
Statistica Sinica 28 (2018), 1351-1370
doi:https://doi.org/10.5705/ss.202016.0264

MODEL-FREE FEATURE SCREENING FOR ULTRAHIGH

DIMENSIONAL DATATHROUGH A MODIFIED

BLUM-KIEFER-ROSENBLATT CORRELATION

Yeqing Zhou and Liping Zhu

Shanghai University of Finance and Economics

Renmin University of China

Abstract: In this paper we introduce a modified Blum-Kiefer-Rosenblatt correlation

(MBKR for short) to rank the relative importance of each predictor in ultrahigh-

dimensional regressions. We advocate using the MBKR for two reasons. First, it

is nonnegative and is zero if and only if two random variables are independent,

indicating that the MBKR can detect nonlinear dependence. We illustrate that the

sure independence screening procedure based on the MBKR (MBKR-SIS for short)

is effective in detecting nonlinear effects, including interactions and heterogeneity,

particularly when both continuous and discrete predictors are involved. Second, the

MBKR is conceptually simple, easy to implement, and affine-invariant. It is free of

tuning parameters and no iteration is required in estimation. It remains unchanged

when order-preserving transformations are applied to the response or predictors,

indicating that the MBKR-SIS is robust to the presence of extreme values and

outliers in the observations. We show that, under mild conditions, the MBKR-SIS

procedure has the sure screening and ranking consistency properties, guarantee-

ing that all important predictors can be retained after screening with probability

approaching one. We also propose an iterative screening procedure to detect the

important predictors that are marginally independent of the response variable. We

demonstrate the merits of the MBKR-SIS procedure through simulations and an

application to a dataset.

Key words and phrases: Blum-Kiefer-Rosenblatt correlation, feature screening, in-

dependence test, ranking consistency property, sure screening property.

1. Introduction

Ultrahigh-dimensional data arise in many scientific fields. For instance, in

order to identify gene mutations which probably cause a disease, medical sci-

entists typically collect thousands of gene expression levels or genetic markers

from a relatively small number of subjects, borrowing the strength of microarray

technology. To analyze such datasets effectively, it is often assumed that the
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disease depends upon only a few among thousands of gene expression levels or

genetic markers. Such an assumption, usually referred to as sparsity, illuminates

extensive research on feature selection over the past two decades.

To identify important features in regressions, many penalized least squares

and penalized likelihood algorithms have been proposed, such as bridge regression

(Frank and Friedman (1993)), LASSO (Tibshirani (1996)), SCAD (Fan and Li

(2001)), adaptive Lasso (Zou (2006)), Dantzig selector (Candes and Tao (2007)),

nonnegative garrote (Yuan and Lin (2006)). These algorithms are effective in

mean regressions and parametric models, yet lack computational expediency,

statistical accuracy, and algorithmic stability when the predictors are ultrahigh-

dimensional and the sample size is relatively small (Fan, Samworth and Wu

(2009)).

To analyze ultrahigh-dimensional data, marginal screening procedures are

typically regarded as acceptable preludes to penalized regressions. Marginal screen-

ing breaks an ultrahigh-dimensional regression into many low-dimensional prob-

lems, hence dramatically reducing overall computational complexity.

There are two classes of marginal screening procedures in the literature.

One is concerned with the conditional mean regression, the other is with the

conditional distribution function. Let Y ∈ R1 be the response variable and

x = (X1, . . . , Xp)
T ∈ Rp be the predictor vector. The first class of screening

procedures aims to identify important features indexed by

I = {k : E(Y |x) varies with Xk}. (1.1)

In this area, Fan and Lv (2008) proposed a sure independence screening (SIS

for short) procedure based on the Pearson correlation coefficient, assuming that

E(Y |x) is a linear function of x. Pearson correlation-based screening was later

generalized from many different perspectives. For example, Hall and Miller

(2009) suggested using polynomial transformations of the predictors in SIS. Li

et al. (2012) recommended Kendall’s rank correlation, and Shao and Zhang (2014)

proposed martingale difference correlation in place of Pearson correlation to per-

form marginal screening. Fan and Song (2010) and Fan, Feng and Song (2011)

extended the linear model assumption to the generalized linear model and non-

parametric additive model, respectively. The second class of screening procedures

aims to identify important features indexed by

A = {k : F (y|x) varies with Xk for some y ∈ R1}, (1.2)

where F (y|x) is the conditional distribution function of Y given x. In this area,

Zhu et al. (2011) proposed a sure independent ranking and screening procedure
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(SIRS for short), and Li, Zhong and Zhu (2012) suggested a distance correlation-

based sure independence screening procedure (DC-SIS for short). Mai and Zou

(2013) and Mai and Zou (2015) suggested a nonparametric Kolmogorov filter

when the response variable is binary, as then A = I. Though all the aforemen-

tioned marginal screening procedures assumed the marginal distribution func-

tions of either x or Y , or both, have exponential tails, they all have the desirable

sure screening property, a terminology introduced by Fan and Lv (2008). In

this, all important predictors, possibly together with a few unimportant ones,

are retained after screening, with an overwhelming probability.

