n,λ(s, ν)− β̂ 2

n,λ(s, 1)
}
ds
∣∣∣2 ω(dν)]1/2, (3.9)

where β̂n,λ is the estimator of the slope function β0 from the sample (X1, Y1), . . . ,

(X⌊nν⌋, Y⌊nν⌋) defined in (3.2). From Theorem 3, we have

√
nλ(2a+1)/(2D)

(
T̂n − d0, V̂n

)
d−→
(
2σd B(1), 2σd

{∫ 1

ν0

|ν B(ν)− ν2B(1)|2 ω(dν)
}1/2)

,

where B denotes the standard Brownian motion. In particular, the ratio

(T̂n − d0)/V̂n is asymptotically free. Therefore, we can obtain a consistent

and asymptotic level α-test for the hypotheses (1.3) by comparing the statistic

(T̂n −∆)/V̂n with the (1 − α)-quantile of the limiting distribution. The details

are provided in the following section.

4. Self-Normalization and Pivotal Inference

We first establish a uniform Bahadur representation of the sequential process

of estimators of the slope function {β̂n,λ(·, ν)}ν∈[ν0,1], which is crucial for our

approach. For this purpose, we define

Ln,λ,ν(β) =
1

2⌊nν⌋

⌊nν⌋∑
i=1

{
Yi −

∫ 1

0

Xi(s)β(s) ds
}2

+
λ

2
J(β, β)

as the objective functional in (3.2), and note that its Fréchet derivatives are given

by

DLn,λ,ν(β)β1 = − 1

⌊nν⌋

⌊nν⌋∑
i=1

{
Yi −

∫ 1

0

Xi(s1)β(s1)ds1
}

∫ 1

0

Xi(s2)β1(s2)ds2 + λJ(β, β1) ;

D2Ln,λ,ν(β)β1β2 =
1

⌊nν⌋

⌊nν⌋∑
i=1

∫ 1

0

Xi(s1)β1(s)ds1

∫ 1

0

Xi(s2)β2(s2)ds2 + λJ(β1, β2),

(4.1)

and D3Ln,λ,ν(β) ≡ 0. If CX(s, t) = cov{X1(s), X1(t)} denotes the covariance ker-

nel of the predictor, then a simple calculation shows that E{D2Ln,λ,ν(β)β1β2} =

⟨β1, β2⟩K , where the mapping ⟨·, ·⟩K : H×H → R is defined by

⟨β1, β2⟩K = V (β1, β2) + λJ(β1, β2), β1, β2 ∈ H, (4.2)
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J is the functional in (3.3), and

V (β1, β2) =

∫ 1

0

∫ 1

0

CX(s, t)β1(s)β2(t) ds dt. (4.3)

For our theoretical analysis, we first make the following mild assumption on the

kernel CX .

Assumption 1. The covariance kernel CX is continuous on [0, 1]2. For any γ ∈
L2([0, 1]),

∫ 1

0
CX(s, t)γ(s)ds = 0 for any t ∈ [0, 1] implies that γ ≡ 0.

Assumption 1 is a common condition in the literature (e.g., see Yuan and Cai

(2010); Shang and Cheng (2015)), and implies that the mapping ⟨·, ·⟩K in (4.2)

defines an inner product on H with corresponding norm ∥ · ∥K . In addition, H is

an RKHS equipped with the inner product ⟨·, ·⟩K . We follow Shang and Cheng

(2015) and assume that there exists a sequence of functions in H that diagonalize

the operators V in (4.3) and J in (3.3) simultaneously.

Assumption 2 (Simultaneous diagonalization). There exists a sequence

of functions {φk}k≥1 in H, such that ∥φk∥∞ ≤ c ka, V (φk, φk′) = δkk′ , and

J(φk, φk′) = ρk δkk′ , for any k, k′ ≥ 1, where a ≥ 0, c > 0 are constants, δkk′ is the

Kronecker delta, and the sequence {ρk}k≥1 satisfies ρk ≍ k2D, for some constant

D > a+1/2. Furthermore, any β ∈ H admits the expansion β =
∑∞

k=1 V (β, φk)φk

with convergence in H w.r.t. the norm ∥ · ∥K .