In addition to main effects which are of our interests, interactions and het-

erogeneity are common phenomena in ultrahigh-dimensional data. Detecting

interactions through mean regressions indexed by I hinges upon either a utility

that can measure a possibly nonlinear relation between Xk and Y , or a correctly

specified mean model for E(Y |x). In analysis of ultrahigh-dimensional data, we

often lack prior information on the regression structure (Zhu et al. (2011)). Mod-

elling interactions in E(Y |x) will increase the model size from O(p) to O(p2) if

two-way interactions are concerned and to O(p3) if three-way interactions are

concerned, precluding computation even for marginal screening. The Pearson

correlation-based screening procedures, such as Fan and Lv (2008) and Li et al.

(2012), may fail to detect interactions even in linear models. Heterogeneity is an-

other important issue, characterized by var(Y |x). Those mean regression-based

screening procedures cannot detect important features that merely describe the

heterogeneity of the data. We demonstrate these issues through simulations in

Sections 2 and 3.

The overarching goal of regression analysis is to characterize how the condi-

tional distribution function of Y varies with the realizations of x. As a prelude to

subsequent regression analysis, an ideal screening procedure is expected to retain

the important predictors indexed by A rather I. In effect, identifying A rather

I is sufficient to capture both the interactions and heterogeneity, in addition to

main effects. Important covariates involved in interactions and heterogeneity are

generally nonlinear effects. A prerequisite to identify A is to design a utility

that can measure the possibly nonlinear relations between Xk and Y without

requiring information on the underlying regression structure. Our goal in this

paper is to design a utility that can detect the main effects, the interactions and

the heterogeneity simultaneously or, more precisely, the important predictors

indexed by A. Following Blum, Kiefer and Rosenblatt (1961), we introduce a

modified Blum-Kiefer-Rosenblatt correlation (MBKR for short) to rank the rela-
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tive importance of the predictors. The MBKR correlation measures the relation

between Xk and Y through

MBKR(Xk, Y )

=

∫
R1

∫
R1

{FXk,Y (xk, y)− FXk
(xk)FY (y)}2

FXk
(xk){1− FXk

(xk)}FY (y){1− FY (y)}
dFXk

(xk)dFY (y), (1.3)

where FXk
and FY are the respective marginal distribution functions of Xk and

Y , and FXk,Y (xk, y) is the joint distribution of (Xk, Y ). We advocate using the

MBKR for at least two reasons.

First, the MBKR is nonnegative and is zero if and only if two random vari-

ables are independent, indicating that the MBKR can detect nonlinear depen-

dence. We illustrate through simulations that the sure independence screening

procedure based on the MBKR (MBKR-SIS for short) is effective to detect non-

linear effects including interactions and heterogeneity, particularly when both

continuous and discrete predictors are involved.

As well, the MBKR is conceptually simple, easy to implement, and affine

invariant. The MBKR is free of tuning parameters and no iteration is required

in estimation. It remains unchanged when order-preserving transformations are

applied to either the response or the predictors, indicating that the MBKR-SIS

is robust to the presence of extreme values and outliers in the observations.

We study the asymptotic properties of the sample MBKR. We show that

the sample MBKR is n consistent if Xk and Y are independent, and root n

consistent otherwise. If Xk and Y are independent and both are continuous

random variables, the asymptotic distribution of the sample MBKR does not

depend on the marginal distribution of Xk or that of Y . This is appealing in that

the critical value can be easily determined when applying the sample MBKR to

test independence between Xk and Y . We also show that, under mild conditions,

the MBKR-SIS procedure has desirable sure screening and ranking consistency

properties, which guarantee that all important predictors can be retained after

screening with an overwhelming probability.

The rest of this paper is organized as follows. In Section 2, we introduce the

MBKR correlation and consider two applications. One is to test independence

between two random variables and the other is to screen out irrelevant features

for ultrahigh-dimensional data. We investigate the theoretical properties of our

proposals. In Section 3, we evaluate the finite sample performance of our pro-

posals through Monte Carlo simulations and an application to a rat eye dataset

consisting of gene expression levels and genetic markers. We also propose an
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iterative approach to detect the important predictors that are marginally inde-

pendent of the response. We conclude with a brief discussion in Section 4. The

technical details are relegated to the supplement.

2. A Modified Blum-Kiefer-Rosenblatt Correlation

2.1. Two relevant utilities

The MBKR defined in (1.3) originates from the Blum-Kiefer-Rosenblatt cor-

relation (BKR for short) introduced in 1961.

BKR(Xk, Y ) =

∫
R1

∫
R1

{FXk,Y (xk, y)− FXk
(xk)FY (y)}2dFXk

(xk)dFY (y). (2.1)

By definition, FXk,Y (xk, y) − FXk
(xk)FY (y) = cov{I(Xk ≤ xk), I(Y ≤ y)}.

Throughout, the indicator function I(A) is one if the event A is true, and zero

otherwise. The difference between the MBKR and the BKR is that the inte-

grand of the former is corr2{I(Xk ≤ xk), I(Y ≤ y)} while that of the latter is

cov2{I(Xk ≤ xk), I(Y ≤ y)}. Here the notation corr(·, ·) stands for the Pearson

correlation coefficient. If both Y and Xk are continuous, using correlation or

covariance does not make significant difference because FY (Y ) and all FXk
(Xk)s,

k = 1, . . . , p, follow uniform distributions. If some of the predictors are contin-

uous while others are discrete or categorical, then the difference between using

correlation and covariance to rank the relative importance of Xk may not be

negligible. We illustrate this issue by a simple example.

Another relevant measure is the Hoeffding’s index (Hoeffding (1948)).

H(Xk, Y ) =

∫
R1

∫
R1

{FXk,Y (xk, y)− FXk
(xk)FY (y)}2dFXk,Y (xk, y). (2.2)

The Hoeffding’s index is similar to the BKR and the MBKR correlations in the

sense that all are nonnegative, and zero under independence between Xk and Y .

However, the Hoeffding’s index may be zero if there exists an association between

Xk and Y . And so, it does not lead to a consistent test of independence.

We use a toy example to show why we prefer using the MBKR to rank the

relative importance of predictors.

Example 1. Let z = (Z1, Z2, Z3)
T be multivariate normal with mean zero and

covariance matrix Σ = (σkl)3×3, where σkl = 0.9|k−l|, and let ε, independently, be

standard normal. Consider the predictors x = (X1, X2, X3)
T = {Z1, Z2, I(Z3 ≥

0)}T and the response Y = κX1 + X3 + ε, for κ = 1,
√

3, and 3. Here, X1

and X3 are important predictors while X2 is not predictive for Y when X1 and

X3 are given. Thus, A = {1, 3} and Ac = {2}. For sample size n = 100 and



1356 ZHOU AND ZHU

Table 1. The empirical probabilities of pr(min
k∈A

ωk ≥ max
k∈Ac

ωk) based on 1,000 repetitions

for Example 1.

Measure
n=100 n=200

κ = 1 κ =
√

3 κ = 3 κ = 1 κ =
√

3 κ = 3
Hoeffding’s index 0.513 0.380 0.142 0.645 0.349 0.074
BKR correlation 0.513 0.380 0.142 0.645 0.349 0.074

MBKR correlation 0.845 0.984 0.960 0.911 1.000 0.995

200, we applied the MBKR, the BKR, and the Hoeffding’s index to rank the

relative importance of the predictors. The larger a measure between each pre-

dictor and the response, the more important the predictor is, accordingly. To

compare performances, we report the probability of ranking important predic-

tors above the unimportant ones, namely, pr(min
k∈A

ωk ≥ max
k∈Ac

ωk), where ωk can

be MBKR(Xk, Y ), BKR(Xk, Y ) or H(Xk, Y ). This criterion is stringent in

quantifying the capability of a measure to rank the important predictors prior

to those unimportant ones. The closer to one this probability is, the better the

measure.

We repeated each scenario 1,000 times and chart the simulation results in

Table 1.

In Table 1 the MBKR ranks X1 and X3 above X2 with high probabilities

across all scenarios, while the BKR and the Hoeffding’s index yield lesser, even

identical results. For the MBKR method, pr(min
k∈A

ωk ≥ max
k∈Ac

ωk) ≥ 0.845 when

n = 100 and pr(min
k∈A

ωk ≥ max
k∈Ac

ωk) ≥ 0.911 when n = 200, and this performance

is relatively stable for different κ values, which the BKR and the Hoeffding’s

index deteriorate sharply as κ, the coefficient of X1 in this example, increases.

The MBKR has some further appealing properties. For example, MBKR(Xk,

Y ) is always nonnegative and is zero if and only if Xk and Y are independent;

MBKR(Xk, Y ) = MBKR{mk(Xk),m(Y )} for monotone functions mk and m ,

and MBKR(Xk, Y ) = MBKR(Y,Xk), indicating that the MBKR correlation

is affine invariant. We work with the MBKR correlation in what follows, unless

stated otherwise.

2.2. An estimation

Suppose {(xi, Yi), i = 1, . . . , n} is a random sample from the population

(x, Y ). In this section, we propose an estimation for the MBKR correlation. Let

Fn,Xk
, Fn,Y and Fn,Xk,Y be the respective empirical versions of FXk

, FY and
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FXk,Y :

Fn,Xk
(xk) = n−1

n∑
i=1

I(Xi,k ≤ xk), Fn,Y (y) = n−1
n∑
i=1

I(Yi ≤ y) and

Fn,Xk,Y (xk, y) = n−1
n∑
i=1

I(Xi,k ≤ xk, Yi ≤ y).

Define 0/0 = 0. A natural estimator of MBKR(Xk, Y ) is

M̂BKR(Xk, Y )

= n−2
n∑
i=1

n∑
j=1

{Fn,Xk,Y (Xi,k, Yj)− Fn,Xk
(Xi,k)Fn,Y (Yj)}2

Fn,Xk
(Xi,k){1− Fn,Xk

(Xi,k)}Fn,Y (Yj){1− Fn,Y (Yj)}
. (2.3)

A remarkable property of this estimator is that it depends on the ranks of Xk

and Y only, remaining unchanged if order-preserving transformations are applied

to either Xk or Y . This indicates that the MBKR is resilient to the presence of

outliers and extreme values.

Theorem 1. (Convergence in Distribution)

1. If Xk and Y are not independent, then MBKR(Xk, Y ) > 0 and

n1/2
{
M̂BKR(Xk, Y )−MBKR(Xk, Y )

}
d−→ N (0, σ2), as n→∞,

where σ2 is given in the Supplement.

2. If Xk and Y are independent, then MBKR(Xk, Y ) = 0 and

n M̂BKR(Xk, Y )
d−→

∞∑
l=1

∞∑
m=1

λlmχ
2
lm(1), as n→∞,

where the χ2
lm(1) are independent chi-square random variables with one de-

gree of freedom and the λlm’s may depend on the distributions of Xk and Y .