In their Proposition 2.2, Shang and Cheng (2015) prove that Assumption 2

is satisfied for the eigensystem {(ρk, φk)}k≥1 of the following integro-differential

equations with boundary conditions:{
ρ
∫ 1

0
CX(s, t)x(t) dt = (−1)m x(2m)(s),

x(θ)(0) = x(θ)(1) = 0, for m ≤ θ ≤ 2m− 1.
(4.4)

For the inner product ⟨·, ·⟩K in (4.2), it follows from Assumption 2 that

⟨φk, φk′⟩K = V (φk, φk′) + λJ(φk, φk′) = (1 + λρk) δkk′ , for k, k′ ≥ 1, such that

⟨β, φk⟩K = (1 + λρk)V (β, φk), for any β ∈ H, which implies the representation

β =
∞∑
k=1

⟨β, φk⟩K
1 + λρk

φk. (4.5)

Recalling the definition of the penalty J in (3.3), we denote by Wλ : H → H the

operator such that ⟨Wλ(β1), β2⟩K = λJ(β1, β2), for β1, β2 ∈ H. By definition,

we have, for the eigenfunctions {φk}k≥1 in Assumption 2, ⟨Wλ(φk), φk′⟩K =

λJ(φk, φk′) = λρk δkk′ , for any k, k′ ≥ 1. Thus, from (4.5), we have
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Wλ(φk) =
∞∑

k′=1

⟨Wλ(φk), φk′⟩K
1 + λρk′

φk′ =
λ ρk φk

1 + λρk
. (4.6)

In addition, note that Gz(β) =
∫ 1

0
β(s)z(s)ds is a bounded linear functional on

H, for any z ∈ L2([0, 1]) and β ∈ H. By the Riesz representation theorem, there

exists a unique element τλ(z) ∈ H such that ⟨τλ(z), β⟩K = Gz(β). In particular,

⟨τλ(z), φk⟩K = ⟨z, φk⟩L2 , such that we obtain the representation (3.8) for the

operator τλ. Now, for any β, β1, β2 ∈ H, define

Sn,λ,ν(β) = − 1

⌊nν⌋

⌊nν⌋∑
i=1

τλ(Xi)

{
Yi −

∫ 1

0

Xi(s)β(s)ds

}
+Wλ(β)

= − 1

⌊nν⌋

⌊nν⌋∑
i=1

εiτλ(Xi) +Wλ(β0),

DSn,λ,ν(β)β1 =
1

⌊nν⌋

⌊nν⌋∑
i=1

τλ(Xi)

∫ 1

0

Xi(s)β1(s)ds+Wλ(β1), (4.7)

such that DLn,λ,ν(β)β1 = ⟨Sn,λ,ν(β), β1⟩K and D2Ln,λ,ν(β)β1β2 = ⟨DSn,λ,ν(β)β1,

β2⟩K . Here, the term Sn,λ,ν is the dominating term in the expansion of β̂n,λ(·, ν)−
β0, that is,

β̂n,λ(·, ν)− β0 ≈ −Sn,λ,ν(β0) =
1

⌊nν⌋

⌊nν⌋∑
i=1

εi τλ(Xi)−Wλ(β0). (4.8)

A rigorous statement of this approximation is given in Theorem 1, and requires

several assumptions, which are stated next. We begin by characterizing the

dependence structures of the functional time series, where we use the concept

of m-approximability (e.g., Hörmann and Kokoszka (2010); Berkes, Horváth and

Rice (2013)).

Assumption 3. For i ∈ Z, (Xi, Yi) is generated from model (1.1) and satisfies

the following:

3.1. Xi = g(. . . , ξi−1, ξi) and εi = h(. . . , ηi−1, ηi), for i ∈ Z and some

deterministic measurable functions g : S∞ → L2([0, 1]) and h : R∞ → R,
where S is some measurable space and ξi = ξi(t, ω) is jointly measurable in

(t, ω); ξi and ηi are independent and identically distributed (i.i.d.).

3.2. For any s ∈ [0, 1], E{X0(s)} = E(ε0) = 0. For some δ ∈ (0, 1), E|ε0|2+δ < ∞.

3.3. The sequences {Xi}i∈Z and {εi}i∈Z can be approximated by ℓ-dependent

sequences {Xi,ℓ}i,ℓ∈Z and {εi,ℓ}i,ℓ∈Z, respectively, in the sense that, for some

κ > 2 + δ,
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∞∑
ℓ=1

(
E∥Xi −Xi,ℓ∥2+δ

L2

)1/κ
< ∞,

∞∑
ℓ=1

(
E|εi − εi,ℓ|2+δ

)1/κ
< ∞.