If Xk and Y are continuous random variables, then λlm = 1/{l(l+1)m(m+

1)}.

Thus, if Xk and Y are continuous, the MBKR offers a distribution-free test of

independence. One can reject the independence of Xk and Y if n M̂BKR(Xk, Y )

≥ cα, where cα is the upper α × 100% quantile of its limiting distribution. The

power of the test tends to one as n→∞.

Next we give another example to show that the MBKR is effective in detect-

ing the interactions and the heterogeneity of the data.
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Example 2. Consider simulating:

Y = (5κ)(X1X2) + ε; (2.4)

Y = exp{κ(X1 +X2)}ε. (2.5)

In the interaction model (2.4) and the heterogeneity model (2.5), we drew x =

(X1, X2)
T from a multivariate normal with mean zero and covariance matrix Σ =

(σkl)2×2, where σkl = 0.8|k−l|. We drew ε from a standard Cauchy distribution.

We set κ = 0, 0.2, 0.4, . . . , 1 in both (2.4) and (2.5). We test the independence of

X1 and Y ; independence holds if κ = 0, and fails otherwise.

We compared the performances of six tests of independence. The first four

are based on Pearson correlation, Kendall’s rank correlation, the distance correla-

tion (Székely, Rizzo and Bakirov (2007))and the rank-based distance correlation

(Székely and Rizzo (2009)). The distance correlation and rank-based distance

correlation are also nonnegative with equality to zero if and only if the random

variables are independent. The fifth is based on the utility used in the SIRS pro-

cedure (Zhu et al. (2011)), ωk = E{Ω2
k(Y )}/var(Xk) and Ωk(y) = cov{Xk, I(Y ≤

y)}. The sixth is based on the MBKR correlation ωk = MBKR(Xk, Y ). The

Pearson correlation was used in the SIS procedure (Fan and Lv (2008)); the

Kendall’s rank correlation was suggested by (Li et al. (2012)) for screening out

irrelevant predictors; the distance correlation was used in the DC-SIS procedure

(Li, Zhong and Zhu (2012)). For fair comparison, we include rank-based distance

correlation to test independence between Xk and Y .

We fixed the sample size n = 50 and the significance level α = 0.05. We

repeated the simulations 1,000 times, and report the sizes and the power curves

in Figure 1(A) for model (2.4), and in Figure 1(B) for model (2.5).

From Figure 1, when κ = 0, the sizes of all six tests are close to the signif-

icance level 0.05. The power curves of the distance correlation, the rank-based

distance correlation and the MBKR increase gradually as the κ values increase

in both models. The MBKR is apparently the most powerful to detect inter-

actions and heterogeneity, followed by distance correlation, rank-based distance

correlation in model (2.4) and SIRS, rank-based distance correlation and distance

correlation in model (2.5). In both models, the performances of distance correla-

tion are slightly influenced by the heavily-tailed distribution of the unobservable

error term and the asymptotic distribution of its sample estimate is not tractable.

The Pearson correlation and the Kendall’s rank correlation lose power to detect

interactions and heterogeneity. The example suggests that the MBKR, among

the six aforemetioned correlation measures, is the most powerful utility to detect
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(A): model (2.4) (B): model (2.5)

Figure 1. The empirical power curves based on the Pearson correlation test (dashdot
line marked with diamond), Kendall’s rank correlation test(solid line marked with circle),
the distance covariance test(dashdot line marked with square), the rank-based distance
covariance test(dashed line marked with plus), the marginal utility in SIRS test(dashed
line marked with star) and the MBKR test(solid line marked with up triangle). The
horizontal axis: the κ value varies from 0 to 1 in models (2.4) and (2.5). The vertical
axis: the size and power curves increase from 0 to 1.

interactions and heterogeneity, even when all the predictors are continuous.

2.3. A screening procedure

In this section we present a sure independence screening procedure based

on the MBKR correlation (MBKR-SIS for short) for ultrahigh-dimensional data.

Suppose Y is the response variable and x = (X1, . . . , Xp)
T is the associated pre-

dictor vector with large dimension p, and the available sample size n is small.

With a sample of size n, we aim to screen out as many unimportant predictors, in-

dexed by Ac, as possible. These are predictors, upon which the response variable

Y does not depend when the important predictors A are given. In mathematical

symbols, Y⊥⊥xAc |xA.

Because the conditional distribution of Y given x varies with xA only, one ex-

pects that Y depends on Xk nonlinearly for k ∈ A. In using the MBKR(Xk, Y )

to measure the relation between Xk and Y , one expects MBKR(Xk, Y ), for

k ∈ A, to not be small. We spell out this assumption below.

(A1) The important predictors satisfy

min
k∈A

MBKR(Xk, Y ) ≥ 2dn−γ , for some constants d > 0, 0 ≤ γ < 1

4
.

Similar conditions are widely assumed in the marginal screening literature. See,
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for example, Condition 3 in Fan and Lv (2008) and Condition (C2) in Li, Zhong

and Zhu (2012).

If (A1) holds, we suggest the MBKR-SIS procedure that retains the predic-

tors indexed by

Â = {k : M̂BKR(Xk, Y ) ≥ dn−γ , k = 1, . . . , p}. (2.6)

Theorem 2. (Sure Screening Property) If p satisfies np exp(−d1n1−4γ) → 0

for a positive constant d1, then under (A1), we have

pr
(
A ⊆ Â

)
≥ 1−O

{
n|A| exp(−d1n1−4γ)

}
,

where |A| denotes the cardinality of A.

We can characterize the size of the reduced model after screening.

Theorem 3. (Minimum Model Size) Under the conditions of Theorem 2,

there exists a positive constant d2, such that,

pr

{
|Â| ≤ O(nγ

p∑
k=1

|MBKR(Xk, Y )|)

}
≥ 1−O

{
np exp(−d2n1−4γ)

}
.

We further notice that, the relation of conditional independence, that is

Y⊥⊥xAc |xA, indicates that the conditional distribution of Y give xA is indepen-

dent of xAc . We expect that Y depends more upon xA than upon xAc , that

MBKR(Xk, Y ), for k ∈ A, is larger than MBKR(Xk, Y ), for k ∈ Ac. This is

formulated as follows.

(A2) lim inf
p−→∞

{min
k∈A

MBKR(Xk, Y ) − max
k∈Ac

MBKR(Xk, Y )} ≥ d3, where d3 is a

positive constant.

With (A2), we have the ranking consistency property for the MBKR-SIS proce-

dure.

Theorem 4. (Rank Consistency Property) Suppose (A2) holds in addition

to the conditions of Theorem 2. Then

lim inf
n−→∞

{
min
k∈A

M̂BKR(Xk, Y )−max
k∈Ac

M̂BKR(Xk, Y )

}
> 0 almost surely.

To ensure these sure screening and ranking consistency properties, we do not

impose any moment conditions on either x or Y . We merely use the ranks of the

observations to achieve the consistency.
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3. Numerical Studies

3.1. Some additional simulations

We conducted some Monte Carlo simulations to evaluate the finite sample

performance of our proposed MBKR-SIS method in comparison to such existing

screening methods as the SIS (Fan and Lv (2008)), SIRS (Zhu et al. (2011)),

Kendall’s rank correlation-based sure independent screening procedure (Li et al.

(2012), RRCS for short), distance correlation based on SIS (Li, Zhong and Zhu

(2012), DC-SIS for short) and the sure independent screening procedure using

rank-based distance correlation (Székely and Rizzo (2009), RDC-SIS for short).

Following Li, Zhong and Zhu (2012), we use three criteria to assess their

performances.

1. S: The minimum model size to ensure that all important predictors are re-

tained after screening. We report the 5%, 25%, 50%, 75% and 95% quantiles

of S out of 1,000 replications.

2. Pa: The proportion of including all the important predictors for a given

model size [n/ log n] ≈ 37 out of 1,000 replications.

3. Ps: The proportion of including each single important predictor for a given

model size [n/ log n] ≈ 37 out of 1,000 replications.

Example 3. We took sample size n = 200 and the predictor dimension p =

2, 000 throughout. We generated the predictor vector x = (X1, X2, · · · , Xp)
T

from a multivariate t distribution T (0,Σ, v) with v = 1 and Σ = (σkl)p×p for

σkl = 0.9|k−l|. The error term was independently drawn from a standard Cauchy

distribution. We considered five models for generating Y .

Y = 0.5X1 + 0.4X2 + 0.3X3 + 0.2X4 + 0.1X5 + ε; (3.1)

Y = 0.5X1 + 0.4X2 + 0.3X3 + 0.2X4 + 0.1X5 + exp{3I(X20 ≤ 4)X20}ε; (3.2)

Y = 2X1X2 + 2X20X21 + ε; (3.3)

Y = 2X1X2X3X4 + 6X21X22 + ε; (3.4)

Y = 4X1X2 + 3X2
3 + exp{5I(X20 ≤ 3)X20}ε. (3.5)

Model (3.1) is a homoscedastic linear model, and models (3.2)-(3.5) contain either

interactions or heterogeneity or both. Note that model (3.4) contains a four-way

interaction term. Such complicated interactions are rarely considered in the

literature.
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Table 2. Simulation results for Example 3. The 5%, 25%, 50%, 75% and 95% quantiles
of the minimum model size S such that all the truly important predictors are retained
after screening, out of 1,000 replications.

Model Quantiles SIS SIRS RRCS DC-SIS RDC-SIS MBKR-SIS

(3.1)

5% 5 5 5 5 5 5
25% 12 6 5 5 5 5
50% 155 16 5 10 5 5
75% 930 137 5 352 5 5
95% 1,896 1,638 6 1,660 6 6

(3.2)

5% 678 73 26 376 6 6
25% 1,325 392 187 879 7 6
50% 1,699 931 603 1,337 9 7
75% 1,889 1,538 1,282 1,674 12 9
95% 1,982 1,926 1,822 1,950 17 13

(3.3)

5% 444 625 557 271 5 4
25% 978 1,252 1,234 744 9 5
50% 1,458 1,655 1,632 1,201 15 7
75% 1,791 1,908 1,840 1,627 27 12
95% 1,959 1,992 1,971 1,923 70 31

(3.4)

5% 547 725 730 477 8 6
25% 1,129 1,422 1,445 1,012 15 8
50% 1,569 1,759 1,744 1,467 26 13
75% 1,831 1,909 1,898 1,775 47 20
95% 1,971 1,991 1,984 1,964 122 49

(3.5)