Here, Xi,ℓ = g(ξi, ξi−1, . . . , ξi−ℓ+1, ξ
∗
i,ℓ) and εi,ℓ = h(ηi, ηi−1, . . . , ηi−ℓ+1,η

∗
i,ℓ),

where ξ∗
i,ℓ = (ξ∗i,ℓ,i−ℓ, ξ

∗
i,ℓ,i−ℓ−1, . . .) and η∗

i,ℓ = (η∗
i,ℓ,i−ℓ, η

∗
i,ℓ,i−ℓ−1, . . .), and

where ξ∗i,ℓ,k and η∗
i,ℓ,k are independent copies of ξ0 and η0, respectively, and

are independent of {ξi}i∈Z and {ηi}i∈Z, respectively.

Assumption 4 (Regularity conditions).

4.1. There exists a constant ϖ > 0 such that E{exp(ϖ∥X0∥2L2)} < ∞.

4.2. For any β ∈ H, E
(
⟨X0, β⟩4L2

)
≤ c0

{
E
(
⟨X0, β⟩2L2

)}2
, for some constant c0 > 0.

4.3. The true slope function β0 is such that
∑∞

k=1 ρ
2
k V

2(β0, φk) < ∞.

4.4. For s, t ∈ [0, 1] and CU,λ in (3.7), the limit CU(s, t) = limλ↓0 CU,λ(s, t) exists.

Assumption 5. The constants a and D in Assumption 2 and the regularization

parameter λ in (3.2) satisfy λ = o(1), n−1λ−(2a+1)/D = o(1), and nλ2+(2a+1)/(2D)

= o(1) as n → ∞. In addition, n−1λ−2ς log n = o(1) and λ−2ς+(2D+2a+1)/(2D)

log n = o(1) as n → ∞, where ς = (2D − 2a− 1)/(4Dm) + (a+ 1)/(2D) > 0.

Remark 1. Assumption 4 requires an exponential tail of ∥X0∥L2 . This condition

is satisfied for any stochastic process with an almost surely bounded L2-norm,

and can also be satisfied for Gaussian processes with a square-integrable mean

function if we take ϖ ∈ (0, 1/4); this is proved in Proposition 3.2 in Shang and

Cheng (2015). Assumption 4 is a common condition in linear regression models

for functional data; see, for example, Cai and Yuan (2012) and Shang and Cheng

(2015). Assumption 4 corresponds to the so-called undersmoothing scenario in

Shang and Cheng (2015); see their Remark 3.2. Finally, Assumption 5 specifies

the conditions for the regularization parameter λ in (3.2).

Our first main result justifies the approximation (4.8), and is proved in

Section S1.1 of the Supplementary Material.

Theorem 1 (Uniform Bahadur representation). Suppose Assumptions 1–5

are satisfied. Then, for any fixed (but arbitrary) ν0 ∈ (0, 1],

sup
ν∈[ν0,1]

∥∥∥ν{β̂n,λ(·, ν)− β0 +Wλ(β0)
}
− 1

n

⌊nν⌋∑
i=1

εi τλ(Xi)
∥∥∥
K
= Op(vn), (4.9)

where for the constant ς > 0 in Assumption 5, vn = n−1/2λ−ς(λ1/2 + n−1/2

λ−(2a+1)/(4D))(log n)1/2.
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Next, we define for i ∈ Z and τλ(·) in (3.8), the random variables

Ui = λ(2a+1)/(2D) εi τλ(Xi) = λ(2a+1)/(2D)εi

∞∑
k=1

⟨Xi, φk⟩L2

1 + λρk
φk. (4.10)

Theorem 1 shows that, under suitable conditions, the approximation

ν
{
β̂n,λ(·, ν)− β0 +Wλ(β0)

}
≈ n−1λ−(2a+1)/(2D)

⌊nν⌋∑
i=1

Ui

holds uniformly in ν ∈ [ν0, 1] with respect to the ∥ · ∥K-norm, where ν0 ∈ (0, 1] is

an arbitrary, but fixed value. We now verify the weak invariance principle of the

process {n−1/2
∑⌊nν⌋

i=1 Ui}n∈N, and define for this purpose the class

F =

{
g : [0, 1]× [0, 1] → R

∣∣∣ sup
ν∈[0,1]

∫ 1

0

|g(s, ν)|2 ds < ∞
}
. (4.11)

The following theorem is proved in Section S1.2 of the online Supplementary

Material.

Theorem 2 (Weak invariance principle). Suppose Assumptions 1–5 hold.

Then, there exists a mean-zero Gaussian process {Γ(s, ν)}s,ν∈[0,1] in F defined in

(4.11), with covariance function cov
{
Γ(s1, ν1),Γ(s2, ν2)

}
= min{ν1, ν2}CU(s1, s2),

for CU in Assumption 4.4, such that

sup
ν∈[0,1]

∫ 1

0

{ 1√
n

⌊nν⌋∑
i=1

Ui(s)− Γ(s, ν)
}2

ds = op(1), as n → ∞.

Theorem 2 shows that the partial sum n−1/2
∑⌊nν⌋

i=1 Ui can be approximated

by a Gaussian process Γ in the L2-sense, uniformly in ν ∈ [0, 1]. Thus, we obtain

from Theorem 1, we obtain the approximation

sup
ν∈[ν0,1]

∫ 1

0

[√
nλ(2a+1)/(2D)ν

{
β̂n,λ(s, ν)− β0(s) +Wλ(β0)

}
− Γ(s, ν)

]2
ds = op(1).

Next, in order to propose our self-normalization methodology, we define a useful

quantity related to the difference between the L2-norms of the estimator β̂n,λ(·, ν)
defined in (3.2) and the true slope function β0, that is,

Ĝn(ν) =
√
nλ(2a+1)/(2D) ν2

∫ 1

0

{
β̂ 2
n,λ(s, ν)− β2

0(s)
}
ds , (4.12)

where ν ∈ [ν0, 1]. The following theorem establishes the weak convergence of the

process {Ĝn(ν)}ν∈[ν0,1], and is proved in Section S1.3 of the online Supplementary

Material.
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Theorem 3. If Assumptions 1–5 hold, then the process Ĝn defined in (4.12)

satisfies {
Ĝn(ν)

}
ν∈[ν0,1]

⇝
{
2σd νB(ν)

}
ν∈[ν0,1]

in ℓ∞([ν0, 1]),

where B denotes the standard Brownian motion and σd is defined in (3.6).

Recalling the definition of the statistics T̂n and V̂n in (3.4) and (3.9),

respectively, we obtain from the continuous mapping theorem and Theorem 3

that

√
nλ(2a+1)/(2D)

(
T̂n − d0, V̂n

)
=

(
Ĝn(1),

{∫ 1

ν0

∣∣Ĝn(ν)− ν2Ĝn(1)
∣∣2 ω(dν)}1/2)

d−→
(
2σd B(1), 2σd

{∫ 1

ν0

|ν B(ν)− ν2B(1)|2 ω(dν)
}1/2)

. (4.13)

In particular, the ratio (T̂n−d0)/V̂n is asymptotically free, as stated in following

theorem, which is proved in Section S1.4 of the Supplementary Material.

Theorem 4. Suppose Assumptions 1–5 are satisfied and assume that σ2
d > 0.

For the T̂n, d0, and V̂n defined in (3.4), (1.3), and (3.9), respectively, we have

T̂n − d0

V̂n

d−→ W =
B(1)

{
∫ 1

ν0
|ν B(ν)− ν2 B(1)|2 ω(dν)}1/2

. (4.14)

Theorem 4 reveals a self-normalized statistic (T̂n − d0)/V̂n that converges

weakly to a pivotal random variable W, because its distribution does not depend

on the nuisance parameters (i.e., a and D in Assumption 2, and σ2
d in (3.6)) or

the eigensystem {(ρk, φk)}k≥1. Moreover, the distribution of W in (4.14) can be

simulated easily from computer-generated sample paths of standard Brownian

motions. Therefore, we propose rejecting the null hypothesis in (1.3) at the

nominal level α if

T̂n > Q1−α(W)V̂n +∆, (4.15)

where Q1−α(W) denotes the (1 − α)-quantile of the distribution of W in (4.14).

Our final result, proved in Section S1.5 of the Supplementary Material, provides

a theoretical justification for the consistency of the test defined in (4.15) at the

nominal level α.

Theorem 5. Assume ∆ > 0. Under Assumptions 1–5, we have

lim
n→∞

P
{
T̂n > Q1−α(W)V̂n +∆

}
=


0 if d0 < ∆

α if d0 = ∆ and σ2
d > 0

1 if d0 > ∆

.
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Remark 2 (Further statistical consequences).

(1) The choice of the threshold ∆ in the relevant hypotheses in (1.3) should be

discussed with experts from the field of application. We noted in Section 2

that this is not an easy problem. However, we argue that instead of testing

a null hypothesis, which we believe not to be true, one should think carefully

about the effect, which is of real scientific interest.