5% 423 597 437 206 5 4
25% 1,020 1,178 1,043 646 9 5
50% 1,466 1,596 1,533 1,088 16 8
75% 1,791 1,871 1,817 1,509 30 13
95% 1,966 1,987 1,967 1,888 83 41

Each experiment was repeated 1,000 times. The simulation results are given

in Table 2 for S and in Table 3 for both Pa and Ps.
The MBKR-SIS performs the best in most scenarios, followed by the RDC-

SIS method. The MBKR-SIS retains all interactions and heterogeneity terms

with a high probability. The medians of the minimum model size S are very close

to the number of important predictors across all scenarios, and the interquartiles

of the minimum model size S are also small, indicating that the MBKR ranks the

important predictors above the unimportant ones with an overwhelming prob-

ability, and the performances of the MBKR-SIS are very stable. In terms of

the 95% quantile of the minimum model size S, the RDC-SIS method is slightly

worse than it.

The SIS method is designed for homoscedastic linear models. In model (3.1),
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Table 3. Simulation results for Example 3. For a given model size S = [n/ log(n)],
the proportion Ps of each single important predictor is retained after screening and the
proportion Pa of all truly important predictors are retained after screening.

Model SIS SIRS RRCS DC-SIS RDC-SIS MBKR-SIS

(3.1)
Ps

X1 0.738 0.788 1.000 0.879 1.000 1.000
X2 0.845 0.825 1.000 0.952 1.000 1.000
X3 0.778 0.816 1.000 0.902 1.000 1.000
X4 0.640 0.774 1.000 0.809 1.000 1.000
X5 0.506 0.727 1.000 0.685 1.000 1.000

Pa ALL 0.348 0.607 1.000 0.597 1.000 1.000

(3.2)
Ps

X1 0.021 0.758 1.000 0.026 1.000 1.000
X2 0.011 0.806 1.000 0.024 1.000 1.000
X3 0.029 0.778 1.000 0.039 1.000 1.000
X4 0.016 0.740 0.999 0.025 1.000 1.000
X5 0.021 0.660 0.993 0.022 0.998 0.999
X20 0.026 0.036 0.077 0.327 1.000 1.000

Pa ALL 0.000 0.024 0.077 0.002 0.998 0.999

(3.3) Ps

X1 0.068 0.027 0.028 0.104 0.957 0.996
X2 0.073 0.023 0.025 0.122 0.955 0.992
X20 0.060 0.028 0.033 0.095 0.957 0.991
X21 0.061 0.021 0.038 0.090 0.948 0.987

Pa ALL 0.001 0.000 0.000 0.006 0.841 0.969

(3.4)
Ps

X1 0.089 0.030 0.036 0.089 0.861 0.982
X2 0.087 0.030 0.040 0.104 0.918 0.991
X3 0.083 0.029 0.046 0.105 0.938 0.998
X4 0.079 0.031 0.032 0.097 0.860 0.979
X21 0.020 0.019 0.021 0.019 0.985 0.979
X22 0.017 0.026 0.025 0.018 0.983 0.980

Pa ALL 0.001 0.000 0.000 0.000 0.676 0.922

(3.5) Ps

X1 0.056 0.029 0.039 0.090 0.912 0.962
X2 0.056 0.031 0.044 0.091 0.974 0.989
X3 0.049 0.029 0.040 0.095 0.988 0.998
X20 0.015 0.024 0.082 0.145 0.927 0.991

Pa ALL 0.000 0.000 0.002 0.008 0.829 0.946

the median of the minimum model size S is as large as 155 and close to the sample

size n = 200. The SIS procedure is not very effective in detecting some weak

signals, especially when the error distribution is heavily tailed. Given the retained

model size S = [n/ log n], the SIS has only a chance of 50.6% of detecting X5.

The SIRS, RRCS and DC-SIS perform satisfactorily in model (3.1) while none

of them is capable of detecting either heterogeneity terms or interactions in the

other four models. These observations are in line with what we observed from

Example 2 The performance of DC-SIS is not satisfactory, partly because the
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distribution functions of x and Y are heavily tailed in these examples.

3.2. An application

In this section we illustrate the performance of MBKR-SIS through an em-

pirical analysis of a rat eye microarray expression dataset collected by Scheetz

et al. (2006). They experimented on 120 twelve-week-old male rats, obtained

31,042 different probe sets, and conducted genome-wide linkage analysis with

399 genetic markers. The dataset is available at Gene Expression Omnibus

http://www.ncbi.nlm.nih.gov/geo with GEO accession number GSE5680. To

gain insight into genetic variation involved in human eye disease, Scheetz et al.

(2006) applied the expression quantitative trait locus (eQTL) mapping method

to 18,976 probes that are considered sufficiently expressed and exhibit at least

two-fold variation. Following Scheetz et al. (2006) and Huang, Ma and Zhang

(2008), our analysis focuses on these 18,976 probes and 399 genetic markers,

where genes expression levels are continuous and genetic markers are categori-

cal with 3 classes. Chiang et al. (2006) found that the gene TRIM32 at probe

1389163 at is a critical gene to the Bardet-Biedl syndrome, a genetic human dis-

ease concerning the retina. Our goal is to find out which gene expression levels

and genetic markers are the most predictive for the expression level of the gene

TRIM32. Because the number of predictors is extremely large while the sample

size is relatively small, a screening approach ie needed to screen out most of ir-

relevant genes before an elaborative second-stage analysis. For our analysis, all

18,976 probes were scaled to have zero mean and unit variance.