If this is not possible, we recommend constructing a confidence interval for

the (squared) L2-norm of the slope function. Specifically, for the statistics

T̂n and V̂n defined in (3.4) and (3.9), respectively, the set

În :=
[
0, T̂n +Q1−α(W)V̂n

]
(4.16)

defines an asymptotic (1 − α)-confidence interval for the squared L2-norm

d0 =
∫ 1

0
|β0(s)|2ds of the unknown slope function. To see this, note that it

follows in the case d0 > 0 from Theorem 4 that

Pd0>0

(
d0 ∈ În

)
= Pd0>0

{
T̂n − d0

V̂n

≥ −Q1−α(W)

}
→ 1− α (4.17)

as n → ∞, where we use the fact that the distribution of the random

variable W in (4.14) is symmetric, that is −Q1−α(W) = Qα(W). In the case

d0 = 0, because T̂n, V̂n ≥ 0 almost surely, it follows that Pd0=0

(
d0 ∈ În

)
=

Pd0=0

{
T̂n +Q1−α(W)V̂n ≥ 0

}
= 1. Moreover, if it is reasonable to assume

that the quantity d0 =
∫ 1

0
|β0(s)|2ds is positive, an asymptotic two-sided

confidence interval for d0 > 0 is given by(
max

{
0, T̂n −Q1−α/2(W)V̂n}, T̂n +Q1−α/2(W)V̂n

]
, (4.18)

which follows by Theorem 4, observing that, by (4.13), T̂n = d0 + op(1) and

V̂n = op(1) as n → ∞, and V̂n ≥ 0 almost surely.

Alternatively, it is also possible to test the relevant hypotheses for a finite

number of thresholds ∆(1) < · · · < ∆(L) simultaneously, for some L ∈ N+. In

particular, a rejection of a ∆(L0) means rejecting for all smaller thresholds.

In this sense, evaluating the test for several thresholds is logically consistent

for the user, and it is possible to determine, for a fixed nominal level α, the

largest threshold such that the null hypothesis is rejected.

(2) Theorem 4 also allows us to construct a consistent and asymptotic level-α

test for the relevant hypotheses (1.4), defined by, rejecting H0 if

T̂n < Qα(W)V̂n +∆,

where T̂n and V̂n are given in (3.4) and (3.9), respectively, and Qα(W)
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denotes the α-quantile of the pivotal distribution of W in (4.14). The proof

is omitted, for brevity.

Remark 3. For the classical hypotheses in (1.2), that is, H0 : d0 =∫ 1

0
|β0(s)|2ds = 0, a likelihood ratio-type test was proposed by Shang and Cheng

(2015). Because the statistic T̂n in (3.4) defines an estimator of the squared

L2-norm of the function β0, an alternative test could be obtained by rejecting H0

in (1.2) for large values of the statistic T̂n. However, it follows from the proof of

Theorem 4 that for d0 = 0,

T̂n

V̂n

d−→
∫ 1

0
Γ2(s, 1)ds[ ∫ 1

ν0

∣∣ ∫ 1

0
Γ2(s, ν)ds− ν2

∫ 1

0
Γ2(s, 1)ds

∣∣2 ω(dν)]1/2 ,
where Γ is a mean-zero Gaussian process with covariance function cov{Γ(s1, ν1),
Γ(s2, ν2)} = min{ν1, ν2}CU(s1, s2) and CU is defined in Assumption 4.4. This

limit distribution differs from that of W in (4.14), and is not pivotal, because it

depends on the long-run covariance CU . As a result, the decision rule defined in

(4.15) does not define an asymptotic level-α test for the classical null hypotheses

in (1.2).

5. Finite-Sample Properties

5.1. Implementation

In this section, we discuss the details of the implementation of the proposed

tests for the relevant hypotheses. To begin with, in practice, we choose the

probability measure ω in (3.9) and (4.14) as the discrete uniform distribution on

the interval [ν0, 1]. Specifically, for some positive integer Q, let

νq = ν0 +
q(1− ν0)

Q
, for 1 ≤ q ≤ Q. (5.1)

Then, we define ω as the discrete uniform distribution supported on the set

{νq}Qq=1, with equal probability mass 1/Q, such that the pivotal random variable

W in (4.14) is given by

WQ =
B(1){

Q−1(1− ν0)
∑Q

q=1

∣∣νq B(νq)− ν2
q B(1)

∣∣2}1/2 , (5.2)

and the quantiles of the pivotal distribution of WQ can be obtained easily

from simulated sample paths of standard Brownian motions. Recall from

Section 4 that in order to obtain the statistics T̂n and V̂n, we need to

compute the RKHS estimator β̂n,λ(·, νq) defined in (3.2) using the observations

(X1, Y1), . . . , (Xnq
, Ynq

), where nq = ⌊νqn⌋ (q = 1, . . . , Q). Because β̂n,λ(·, νq)
is defined as the solution of a penalized minimization problem on an infinite-
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dimensional function space H defined in (3.1), exact solutions are inaccessible.

We circumvent this difficulty by introducing the following finite-sample method,

and propose a method for choosing the regularization parameter λ in (3.2). We

first observe from Assumption 2 that J(φkℓ, φk′ℓ′) = ρkℓδkk′δℓℓ′ , such that for

β =
∑∞

k=1 bkφk ∈ H and bk ∈ R, we have J(β, β) =
∑∞

k=1 b
2
kρk. Consider the

Sobolev space on [0, 1] of order m = 2. In this case, the penalty functional in

(3.2) is J(β, β) =
∫ 1

0
{β′′(s)}2ds. In order to find the empirical eigenfunctions φk

and eigenvalues ρk, we solve the integro-differential equation (4.4)

ρ

∫ 1

0

ĈX(s, t)x(t) dt = x(4)(s), with x(3)(0) = x(3)(1) = x(4)(0) = x(4)(1) = 0,

(5.3)

where ĈX denotes the empirical covariance function of X computed from the

full sample X1, . . . , Xn. Let {φ̂k}k≥1 denote the eigenfunctions of (5.3), with

the corresponding eigenvalues {ρ̂k}k≥1, which can be obtained using Chebfun, an

efficient open-source Matlab add-on package available at https://www.chebfun.

org/. This allows us to approximate the Sobolev space H defined in (3.1) using

the r-dimensional subspace H̃ =
{∑r

k=1 bkφ̂k : bk ∈ R
}
. Here, r is a truncation

parameter that depends on the sample size n, which, in practice, can be chosen

using cross-validation on the full sample (X1, Y1), . . . , (Xn, Yn).

For fixed r, and for 1 ≤ q ≤ Q, 1 ≤ i ≤ nq, and 1 ≤ k ≤ r, let ωik =∫ 1

0
Xi(s)φ̂k(s)ds; for each 1 ≤ q ≤ Q, let Ωrq = (ωik)1≤i≤nq,1≤k≤r denote an

nq × r matrix; and let Λ̂r = diag
{
ρ̂1, . . . , ρ̂r

}
denote an r× r diagonal matrix; let

Ỹq = (Y1, . . . , Ynq
)T ∈ Rnq . If we write β̃r(·, νq) =

∑r
k=1 b̃

(q)
k φ̂k ∈ H̃, for b̃

(q)
k ∈ R,

then, in order to approximate β̂n,λ(·, νq) in (3.2), for each 1 ≤ q ≤ Q, we can

compute the coefficients b̃
(q)
1 , . . . , b̃(q)r by solving

(b̃
(q)
1 , . . . , b̃(q)r )

= argmin
b
(q)
1 ,...,b

(q)
r

{
1

2nq

nq∑
i=1

∣∣∣Yi −
r∑

k=1

b
(q)
k

∫ 1

0

Xi(s) φ̂k(s) ds
∣∣∣2 + λ

2

r∑
k=1

b
(q)2

k ρ̂k

}

= argmin
B

(q)
r

{
1

2nq

(
Ỹq − Ωrq B

(q)
r

)T(
Ỹq − Ωrq B

(q)
r

)
+

λ

2
B(q)T

r Λ̂r B
(q)
r

}
, (5.4)

where we write B(q)
r = (b

(q)
1 , . . . , b(q)r )T ∈ Rr. A direct calculation shows that the

solution to (5.4) is given by B̂(q)
r =

(
ΩT

rq Ωrq + nqλΛ̂r

)−1
ΩT

rq Ỹq. Therefore, we

can approximate the estimator β̂n,λ(·, νq) in (3.2) using β̃r(·, νq) = B̂(q)T

r φ̂, where

φ̂ = (φ̂1, . . . , φ̂r)
T denotes an r-dimensional vector of functions. Let Φ̂r denote an

r × r matrix with entries Φ̂kℓ =
∫ 1

0
φ̂k(t)φ̂ℓ(t)dt, for 1 ≤ k, ℓ ≤ r. Then, T̂n and

V̂n in (3.4) and (3.9) can be approximated using T̃n = B̂(Q)T

r Φ̂rB̂
(Q)
r and Ṽn ={

Q−1(1− ν0)
∑Q

q=1 ν
4
q

(
B̂(q)T

r Φ̂rB̂
(q)
r − B̂(Q)T

r Φ̂rB̂
(Q)
r

)2}1/2
, respectively. Finally, the

decision rule in the test (4.15) is defined by rejecting the null hypothesis in (1.3)

https://www.chebfun.org/
https://www.chebfun.org/
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at the nominal level α if

T̃n > Q1−α(WQ)Ṽn +∆, (5.5)

where Q1−α(WQ) denotes the (1 − α)-quantile of the pivotal distribution of WQ

in (5.2).