We implemented the SIS, the SIRS, the DC-SIS, the RDC-SIS, the RRCS,

and the MBKR-SIS, on the whole dataset to reduce the dimensionality of the

involved genes to [n/ log(n)] = 25. We then conducted a second-stage selection

based on the retained predictors to obtain a more interpretable model. Following

Huang, Horowitz and Wei (2010), we applied the elaborative variable selection

by using group SCAD (GS) for a nonparametric additive model. The additive

components were approximated by cubic splines. The tuning parameters were se-

lected via generalized cross-validation. To evaluate the performances of different

methods, we report the number of probes selected by each method, together with

the median of the absolute values of residuals, denoted by “Size” and “MAR”,

respectively, in the the second and third columns of Table 4.

Our proposed screening procedure followed by group SCAD selection, the

MBKR-SIS-GS, appears superior to other methods in terms of MAR. The boxplot

and the histogram of gene TRIM32 are given in Figure 2 (A) and (B). The

http://www.ncbi.nlm.nih.gov/geo
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Table 4. Results for analyzing the rat eye data.

Method
All Data Test Data

Size MAR Med. Size Med. PE
SIS-GS 10 0.0463 8(2.42) 0.2131(0.1128)
SIRS-GS 7 0.0526 7(2.72) 0.1829(0.1008)
RRCS-GS 9 0.0507 7(3.27) 0.1851(0.0991)
DC-SIS-GS 11 0.0425 8(2.72) 0.2095(0.1110)
RDC-SIS-GS 8 0.0530 7(3.35) 0.1854(0.1073)
MBKR-SIS-GS 8 0.0406 7(3.29) 0.1824(0.0981)
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Figure 2. (A) is the boxplot of gene TRIM32 at probe 1389163 at, and (B) is the
histogram of gene TRIM32 at probe 1389163 at.

response contains some obvious outliers and its distribution is negative skewed.

This may explain the SIS-GS and DC-SIS-GS appear conservative in terms of

model size.

We studied the eight genes selected by the MBKR-SIS-GS procedure, at

probes 1373534 at, 1372453 at, 1372710 at, 1399134 at, 1393510 at, 1378590 at

1380583 s at and 1373165 at. Six of them were also detected by DC-SIS-GS

while five were identified by RRCS-GS and RDC-SIS-GS, separately. The genes

at probes 1399134 at, 1372453 at, 1373534 at, and 1393510 at are also regarded

as important ones by SIRS-GS. SIS-GS only selects the two same genes as MBKR-

SIS-GS. The gene at probe 1380583 s at was missed by all other five competitors.

We randomly split the data into a training set of size 100 and a test set of

size 20. Subsequent analyses on the training set were identical to our previous

analyses on the whole dataset. We selected the tuning parameter for the training

set again through generalized cross-validation and evaluated the performance of
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different methods. We repeat this random partition step 200 times. The median

of the model size (Med. Size) selected by each method with its standard deviation

is summarized in the fourth column of Table 4. In the fifth column of Table 4,

we also report the medians of the absolute values of prediction errors (Med.

PE) based on the test data set. Their standard deviations are reported in the

parentheses of the fifth column. The smaller the Med. Size and Med. PE are,

the better the procedure performs. Our analyses indicate that, compared to the

other five methods, our proposed approach selects a relatively small number of

genes with smallest prediction errors.

3.3. An iterative procedure

Our simulations found that the MBKR-SIS procedure is effective in retain-

ing the important predictors that satisfy Assumption (A1), but some important

predictors may be marginally independent of the response variable and hence

have weak signals. To retain these signals in the screening stage, we follow Zhu

et al. (2011) and introduce an iterative procedure.

We describe the iterative MBKR-SIS procedure (MBKR-ISIS for short). Let

y = (Y1, . . . , Yn)T and X = (x1, . . . ,xn)T.

1. We apply the MBKR-SIS procedure to the observations (X,y). Denote by

xA1
=
(
X

(1)
1 , . . . , X

(1)
p1

)
T

the predictors selected in this step, where p1 is a

user-specified number. Throughout our simulations, we follow Zhu et al.

(2011) and set p1 = 5.

2. Let X1 = (x1,A1
, . . . ,xn,A1

)T, Xc
1 = (x1,Ac

1
, . . . ,xn,Ac

1
)T and Xnew =

{
In×n−

X1(X
T

1X1)
−1XT

1

}
Xc

1. Here, X1 is an n× |A1| matrix and Xc
1 is an n× (p−

|A1|) matrix. We apply the MBKR-SIS procedure to (Xnew,y) to select

p2 additional predictors. Denote by xA2
=
(
X

(2)
1 , . . . , X

(2)
p2

)
T

the predictors

selected in this step.

3. Update A1 with A1 ∪A2 and p1 with p1 + p2. Repeat the second step until

the total number of selected predictors reaches a pre-specified number. The

final model selected by MBKR-ISIS is indexed by A1.

This MBKR-ISIS procedure differs from the ISIS procedure proposed by Fan

and Lv (2008). Instead of working with (Xnew,y) in the second step, the ISIS

procedure works with (Xc
1,ynew), where ynew =

{
In×n−X1(X

T

1X1)
−1XT

1

}
y. The

ISIS uses Pearson correlation while MBKR-ISIS uses the modified BKR correla-

tion defined in (1.3). The ISIS assumes implicitly that Y depends linearly on x.