In order to choose the regularization parameter λ in (5.4) (for fixed r), we

propose using a modified version of generalized cross-validation (GCV; e.g., see

Wahba (1990)). Specifically, we choose λ as the value that minimizes the modified

GCV score

GCV(λ) =
Q∑

q=1

∥Ŷq(λ)− Ỹq∥22
nq|1− tr{Hrq(λ)}/nq|2

, (5.6)

where Ŷq(λ) = Ωrq(Ω
T
rq Ωrq + nqλΛ̂r)

−1ΩT
rq Ỹq, and Hrq(λ) is the so-called hat

matrix, with tr{Hrq(λ)} = tr{Ωrq(Ω
T
rqΩrq + nqλΛ̂r)

−1ΩT
rq}.

5.2. Simulated data

In this section, we apply the pivotal test (5.5) to various settings of simulated

data. In order to evaluate the function X on its domain [0, 1], we take 100 equally

spaced time points, and for all the settings, we take the nominal level α = 0.05.

For the true slope function β0 in functional linear regression (1.1), we consider

the following two settings:

(S1) Let f1 ≡ 1, fj+1(s) =
√
2 cos(jπs), for j ≥ 1, and define β0 =

√
δβ̃0/∥β̃0∥L2 ,

where β̃0(s) = f1(s) + 4
∑50

j=2(−1)j+1j−2fj(s), for s ∈ [0, 1].

(S2) β0(s) =
√
δβ̃0(s)/∥β̃0∥L2 , where β̃0(s) = exp(−s/4), for s ∈ [0, 1].

The first setting (S1) is similar to those used in Yuan and Cai (2010). For both

settings (S1) and (S2), the slope function is standardized such that d0 = ∥β0∥2L2 =

δ > 0, where we take various values of δ and ∆ in the relevant hypotheses (1.3).

For the predictor process {Xi}i∈Z, we use a similar setting to that in Dette, Kokot

and Volgushev (2020) by generating i.i.d. random variables ηi =
∑50

j=1 j
−1Zijfj,

where Zij
i.i.d.∼ Normal(0, 1), and consider the following two settings:

(i) the functional moving average process FMA(1), defined by Xi = ηi+θiηi−1,

for 1 ≤ i ≤ n, where θi
i.i.d.∼ uniform(−1/

√
2, 1/

√
2).

(ii) The i.i.d. case Xi =
√
7/6 ηi, such that (i) and (ii) have the same point-wise

variance.

For the errors εi in (1.1), we generate i.i.d. standard normal random variables ξi,

and take εi = cε(ξi + υi,1ξi−1 + υi,2ξi−2), where υi,j
i.i.d.∼ uniform(−1/

√
2, 1/

√
2),

for i ∈ Z and j = 1, 2, and the constant cε > 0 is chosen such that var(εi)/

var{
∫ 1

0
β0(s)X(s)ds} = 0.3.

We compare the numerical performance of our proposed pivotal test (5.5)

(denoted as DT in the following discussion) with that of the method in
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Table 1. Left part: decisions of the test (5.5) for the relevant hypotheses (1.3) with
different values of ∆ and nominal levels using bike-sharing data. “R” stands for rejecting
the null hypothesis, and “-” stands for no rejection. Right part: One-sided and two-sided

confidence intervals of d0 =
∫ 1

0
|β0(s)|2ds.

∆ 0.41 0.42 1.10 1.11 1.35 1.36 One-sided CI Two-sided CI

α = 0.01 R - - - - - (0, 4.51] [0.21, 4.79]

α = 0.05 R R R - - - (0, 3.82] [0.89, 4.11]

α = 0.10 R R R R R - (0, 3.57] [1.19, 3.82]