In the present context, we hope to retain the model-free nature of the MBKR-SIS
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procedure and hence are reluctant to impose any dependence structure between

Y and x. The idea of regressing Xc
1 onto X1 was first proposed by Zhu et al.

(2011) and later elaborated upon by Zhong and Zhu (2015). The merit of this

idea is that it does not assume the dependence of Y onto x, though it imposes

additional distributional assumptions on x to ensure its validity.

We demonstrated the performance of our proposed MBKR-ISIS approach

through simulations. We compared both the non-iterative and the iterative ver-

sions of our MBKR-SIS and SIS (Fan and Lv (2008)). The simulation studies of

SIS/ISIS (Fan and Lv (2008)) were conducted by the R packages (Fan, Samworth

and Wu (2010)). The sample size n was 200 and the predictor dimension p was

2,000.

Example 4. We considered three models:

Y = 5X1 + 5X2 + 5X3 − 15
√
ρX4 + ε; (3.6)

Y = I(5X1 + 5X2 + 5X3 − 15
√
ρX4 + ε > 0); (3.7)

Y = exp
{

(5X1 + 5X2 + 5X3 − 15
√
ρX4)

1

2
+ ε
}
. (3.8)

Here, the predictors x = (X1, X2, · · · , Xp)
T were generated as multivariate nor-

mal N (0,Σ), where Σ = (σij)p×p with σii = 1 for i = 1, . . . , p, σ4i = σi4 =
√
ρ

for i = 1, . . . , p and i 6= 4, σij = ρ for i 6= j, j 6= 4 and i 6= 4. We set ρ = 0.5. For

model (3.6), we generated ε from the standard normal and the standard Cauchy

distributions. For model (3.7) and (3.8), we drew ε from a standard normal

distribution only. In all three models, the important predictor X4 is marginally

independent of Y . We repeated each experiment 1,000 times.

Table 5 gives the probabilities that each single active predictor and all four

truly important predictors rank in the top [n/ log(n)] in 1,000 repetitions. These

results indicate that both SIS and MBKR-SIS fail to detect X4 with high prob-

abilities. The ISIS procedure performs satisfactorily when ε is normal in model

(3.6), but its performance deteriorates dramatically if the error distribution is

heavily-tailed or if the underlying true model is nonlinear. By contrast, our pro-

posed MBKR-ISIS is robust to heavily tailed distribution and performs effectively

with respective Pa = 0.992 and Pa = 0.962 corresponding to two different distri-

butions of error terms in model (3.6), Pa = 0.949 in model (3.7), and Pa = 0.989

in model (3.8).

4. Discussion

In this paper we suggest a modified Blum-Kiefer-Rosenblart correlation to
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Table 5. Simulation results for Example 4. For a given model size S = [n/ log(n)],
the proportion Ps of each single important predictor is retained after screening and the
proportion Pa of all truly important predictors are retained after screening.

Model ε SIS ISIS MBKR-SIS MBKR-ISIS

(3.6) N(0, 1)
Ps

X1 0.996 1.000 0.994 1.000
X2 0.996 1.000 0.997 1.000
X3 0.996 1.000 0.995 0.999
X4 0.000 1.000 0.000 0.993

Pa ALL 0.000 1.000 0.000 0.992

(3.6) t(1)
Ps

X1 0.491 0.557 0.981 0.996
X2 0.462 0.551 0.982 0.993
X3 0.494 0.567 0.986 0.999
X4 0.000 0.818 0.000 0.974

Pa ALL 0.000 0.311 0.000 0.962

(3.7) N(0, 1)
Ps

X1 0.975 0.655 0.981 0.998
X2 0.981 0.652 0.980 0.993
X3 0.971 0.654 0.978 0.997
X4 0.000 0.656 0.000 0.961

Pa ALL 0.000 0.648 0.000 0.949

(3.8) N(0, 1)
Ps

X1 0.542 0.641 0.993 0.999
X2 0.547 0.636 0.995 1.000
X3 0.534 0.660 0.994 1.000
X4 0.000 0.863 0.000 0.990

Pa ALL 0.000 0.247 0.000 0.989

measure the possibly nonlinear relation between two random variables. Both the

original and the modified Blum-Kiefer-Rosenblart correlations are nonnegative

and equal zero if and only if two random variables are independent, indicating

that they lead to a consistent test of independence. Compared with the original

Blum-Kiefer-Rosenblart correlation, the modified correlation appears more useful

when some of the predictors are categorical or discrete, while others are contin-

uous. Our limited numerical experience indicates that, if all the predictors are

continuous, the modified measure behaves similarly to its original version. We

develop a model-free sure independence screening procedure based on a modified

Blum-Kiefer-Rosenblatt correlation. Our proposed screening procedure is robust

against heavy-tailed distributions, outliers, and extreme values. We also propose

an iterative approach to detect the important predictors which are marginally

independent of the response. In contrast to existing screening approaches, our

proposals are effective in detecting important predictors that influence the re-

sponse variable nonlinearly. Simulations suggest that our proposed screening

approaches are superior to alternative ones in many scenarios. Still, our pro-
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posal are not very effective when the underlying true model is not very sparse or

contains many weak signals. Research along this line is warranted.

Supplementary Materials

The proofs of Theorems 1-4 are included in the online supplemental materi-

als.
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