Kutta, Dierickx and Dette (2022) (denoted as KDD), for the relevant hypotheses

(1.3). Figures 1 and 2 display the empirical rejection probabilities of both tests

calculated from 500 simulation runs, where we vary the values of d0 = δ in (S1)

and (S2), together with different values of the threshold ∆; we took ν0 = 1/2

and chose ω as the discrete uniform distribution on {νq}Qq=1, with Q = 25,

where νq is defined in (5.1); for the sample sizes, we took n = 50 and 200

observations; we chose r using cross-validation based on the whole sample, and

chose λ using GCV in (5.6). The results confirm our theoretical findings in

Theorem 5, and are summarized as follows. (1) Both DT and KDD provide a

reasonable approximation of the nominal level α when ∆ = d0 = δ. (2) For

both DT and KDD, the rejection probabilities are close to zero when d0 < ∆

(interior of the null hypothesis). (3) For both DT and KDD, when d0 > ∆

(interior of the alternative), the empirical rejection probabilities increase with ∆,

and in most cases, larger sample sizes (n = 200) attain higher empirical rejection

probabilities. (4) In most cases, DT outperforms KDD in terms of empirical

power (when d0 > ∆).

5.3. Data example: bike-sharing

Bike-sharing can potentially alleviate the environmental impact of transport

activities, and thus individuals and bike-sharing companies are investigating the

effect of environmental factors on bike sharing. In this example, we use our

proposed pivotal inference tools to investigate the impact of wind speed on bike

rental activities on workdays. We use the bike-sharing data of Captial Bike

Sharing (CBS) at Washington, D.C., the United States, for 2011 (Fanaee-T

and Gama (2014)), together with hourly measurements of local wind speed,

obtained from the R package ISLR2 (James et al. (2021)). This data set was

analyzed in Kim et al. (2018) in the functional response context, where the

response curves consist of hourly counts of bike rentals. In our case, Yi are

scalar variables taking values in [0, 1], evaluating the daily frequencies of bike

rental, obtained from a linear transformation of the daily count of bike rentals.

For each day i, the predictor curves Xi represent the hourly measurements of

wind speed. It is known that environmental conditions such as wind speed
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DT(n=50)

DT(n=200)

KDD(n=50)

KDD(n=200)

DT(n=50)

DT(n=200)

KDD(n=50)

KDD(n=200)

DT(n=50)

DT(n=200)

KDD(n=50)

KDD(n=200)

DT(n=50)

DT(n=200)

KDD(n=50)

KDD(n=200)

DT(n=50)

DT(n=200)

KDD(n=50)

KDD(n=200)

DT(n=50)

DT(n=200)

KDD(n=50)

KDD(n=200)

Figure 1. Empirical rejection probabilities of DT and KDD for the relevant hypotheses
(1.3) under Setting (S1) with error setting (i) in column 1 and (ii) in column 2, with
various δ (x-axis). The horizontal and vertical dashed lines are α = 0.05 and ∆ =
0.7, 1, 1.3, respectively (first, second, and third row, respectively).

are of temporal dependence, making our pivotal inference approach, which does

not depend on long-run variance estimates, attractive. We extracted the data

for the 250 workdays in 2011, and removed missing data to obtain n = 247

observations. The hourly measurements of wind speed are normalized using a

linear transformation, such that the data take values in [0, 1]. The curves Xi

are obtained by projecting the hourly observations onto the space spanned by
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Figure 2. Empirical rejection probabilities of DT and KDD for the relevant hypotheses
(1.3) under Setting (S2) with error setting (i) in column 1 and (ii) in column 2 with various
δ (x-axis). The horizontal and vertical dashed lines are α = 0.05 and ∆ = 0.7, 1, 1.3,
respectively (first, second, and third row, respectively).

the first seven Fourier basis functions on [0, 1], and are evaluated on an equally

spaced grid t = 0.01, 0.02, . . . , 1. Figure 3 displays the histogram of Yi, together

with the wind speed curves.

We centered the data, considered the relevant hypotheses (1.3), and took

ν0 = 1/2 and Q = 25 in (5.1). The left part of Table 1 displays the decisions

of our test with different values of the threshold ∆ and nominal levels α = 0.10,
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Figure 3. Left panel: histogram of daily bike rentals (scaled to the interval [0, 1]). Right
panel: corresponding wind speed curves.

0.05, and 0.01. For instance, the largest value of ∆ such that the test (5.5) rejects

the null hypothesis in (1.3) at level α = 0.05 is given by ∆ = 1.01, and this value

is 1.35 at level α = 0.10. If we wish to avoid specifying the threshold ∆ for a

test (see the discussion in Remark 2), we can construct one-sided or two-sided

confidence intervals for d0 =
∫ 1

0
|β0(s)|2ds, which are defined in (4.16) and (4.18),

respectively. The results are displayed in Table 1 for various confidence levels.

Supplementary Material

The online Supplementary Material contains the proofs of our theoretical

results.
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